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The initial dispersion of a meteor trail which consists of atoms, ions, etc., evaporated from a hot
meteoric body has an important bearing on its detectability via electromagnetic wave scattering.
In the contemporary literature, the classical diffusion equation, in one form or another, is often
used for an approximate description. This leads to much uncertainty and conceptual difficulty.
From the Maxwell-Boltzmann viewpoint of kinetic theory, it is found that a new relation in the
form of the telegraph equation can be derived which removes the present difficulties and gives

closer agreement with observations.

I. INTRODUCTION

In the study of the upper atmosphere by obser-
vations of electromagnetic waves scattered from
the ionized trails of meteors, various scattering
theories have been developed that relate the am-
plitude and duration of a wave echo to the electron
line density of the meteor trail in question. In
such scattering theories uncertainities and inac-
curacies have been attributed to, among other
factors, the finite initial radius of the meteor trail
which is composed of evaporated meteor atoms,
ionized atmospheric particles, and free electrons.
The cause of a meteor trail having a finite radius
during an echo observation is at least twofold:
(i) the initial expansion and diffusion of the evapo-
rated meteor atoms which dissociate and ionize
the air molecules through eollision processes and
(i) fragmentation of the meteor body. It is in the
study of the initial expansion pertinent to factor (i)
that the present work is motivated. In other words,
the purpose of the present investigation is to ap-
prehend the kinetic process of interactions between
the evaporated meteor atoms and the ambient
atmosphere which is basic to the initial radius
problem of interest.

The immense significance of the problem has
led to much earlier discussion®'® where a variable
mean-free-path approach was proposed to take into
account the dependence of mean free path upon
the meteor velocity and collision cross section.
Such an almost-free molecular approach to treat
a rarefied flow problem is well taken for a meaningful
analysis’ provided the “persistence of velocity’”
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of Jeans’ is appropriately taken into account.
Mounting observational evidence’’ apparently
suggests that the initial spreading of a meteor tail
is “explosively” fast and certainly not diffusionlike.
Appropriate physical insight into the initial ex-
pansion of a meteor trail is still lacking. Here it is
intended to pursue a more rigorous kinetic approach
from the viewpoint of the Maxwell-Boltzmann
equation.®

II. AN IDEALIZED MODEL

In order to sharpen our focus on the inherent
kinetic process of meteor trail expansion, we remove
the geometrical complications by using a point
source to simulate the outlet of the evaporated
meteor atoms which spread in a homogeneous
atmosphere. It is further observed that the meteor
body velocity (V) >> mean lateral speed of evapo-
rated atoms (A) relative to the meteor body, a
stationary source can be used to discuss the distri-
bution of the evaporated meteor atoms which is
related to that of a moving source with a simple
Galilean transformation of coordinates.

From the viewpoint of kinetic theory, meteor
atoms start as a free molecular radial beam until
they collide with the air molecules after traveling
a distance, on the average, of a mean free path;
after collisions, the slow classical diffusion process
takes over. The meteor atoms of interest undergo
stages of free molecular, transitional, and eontinuum
flows. The distribution of meteor atoms in question
f(r, ¢, §) in a six-dimensional phase space (r, ¢)
is governed by the Maxwell-Boltzmann equation.®
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Although a numerically iterated solution for the
thermalization of a joint source flux is within the
reach of contemporary computational capability,
it does not usually provide physical insight into
the problem of interest. In view of the incomplete
understanding of the initial velocity distribution,
the collision and the charge transfer of the evapo-
rated meteor atoms, it appears fruitful to use the
original transfer equation of Maxwell,” which can
be derived as a moment form of the Maxwell-
Boltzmann equation, to evaluate the average value
of any quantity Q(c) without knowing much about
the distribution function f(r, ¢, f).

III. EQUATIONS OF METEOR TRAIL EXPANSION

Consider a point source of evaporated meteor
atoms at r = 0. The distribution of meteor atoms
with velocity ¢ at time ¢ and position r is denoted
by f(r, ¢, ). They interact with ambient atmos-
pheric molecules which are prescribed by the distri-
bution function F(c,). Neglecting the geogravi-
tational force field and ignoring collisions among
meteor atoms, the Maxwell-Boltzmann equation
for f(r, ¢, t) can be written®

%5+ c-Z—i = ff [f(e)F(c) — f(e)F(cy)]

e, — ¢| G d*Q d,, )
where G denotes the differential cross section for
collisions of particles whose velocities change from
(c, ¢1) to (¢, ¢}), respectively. Multiplying both
sides of Eq. (1) by Q(c), which is a funection of
velocity ¢, and integrating over the velocities of
the meteor atoms (c) gives®

2 @) + div @) = [[[ 10 - e

[Fle)f(0)] lex — ¢| G d°Q d%, d’, )
where the bar indicates an average over ¢ and
n(r) the number density of meteor atoms at r.
The terms on the left-hand side of Eq. (2) determine
the rate of change of nQ due to flow in the phase
space. The term on the right-hand side gives the
average rate of change of @ due to collisions.

