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Flow past a plate midway between two walls is studied analytically using the Stokes approximation.
An exact solution is found for the semi-infinite plate using the Wiener-Hopf technique. For the finite
plate an approximate technique related to variational principles is discussed which provides both

upper and lower bounds on the drag.

HE problem of slow flow past a flat plate in a

channel is treated in the framework of the
Stokes approximation, i.e., the assumption is made
that the Reynolds number based on the channel
width is small. For the case of the semi-infinite
plate, an exact solution is obtained using a Fourier
integral approach and the Wiener-Hopf technique.
The answer obtained agrees closely with an earlier
approximate solution by Koiter." The exact solu-
tion necessitates more arithmetical computation than
does Koiter’s first approximation, but little addi-
tional conceptual complexity is introduced. An im-
proved approximation used by Koiter has, in fact,
practically the same degree of complexity and offers
little if any advantage over the exact solution.

An exact solution for the finite plate seems to be
unobtainable. However, variational theorems are
at hand for bounding the drag from above and below,
which will lead to approximations with minimum
errors in the least mean-square sense.

The present problem was pursued with the hope
of clarifying some of the aspects of flow near a
sharp edge. The Stokes approximation has, of course,
definite drawbacks in this regard beyond the as-
sumption of low Reynolds number; it does not
differentiate between a leading edge and a trailing
edge, and it is not capable generally of yielding a
solution for flow past an edge without the confine-
ment of walls, except in the sense of Proudman and
Pearson” and of Kaplun.® It is felt, however, that
the confining effect of the walls is of great advantage
in simplifying the physical aspects of the problem,
since it eliminates the two-dimensionality of the
flow far upstream and downstream from the edge
and gives very simple flows there. Another particular
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advantage of the present solution is the generation
of simple asymptotic formulas in the vicinity of
the edge which indicate the nature of the singularity
to be found there.

FORMULATION OF THE PROBLEM FOR THE
SEMI-INFINITE PLATE

The problem considered in this section is the
flow between two infinite plates (—e < z <
o,y = 1), each moving with constant velocity U,
and surrounding a semi-infinite stationary plate
(—w <2z <0,y = 0). The flow is considered
slow enough so that the rate of vorticity change by
convection is small compared to vorticity transfer
by viscosity. (The maximum Reynolds number for
which this assumption is valid is not known a priore,
although it can be presumed to be of order one.)
Symmetry about the z axis is assumed. Existence of
constant pressure gradients at £ = &= « are allowed,
the pressure gradients being different at each ex-
tremity owing to the difference in boundaries at
y = 0. A sketch of the flow situation far upstream
and downstream from the trailing edge is shown
in Fig. 1.

The constant pressure gradient as x approaches
minus infinity coupled with the moving boundary
at ¥ = 1 and the stationary one at y = 0 give a

velocity profile quadratic in y; thus v = Uy +
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F1a. 1. Flow geometry.
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P(y — ), where P is six times the average upstream
velocity due to the pressure gradient and U is the
velocity of the upper plate. For positive z along
y = 0, by symmetry considerations the shear stress
(¢ du/dy) must vanish. Thus as x approaches plus
infinity, v = (1 + 3y )U + i(1 — ¢°)P is the
parabolic distribution satisfying the boundary con-
ditions and which possesses the same discharge as
the upstream profile.

The mathematics of the problem then is to find
a stream function which is a solution of the bihar-
monic equation in the strip (—o» < 2z £ »,0 <L
y < 1) satisfying the following boundary conditions:

Yz, 1) = 3U + 3P, 1

@y/oy)x, 1) = U, @

Y(—=,y) = 3U + Py’ — 3Py, @)
W, y) = iU + P)y + ¥°) — 3Py,

@)
¥(z, 0) = 0, 6)
(@y¥/9y)= < 0,0) =0, 6)
@*¢/3y")(x > 0,0) = 0. )

An inconvenience in the mathematics of the prob-
lem is that the flow situation is different at the two
extremities of the channel. To handle this feature
of the flow, an auxiliary problem is first solved
wherein boundary condition (7) is replaced by

@¢/oy)= > 0,0) = KU + P) 8)
corresponding to a moving boundary at the right
half of the z axis. This replacement has the proper
velocity at z = £ ® but not in the vicinity of the
edge of the strip for x > 0.

