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The contribution from freely rotating atoms to the intensity of electron scattering by gaseous 
molecules is obtained by means of an asymptotic evaluation of an integral, using the saddle 
point method. It is possible now to estimate the effect of the approximation in using the Debye 
formula, which is a specialization of the derived series, and, if desired, to obtain a higher degree 
of accuracy. Two cases are considered numerically. 

I N many molecules in the gaseous state internal 
vibrations of large amplitude and even prac­

tically unhindered rotation are possible. This, of 
course, is well known from heat capacity and 
spectroscopic investigations. In his paper con­
cerning the effect of various types of internal 
motion in gaseous molecules on the resulting 
intensity of scattered electrons, P. Debye1 made 
an important contribution to the calculation of 
the effect of a freely rotating group in a special 
type of molecule by evaluating the integral 
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sin sr 
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by means of an asymptotic formula. In the 
integrand, s= (41l'/A) sin (012), r is the varying 
distance of a rotating atom from another whose 
position in space is fixed, and which is not on the 
axis of rotation (for then r would not vary) and 
dW is the probability of finding the rotating atom 
in any position on the circle of rotation. s corre­
sponds to sk in Debye's treatment. 

It is the purpose of this paper to afford the 
investigator a means for estimating the effect of 
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1 P. Debye, J. Chern. Phys. 9,55 (1941). 

the approximation introduced by using the 
Debye formula and for obtaining a greater accu­
racy, if desired. The general case, in which there 
are no restrictions on the molecular parameters, 
is treated and an expression is derived which is 
the sum of four asymptotic series. It can then be 
shown 'that Debye's formula is obtained if one 
takes the first term in two of the series, neglecting 
the other two, and specializes it to D~bye's 
example. By means of these semi-convergent 
series it is easy to estimate the approximation 
introduced by using the Debye formula (or, more 
generally, the formula which is the sum of the 
first terms in two of the series) and, in addition, 
higher accuracy may be obtained by including 
additional terms. 

MATHEMATICAL DEVELOPMENT 

Consider the point, P, rotating with fixed 
radius of rotation, a, about the axis A C. Its 
distance, r, from a fixed point in space, Po, can be 
shown to be f 

(2) 
where 

and (3 is the angle of rotation. rmax=/2' rmin=/l' 
and, clearly, (3= 0 when r=/1. 

The contribution to the total scattering func­
tion from a pair of atoms at P and Po, respec­
tively, is given by (sin sr) I sr. It is necessary 
however to consider the average contribution by 
the changing distance in the course of a rotation. 
Thus, we obtain an integral of the form of 
(1) which is an averaging of the contributions 
from all positions or' orientation. We have by 
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expressing r as in (2) above, 

f.
21r sin [x(l-p cos (1)!Jd{1 

1= , 
o x(l-pcos{1)!27r 

(3) 

where x=scll, P=C2/CI and d{1/27r=dW since, in 
free rotation, all positions are equally probable 
and the weight factor as a function of position 
reduces to unity. Integral (3) is the imaginary 
part of 

1 f" exp [ix(l-p cos (1)!J 
- d{1. 
7rX 0 (l-p cos (1)! . 

(4) 

This integral will now be evaluated by the 
saddle point method, the details of which have 
been clearly presented by Debye.2 The principle 
of this method is that integrals of the type in 
(4) can be evaluated asymptotically by con­
sidering the contribution in the vicinity of the 
extrema of 1({1) = (1- P cos (1)l, which occur when 
{3=0 and {1=7r, the saddle points. The evaluation 
is accomplished by choosing a contour of integra­
tion along a path of steepest descent (steepest 
decrease of magnitude of the integrand) through 
the saddle points. 

In order to obtain now the contribution from 
the neighborhood of (3 = 0, we define a new 
variable, 

! = 1({3) - 1(0) = (1-P cos (3)! - (1- p)!. (5) 

From (5) we get 

. 2(1-p)! '( (2-3p)1 
sm (3(t) = I' 1 ----

pi 2p(1-p)! 

The values of bo, bl , b2 , and b3 are given along 
with the final expression. 

We now use (5) and (6) to express integral (4) 
as a function of I, and then make an additional 

2 P. Debye, Math. Ann. 67, 535 (1909). 

change of variable, setting ix! = - T. This gives 

The choice of a contour of integration along the 
path of steepest descent through the saddle point 
allows us to choose 00 as the upper limit. Since 

we obtain 

exp [iX(1-P)l+i7r. /4J[ 
10 "v r(/2) 

7rX(xp)!(1-p)1 

ib l b2 ib 3 ] 
+-r(3/2) --r(5/2) --r(7 12)+ .. ·, (8) 

X x 2 x" 

by choosing (-i)!=e- i"/4. 

A similar term for the contribution from the 
neighborhood of (3= 7r can be obtained in the 
same way. By defining a new variable 

it is then found that 

We finally obtain 

exp [ix(1 +p)! -i7r /4J 
17r~---------------

7rx(px)t(1 +p)l 

'b' 
x[ r(1/2)+~ x~r(3/2) 

b2' iba' ] 
--r(5/2)--r(7j2)+ .. · . (11) 
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We now have the complete evaluation of the 
original integral (3) in terms of the contributions 
from the two saddle points. It is the imaginary 
part of 

exp [ix(1-P)1+i'1l"/4] 

x!(P'll-)t(1- p)l 

( 
ibl 3li2 15iba ) 

X 1+------+··· 
2x 4x2 8x3 

exp [ix(1+p)!-i1l'"/4] 
+-------------

x!(P1r)!(1 +p)l 

( 
ibl' 3b2' 15iba' 

X 1+------+·· .), 
2x 4~2 8x3 

and taking the imaginary part we have, 

1 
["'--
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X [Sex, p, 'II' j4)Ul(P)+C(x, p, 'II' /4)U2(P) 

+S(x, -p, -1r/4)Ul( -p) 

where 

and 

and 

+C(x, -p, -1r/4)U2( -p)], 

sm [x(1-p)l+1r/4] 
Sex, p, 11'/4)=-----­

(1-p)l 

cos [x(1-p)!+1r/4] 
C(x, p, 11'/4) = , 

(1- p)! 