Let @ = 1, cQ = u, the resultant drift velocity
of meteor atoms. On the right, @(¢’) = @Q(c) for
an elastic collision. Approximation for inelastic
collisions of ionized meteor atoms can be taken
into account by letting @(c¢’) = 2 in an ionizing
collision or Q(¢’y) = O for an attachment or re-
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combination. The transfer equation (2) gives

2+ div (w) = n6, — ), ®
where 7; and 7, denote frequencies of ionization
and attachment, respectively.

Let @ = ¢ and note that this does not lead to
zero for the term on the right-hand side of Eq. (2)
because collisions with ambient molecules change
the total momentum of the meteor atoms. Equation
(2) for @ = ¢ becomes

@

g—t(mnu) +divp = —mmpa,

where the pressure tensor p is defined as

p;i = nmﬂ,'c,'

and is assumed to be a symmetric tensor, whose
inference will be discussed later

P= Up(n: T))

thereby ignoring the nondiagonal elements due
to transport effects; m and 5, denote the mass and
the collision frequency of a meteor atom, respec-
tively; U is a unit tensor.

In the present discussion we ignore the inelastic
collisions, hence 5; = 3, = 0. Equations (3) and (4),
when operated by a/6t and div, respectively, can
be combined into a single equation

b 1o 1om
where A’ = xT/m and D = «T/(ms.) with T,

assumed constant, denoting the effective kinetic
temperature of the evaporated meteor atoms. The
quantity D approximately equals the diffusion
coefficient of meteor atoms in the atmosphere. The
quantity A represents the propagation speed of a
small pressure impulse of meteor atoms assuming
isothermal thermodynamic process in the propa-
gation.

IV. INITIAL. EXPANSION OF METEOR TRAIL

Notice that Eq. (5) is in the form of telegraph
equation where quantity 4 denotes the dissipation-
less propagation speed of a telegraph signal; D is
the coefficient of diffusion of the signal during
propagation. It is anticipated that the solution of
Eq. (6) would show the phenomenon of retardation,
i.e., the solution would have a well-defined wave
front, as the beam of the evaporated meteor atoms
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behaves prior to their collisions, on the average,
with the ambient atmospheric molecules, in addition
to residual disturbances which persist at all points
traversed by the wave front. The telegraph equation
thus lies between the simple wave equation, whose
solutions have a wave front but no residual dis-
turbances, and the classical diffusion equation,
whose solutions have a residual disturbance but
no wave front. The difference between them be-
comes indistinguishable after a few mean free times
from the initial instant at ¢ = 0.

The resulting Eq. (5) for the representation of
spreading of the evaporated meteor atoms which
originate from a point source thus removes the
conceptual difficulty of using a classical diffusion
equation for the spreading phenomenon near ¢t = 0.
For instance, it is well known that the fundamental
solution to diffusion equation

on_ pin ©)

is
n(z, t) = (4wDt)™** exp [—2°/(4D1)] @)

which behaves like a Dirac delta function 8(z) at
t = 0 and acquires finite values everywhere at
{ = 0%, an infinitesmally small time interval. This
implies an infinitely large speed of propagation
which is nonphysical. Equation (5) also appears
to give a relatively fast initial expansion of the
meteor trail which agrees with observations.®”

The Green’s function of Eq. (5) which describes
the concentration at position r and time ¢ due to a
unit point source at the origin r = 0 is’

nir, ) = —‘;1— exp <—§—D- t>

-[5(At -7 + :25(72 Ar

— a7

.(% o — A2t2)”2)H(At - r)] , 8

where the step funetion H(z) = 0 when 2 < 0 and
H(z) = 1 when z > 0; J,, the first-order Bessel
funetion of the first kind.