For the auxiliary problem the velocity is known
everywhere on the boundary. The domain being
an infinite strip, a Fourier integral solution is sug-
gested. Taking the stream function in the form
Gk, y) exp (—ikz) and substituting in the bi-
harmonic equation, it is found that G must satisfy
@V — 2k°G" + k'G = 0. Imposing the boundary
conditions given by Egs. (1), (2), and (5), the form
of the solution for this problem can thus be written
as
Yolz, ¥) = 3(U + Py’ — 3Py’

wtie

+ ﬁ; [ B® G, ) exp (k) b, @)

where
G(k,y) = k(y — 1) sinh ky + y sinh k sinh k(1 — )
(10)
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and B(k) is to be determined by the remainder of
the boundary conditions. The ¢ in the limits of the
integral is a small positive number to ensure a path
of integration which lies above & = 0.

Use of the inversion theorem for Fourier integrals
gives

B0, ) = s | [ele, )
— 3(U + P)y* + 3Py’] exp (ikz) da.

This together with boundary conditions (6) and
(8) yields

(U + P)
42m) kb’ k — &%)

B(k) =

Thus,
Yol@, y) = —3y°P

U+P [ 2, [ Gk, y) exp (—ika) dlc:l
4 2y + 2m -/;md-o'e k(sjllhz k — kz)

(11)

with the series expansions found by the residue the-
orem to be

vz > 0,y) = XU + P)y + v*) — 3Py

U+ P s~ Glkis, ) exp (—iaky;)
4 Z Z kis(sinh 2k7, — 2k3;) °

¥z < 0,y) = 3(U + Py’ — iPy°

LU+ P 5 Gk, 9) oxp (—iskl),
4 i=1 8=1 k;"ﬁ(sin.h 2]{:73 - 2]0;-5

+

+

im1 8=1

Here k5, k;; are the nonzero roots of sinh k =
(—1)°% in the upper and lower half-planes, re-
spectively. Note that if & is a root, so are —k, k*
—k* where the asterisk denotes the complex con-
jugate. The values of the first 20 of these roots are
given in Table I; the remainder can be obtained by
consideration of the asymptotic values of the roots

TasiLE I. The first 10 roots of sinh £ = (—1)% lying in the
first quadrant of the & plane.

6 =1 & =2

L2507 + 4.2124 ¢
.1031 + 10.7125 ¢
5511 +17.0734 2
.8588 + 23.3984 ¢
.0937 4+ 29.7081 ¢
.2838 + 36.0099 ¢
4434 + 42.3068 ¢
.5811 + 48.6007 ¢
L7021 + 54.8924 ¢
.8100 -+ 61.1826 ¢

2.7687 + 7.4977 ¢
3.3522 4+ 13.9000 ¢
3.7168 4 20.2385 ¢
3.9831 + 26.5545 ¢
4.1933 + 32.8597 ¢
4.3668 + 39.1588 ¢
4.5146 + 45.4541 ¢
4.6434 4 51.7468 ¢
4.7575 4 58.0377
4.8599 + 64.3272 ¢
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of sinh k =
are given by

kil ~n [(4.7 - 1)7"] + 1’(2.7 — %)7"; j= 1,2,3, ...,
ki2 ~In [(4] + 1)7"] + 7'(2] + %)7": j= 1) 2,38, ....
(12)

(—=1)’k, which in the first quadrant

For all roots except the first one for each 6, the

values of k;; given by Eq. (12) are valid to better
than 29, of the actual value. The vorticity distribu-
tion along y = O for this problem is

MU+ PSS exp (—icky),

i=1 =1

wix > 0,0) =

@

2
oz < 0,0 = 3(U + P>[4+ 2 2 exp (—z‘xk,fa)],
j=1 §=1
both series diverging at x = 0.

It remains to ascertain whether the conditions
for large |x| are satisfied. The behavior of a Fourier
integral at large |x| is indicated by the behavior
of the kernel for small k. Now for small &, B(k)G(k, y)
behaves as

31U + P) k'yly — 1)*
4(2n)'E° 3
Thus the integral in Eq. (9) is approximated for
large |z| by

WU + P) e [TF7° exp (—tka)
-y [ SR,
which is zero for negative z and $(U + P)y(1 — y)*

for positive z, ensuring that Egs. (3) and (4) are
satisfied.

SOLUTION OF THE PROBLEM FOR THE
SEMI-INFINITE PLATE

Let

¥z, ¥) = Wz, y) + iz, 9.