2-3p 
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12 - 20p+ I1p2 
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40-132p+ 166p2-79p3 
ba=----------
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(12) 

(13) 

The Debye formula is obtained if one expresses 
x and p in terms of s, 12 and ll' sets Ul= 1 and 
U2 = 0 in (13), and if the molecule considered has 
the dimensions such that 122-112=4a2 , where a is 
the radius of rotation. (An example is the case of 
a'molecule with an identical group rotating at 
each end of a bond.) 

DISCUSSION 

It can be shown that the series in (13) are 
asymptotic in the sense of Poincare. 3 Thus these 
series are divergent and this property is mani­
fested by an increase in magnitude of successive 
terms after a finite number of terms of steadily 
decreasing magnitude have been passed. In 
applying the series, the terms which are suc­
cessively increasing are not included and the 
approximation will be improved by taking more 
and more of the successively decreasing terms. 
The magnitude of the error resulting from cutting 
the series off at a particular term is roughly of the 
order of magnitude of the next term in the series. 

,1 t is customary in using the visual method 4 for 
studying electron diffraction patterns of gas 
molecules to calculate theoretical intensity curves 
from s = 2 to s = 20 or further and to attach 
quantitative significance at s values greater than 
5. It is therefore desirable to evaluate the magni­
tude of successive terms in the asymptotic series 
in the vicinity of s= 5 for some typical molecules. 
(It should be noted however that with improve­
ment in methods for obtaining accurate diffrac­
tion ifltensities, it may be desirable to consider 
quantitatively the intensities at values of siess 
than 5.) 

In discussing the applicability of the derived 
series it is somewhat less cumbersome to refer to 
the complex expression (12). However, the re­
marks to be made are readily applied to the final 
form (13). Two different molecules were chosen 
for discussion. Hexamethylethane was chosen 
because a study had been made on this molecule 
by S. H. Bauer and J. Y. Beach" using Debye's 
formula and it represents a very favorable case. 
The second example concerns the rotation of the 
3 and 3' carbon atoms in biphenyl, and, as will be 
seen, is less favorable for the application of the 
Debye formula. In Table I, the magnitude of the 
second and third terms included under the 
parentheses of each of the two series in (12) is 
recorded for three different values of s. The 
calculations were based on a hexamethylethane 

3 E. T. Whittaker and G. N. Watson, Modern Analysis 
(The Macmillan Company, New York, 1943), American 
edition, p. 151. 

4 L O. Brockway, Rev. Mod. Phys. 8,231 (1936). 
as. H. Bauer and J. Y. Beach, J. Am. Chern. Soc. 64, 

1142 (1942). 
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model in which the carbon to carbon distances 
were taken to be 1.54A and all the angles were 
considered tetrahedral. In Table II are recorded 
the same mathematical quantities for the 3 and 3' 
carbon atoms in a model of biphenyl which has 

TABLE I. Evaluation of successive coefficients in the 
asymptotic series for a model of hexamethylethane. 

I~I 13b'I 
4x' I~I 1

3b"l 4x' 

s= 2 0.05 0.03 0.13 0.06 
s= 5 0.D2 0.005 0.05 0.01 
s= 10 Q.Ol 0.001 0.03 0.002 

regular benzene rings with a carbon to carbon 
distance in the ring taken as 1.39A and a separa­
tion between the rings of 1.52A. 

Whereas these two examples are by no means 
exhaustive, significant information may be ob­
tained by examining the tables. The values for 
the terms included in the tables must be com­
pared with unity, the leading term in the series, 
and thus the approximate magnitude of the error 
in omitting successive terms is readily obtained. 
For instance, for hexamethylethane the second 
term of the first series in expression (12) is only 
about 2 percent of the first term for s = 5. The 
second term in the second series for s = 2 is about 
13 percent of the first but this is in a region which 
is insignificant so far as the visual method is con­
cerned. However for biphenyl in Table II, we see 
that the third term is larger than the second for 
s = 2 and so calculations would include only the 
second term introducing a rather large error. It 
is also seen that rather large errors occur in 
omitting successive terms in the region of s = 5 
to 10. 

CONCLUSIONS 

Several conclusions can be drawn: 
1. Consistent with the spirit of the saddle point 

method, the accuracy of the asymptotic evalua­
tion increases as s increases. 

2. The asymptotic series may be used to 
estimate the error involved in using the Debye 
formula and affords a scheme for reducing the 
error by utilizing additional terms. 

3. When the rotating atoms are far apart, the 
leading terms in the series may decrease in 
magnitude more slowly. This is illustrated in the 
case of biphenyl where the effect of the smaller 
value of p as compared to the value in hexa-

TABLE II. Evaluation of successive coefficients in the 
asymptotic series for a model of biphenyl (re: 3,3' carbon 
atoms). 

I~I 1

3b
', 4x'i '~I 1

3b"l 12xl 4x' 

s= 2 0.23 0.28 0.28 0.32 
s= 5 0.09 0.05 0.11 0.05 
s=1O 0.05 0.01 0.06 om 

methylethane more than compensates for the 
effect of the increase in the value of x due to the 
larger separation. Since the barriers which re­
strict rotation are smaller when the rotating 
groups are farther apart, we can expect that the 
asymptotic series will find its greatest application 
in such cases. 
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