To illustrate the physical process, the source
solution to the one-dimensional form of Eq. (5)
is used’

* P, M. Morse and H. Feshbach, Method of Theoretical
Physics (McGraw-Hill Book Company, New York, 1953),
Vol. 1, p. 868.

n(z, t) = 2rA exp (—A%/2D)J,
[A@® — A)V2@2D) T H(At — ), )

where J, denotes the zeroth-order Bessel function
of the first kind. It is observed from solution (9)
that the concentration disturbances that give the
initial discontinuity are confined within the signal
zone, ¢ < At. The concentration at a point z,
remains undisturbed until the instant when z, = A¢,.
At this time, which is that required for a disturbance
to travel from the origin (x = 0) to z,, a concen-
tration wave with intensity ~ exp (—A%,/2D)
passes through z;. After this initial wave the slower
diffusion process takes over.

V. DISCUSSION AND CONCLUSIONS

It has been qualitatively established in the above
discussion that the concentration of meteor atoms
in question at displacement r and time ¢ comparable
to mean free path and mean free time, respectively,
of the spreading meteor atoms behaves according
to the solution of the telegraphlike equation (5)
which is undistinguishable from that of the dif-
fusion equation (6) at larger values of » and ¢. Prior
to their collisions, the meteor atoms, which are
evaporated from the meteoric body with mean
speed A, move with r/t = A. Quantitative com-
parisons of the two solutions of Eqgs. (5) and (6)
can be made by constructing solutions, under
various initial conditions, from the use of the funda-
mental solutions (8). The result of this mathematical
exercise will not be presented here since solutions
to the telegraph equation are abundantly avail-
able.’*"!!

The significance of the present finding pertaining
to the initial expansion of meteor trail can be inter-
esting in the study of the initial radius of an ionized
meteor trail—an important factor in determining
the detectability of meteor via radio echo at an
altitude, say above 100 km, where the mean free
path of a meteor atom in the ambient atmosphere
is not very small."*

The simplicity of Eq. (5) is owed in no small
measure to the assumption of a symmetric tensorial
form for the stress p. This is obviously an over-
simplification considering the nonisotropic nature
of the beam of evaporated meteor atoms. Pre-
sumably a more accurate result can be obtained

10 J A, Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, New York, 1941), p. 297.
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by extending the present zeroth-order approxi-
mation.

The accommodation of the present stationary
source solution to a moving one in order to simulate
an actual meteor is also omitted here because it
is simply a straightforward computation using a
Galilean transformation very similar to that for
the diffusion of a heat source.'®

It is hoped that the results of the present study

2 H, 8. Carslaw and J. E. Jaeger, Conduction of Heat in
Solid (Oxford University Press, London, 1959}, p. 255.
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may help in the new approaches'®'** to the kinetic
problems of meteors and comets using the dis-
cipline of fluid physies.
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Thermal diffusion and diffusion measurements on Ar-8Kr, made by the two-bulb method, are
reported for the temperature range 77-600°K. In part of the temperature range there is an unex-
plained discrepancy between our thermal diffusion data and those of Grew and Mundy, making it
no longer clear that the thermal diffusion factor has a positive minimum. However, it is confirmed,
by the use of a specially constructed thermal diffusion column, that the thermal diffusion factor is
positive between 77 and 90°K. The ordinary diffusion coefficients are in excellent agreement with
other work. Notwithstanding the thermal diffusion discrepancy, it is clear that the exp-6, Kihara
core, and Morse potential models are not entirely satisfactory.

I. INTRODUCTION

Measurement of thermal diffusion in binary mix-
tures of simple gases is potentially a powerful
technique for the investigation of unlike molecular
interactions, and recent advances in the machine
computation of molecular collision integrals'~* prom-
ise to help realize its full potentiality. Unfortu-
nately, however, it is difficult to measure thermal
diffusion in the system Ar-Kr(trace), which has
that its literature abounds with inconsistent data.’”"
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It is, therefore, important to check any data that
appear in the least unusual or suspicious. This
paper primarily reports a reinvestigation of thermal
diffusion in the system Ar-Kr (trace), which has
previously been reported to have an unusual tem-
perature dependence.

Some time ago Grew and Mundy® reported
measurements on Ar-Kr thermal diffusion at lower
temperatures than had hitherto been reached.’
Their most noteworthy observation was that the
thermal diffusion factor «, exhibited a positive
minimum at about 150°K; furthermore, while still
positive, a, was increasing rapidly at the lowest
temperatures obtainable with liquid oxygen and
nitrogen. Such behavior, while theoretically possi-
ble,’*"' is quite unusual. Any minimum would
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