Since ¥, will take care of the flow at large z, ¥,
must be a vortex distribution which modifies ¥,
near the edge. Taking h(z) as the Heaviside step
function [h(z > 0) = 1, h(z < 0) = 0] and letting

Il — #@, DIT[1 — 1, —DITE — fA, DIT[E — {3, —1)]
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e, ) = G [ AGGG, 9) exp (—ikz) db,

ao) = (2—);[[ DRSS a)
-exp (—kx) dk,

6o®) = 5 | [”m 0) = (U + Ph(— x)]

-exp (—kz) dk,

(W, @, are the transforms of the velocity and vorticity
minus their asymptotic values, evaluated on the real
axis) boundary conditions (6) and (7) now give
A (k) in terms of #, and &; thus,

(k) = A(k)(sinh® k — k%), (13)
wo(k) = A(kK)k(2k — sinh 2k)
+ (iU + P)i4 + T(k))/4e@x)},  (14)
where
T(k) = k(2k — sinh 2k)/(sinh® k — k*). (15)

Upon eliminating A the relation between &, and 1, is
ao(k) = mE)T(k) — {(U + P)4 + T(k))/4ik@r)}.

16
Since %, i1s the Fourier transform of a func‘sior)x
which is zero along the negative real axis, , is
analytic in the upper half-k plane including the
real axis. Similarly, @, is analytic in the lower half-
plane including the real axis. The determination
of 4, and & can proceed by the Wiener—Hopf
method. (For a discussion of the method, see Noble*
or Morse and Feshbach.”)

The function T is first split into 7', and T_,
T = T./T_., where T, and T. are analytic with
no zeros in the upper and lower half-planes, re-
spectively. Also 7', and T_ must be analytic and
nonzero along the real % axis and be of algebraic
growth as |k| — . A suitable factorization is
obtained by expressing the hyperbolic functions in
terms of gamma functions; thus upon investigation
of the zeros of the gamma functions,

7. (k) =

and
2T [f (2 ’

7Tl — §@2, =DIT[5 — {2, D] exp (=X)

(17)

—DITF + f(2, 1)] exp X

T_(k) =

—kT[f(1, DITA, —DITE + £, DITE + 74, D)

(18)

+ B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon

Press, Inc., New York, 1958).

M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953),

Vol l, p- 978.
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where

f(a, b) = %r (ak + b sinh™ k).

The factor exp X is used to assure correct behavior
for large |k|; using Stirling’s formula for the gamma
functions,

1nT+(k)——>X+g’-°11n2+ ln( ) o)

1k |-

T (k) — X

{k|-»

2k:

#201n (=8 (22) 4 oft)

so that by choosing
X = —(2ki/r) In 2,

—ik\} K3 ( ™ )*
Ts - ( T ) o T T 2 \—ik/
which satisfies the requirement.

The determination of 4, and @, can now be com-
pleted. Rearrangement of Eq. (16) in the form

(U + P)T.(0) + 4T_(k)]

T_(k)ao(k) + 4ik(2r)}
- 7.@u® + RGO ag

makes the left side analytic and nonzero in the
lower half-plane including the real axis and the
right side analytic and nonzero in the upper half-
plane including the real axis. Equation (19) then
represents the analytic continuation of a function
which is analytic and has no zeros in the entire
plane. This function is therefore a constant, say C.
Thus,

(U + P)ICk + T.(k) — T.(0)]

1, = - 20
(k) 4k @m)'T (k) 20)
Y
Lo ¥.0.5
%=0.4
0.8k %203
0.6F %02
ot 40l
0.2F ¥,20.05
+,20.025
i 1 1 1 L ! n L 1 Ly, 0
-08 -04 0 04 08

F1a. 2. Streamline pattern.
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and
(U + P)Ck — 4T.(k) — T.(0)]
wo( ) . 4zk(21r)‘T_(k) ) (21)
where

T.0) = —4T_(0) = 1/=*.

Determination of C is accomplished by imposing
the condition that w, be integrable at the origin;
hence,
‘I’O(k) — 0)
| k] ~r00
which is satisfied only if C is zero.
The solution to the problem now is available

upon solving for A(k), whence using Egs. (13),
(14), (20), and (21),
_ U+ PT.k) — T.(0)]
AW = 4R, (o) sl b — &)
_ (U+P)[ 1 B T.(0) ]
4ik(@2m)t Lsinh® k — ¥~ T_(k)k(2k — sinh 2k) |’

the first form being convenient for negative values
of z, the second for positive values of z. Combining
this result with Eq. (11),

y=-lpp UEE

=i Gk, y) exp (—ikz) ]
[ + %‘f f wsse TRk — simb 2) O

P +U+P
Topz o 2 [ Gk, y) exp (—iks) ]
[29 T o f_w. T (ye(emb® & — &) O |»

with the residue theorem giving

¥y >0,9) = XU+ P)y + ) — 4P

U + P E G(z 525 '!/) exp (_lzxkﬂ)
8r' i (3k7)'T-(3k7)(cosh ki, — 1)’

¥ <0,y) = U + Py’ — 3Py’

_U+pPy i: G(kis, y) exp (—izk];)
41[' jml =1 k T+(k )(Slnh 2’0:5 - 2k

The location of lines of constant
= (¢ + 3Py")/(U + P),

as well as profiles of u, = 9¢,/dy, v. = —ay,/az,
and w, = V%, are shown in Figs. 2-6. The varia-
tion of u; and w, along the x axis is shown in Fig. 7.

The behavior of » and w for small z, y is governed
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Fic. 3. Velocities and vorticity at z = —0.2.

by the behavior of the transform at large k. Ex-
panding the integrand in powers of k¥, the behavior
near the origin is given to the first approximation by

w0 < z K 1,0) ~ (U + P)32)}, (22)
w(—1Kz <0,0) ~ (U + P)/(—2x)'. (23)

These are shown by dashed lines on Fig. 7. The
behavior of ¥ near the origin is more. difficult to
determine; it is likely to be of the form

Wzl 1, yl < 1)
~ }{(U + Pyr(2r)"sin 30 + sin 36),  (24)

since this satisfies the biharmonic equation and the
boundary conditions along y = 0 and agrees with
Eqgs. (22) and (23). Equation (24) corresponds also
to the form given by Carrier and Lin® using a
Stokes approximation near the leading edge of the
flat plate in an unbounded flow.

The result given by Eq. (23) is in general agree-
ment with Koiter’s result, obtained upon approxi-
mating T'(k) by —2(k* 4 4), which has the correct
numerical value at k¥ = 0 as well as the correct
asymptotic behavior. He suggests an improved ap-
proximation based on & coth k, which requires

Y

1.0
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4 0.6 -
0.4
0.2 %

. L A
-0.4 0 0.4 0.8 1.2 1.6
Fra. 4. Velocities and vorticity at z = ~0.1.

6 G. F. Carrier and C. C. Lin, Quart. Appl. Math. 6,
63 (1948).

A PLATE IN

A CHANNEL
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F1a. 5. Velocities and vorticity at z = 0.1,

a degree of computation of the same order as
the exact solution. The first approximation then
[—2(k* + 4)}] seems to be the only one which is
more convenient than the exact solution. Even here
the introduction of a branch point by the square
root sign renders exact computation of the integrals
impossible.

1
~0.4 0 0.4 0.8 1.2

Fia. 6. Velocities and vorticity at ¢ = 0.2.

THE FINITE PLATE

For a plate of length L placed at y = 0, —L <
z < 0, the stream function is found in a manner
similar to the preceding to be

V= Uy+3PGy — ) + [ Gk, v HE) dk,
- 25)

Fic. 7. Velocity and vorticity on y = 0,
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where U, P, and G are as previously defined and

j—;m (6 "l’/ay )ysoeﬂw dz
2xk(2k — sinh 2Ic)

_ 2 [(6¥/0y) — U — 9P),.™ dz
27r(SlIlh2 - )

takes the place of 4 (k). Equation (25) automatically
satisfies all boundary conditions except for

—L<zr<0,

H) =

(26)

a/dy=0 on y =0,
and

Y/oy* =0 on y =0, z < —L and z > 0.

For this case there seems to be no method available
for finding an exact solution. However, because of
the formal analogy between the present problem
and the plane problems of elasticity, approximate
methods are avilable which can be utilized to bound
the drag on the plate from above and below, and
which in the mean square sense can be made as
accurate as desired. The infinite domain of the
present problem requires only a slight modification
of earlier theorems given by Hill and Power,” which
in turn are simply a recasting of the well-known
theorems of minimum complementary energy and
minimum potential energy of elasticity theory.

To render the various integrals which will arise
finite, let

v =y — (U + 9P)y + 3Py,

with V*¥ = 0 in a region R. Let the velocity vector
u be specified on the boundaries S, and the stress
vector T on the boundaries Sr. For the analog of
the theorem of minimum potential energy, let ¥’
be a stream function which satisfies the boundary
conditions on S, but such that V*¥ is not necessarily
zero and the boundary conditions on S, are not
necessarily satisfied. Letting u’ be the velocity field
found from ¥’ and defining

V') = E¥') —

St

T-w dS,

where

w0 = g [, [T + (555 |

by simple rearrangement and use of the conditions
on ¥ and ¥, one finds that V(¥') — V(¥) =
E(¥' — ¥); thus, V(¥') — V(¥) is positive definite.

For the analog of the theorem of minimum com-

7 R. Hill and G. Power, Quart. J. Mech. Appl. Math. 9,
313 (1956).
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plementary energy, choose this time a stream fune-
tion ¥’ such that V*¥"’ = 0 and also such that the
stress vector T” computed from ¥” is equal to
T on Sr. (The use of a stream funetion here is con-
venient but not necessary. Choosing a stress field
satisfying equilibrium and the stress boundary con-
ditions would be sufficient.) Letting

v = B - [ w17 as
and proceeding as in the previous case, V¥(¥'") —
V*(¥) = E(¥" — ¥); therefore, V*(¥'') — V*(¥)
is positive definite also.

For the present problem S, is made up of y = 1,
—o €z < w,andy =0, =L < z < 0, and
Srbyy =0,z < —Lor >0,and z = . If
the additional requirement is imposed that ¥ =
¥ = ¥ ony = 0, then

TuwdS=0-=

Sr Sr

T-uw' dS @7

and

fsu wT dS = (U + 9P)uf (:;’)0 dz

= (U + 9P)F(¥"),

F(¥) being the force exerted on one side of the
plate. For any stream function satisfying equilib-
rium,

f _uwTdS = 26(®); (28)
Sr+Sy

hence, from Eq. (27)

E(\I/") — % [ uw’-T" 48,

v Sy
and also, F(¥) = 2E(¥)/(U + 9P). Putting these
results together it follows that
_—1_ L] (a\I,N 62\1,//) p
2" . \Voy 9/ o

1 a\p")

Z‘I,H:I
2 ay y=0 dx

oy’
3(U + 9P)F(¥) < E(¥).

+uf_0L[<U+9P+

= -V <

It remains now to choose suitable ¥/ and ¥’.
Choices which are suggested by Eq. (26) and which
exceed the minimum requirements are

- f Gk, y)e~ ™ H' (k) dk
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and
v = [ G, v H ) db,

with

e — J=2 + [Ds@e™ de— (U+IP)(A—e *5)/ik
H'(k) = P —

and

[2 L t@)e™ dx
2rk(2k — sinh 2k)’

s (representing velocity) and ¢ (representing vor-
ticity) being arbitrary functions of z except for
obvious smoothness and integrability conditions. If
s and ¢ are the exact velocity and vorticity on
y = 0, they give the exact solution. Since this
choice of ¥’ satisfies equilibrium, the expression for
E(¥’') can be simplified using Eq. (28). Since ¥
satisfies the velocity conditions at y = 1, V*(¥'')
can be simplified also. Thus

0 l. a‘l’”) aZ‘VI:l
# f_L [(U Tt ) T .

< (U + 9P)F(¥)

0 ’
< 1 (U + 9P) f (‘?;;I;) dz,
-5 v=0

H”(k‘) —

(29)

and so only single integrals need be carried out for
each choice of H' and H”. This and the automatic
satisfaction of the conditions on ¥ and ¥ make
this form for the approximation very attractive.

As an example of the calculations needed for
simple choices of s(x) and t(zx), let

o) = {B(U +9P) for —~L<z<0,

0 otherwise,

1935

and

- [ s
_ (U + 9P)6+a(z+L)

Then from Eq. (29), it follows that
EW) = (U + 9PY’uaD/x

for =0

[
|
=

for =z

and
V*@®') = (U + 9P)°uB(L — BC/x),

where
C=— f T~ ()~ sin® (0.5kL) dk
and .

p=-[ T TR + B

-k sin kL + a(l — cos kL)] dk,

T(k) being given as in the previous section. The
minimum of ¥V* occurs when B = 0.5xL/C; hence,
L F 2Da

20 “WU+9P) < 7 7

where a can be chosen to minimize aD. C, D, and a
are functions of L which can be evaluated by ap-
proximate or numerical means for a given value of L.
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