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We show that the internal control of adaptation can be obtained from the properties of the phase lag
that results from phase synchronization of two nonidentical chaotic oscillators. The direction and
magnitude of the phase lag depend upon the relative internal properties of the coupled units, and
they can be used as indicators during the adjustment of dynamics, i.e., adaptation of the target unit
to match that of the control. The properties of the phase lag are obtained using a method based on
the estimation of properties of the distributions of relative event times of both~target and control!
units. The phase lag dependent mechanism to control the adaptation process was applied to a system
of nonidentical Ro¨ssler oscillators and a system of nonidentical Lorenz oscillators. We also elucidate
its importance as a control mechanism of the changes of neuronal activity showing its application
to neural adaptation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1772171#

We present here a novel parameter adaptive control tech-
nique, allowing for synchronization of a system of two
initially nonidentical units. The mechanism of adaptation
is based on a measurement of conditional entropies that
utilizes the properties of temporal distribution of inter-
event intervals of the coupled units. Those properties are
driven by the phase lag observed during phase synchro-
nization of the two units, which is measured by monitor-
ing a relative delay in the generation of an event by one
unit with respect to the other unit. The properties of this
phase lag depend on the relative frequencies of the two
units and thus can be used as an indicator during the
adaptation process. The major advantages of the pre-
sented adaptation mechanism are that it depends only on
the relative timings of the events generated by the units
that are often possible to obtain experimentally and it
does not contain any information about the mathematical
form of the system. We show the workings of the pro-
posed mechanism for a system of two coupled, noniden-
tical Rössler and Lorenz oscillators. We show that this
parameter adaptive technique works well over a wide
range of parameters of the two units as well as in the
presence of noise. In the last part of the paper we also
argue that a similar mechanism, based on relative spike
timings, could be used to control the adaptation in the
nervous system and as an example we demonstrate its
application to the system of coupled Hindmarsh–Rose
models of the thalamocortical neurons.

I. INTRODUCTION

Synchronization of coupled identical systems has been
studied extensively during recent years and it is well known

that with the application of the appropriate coupling, the
identical systems will achieve complete synchronization,1–7

which is often observed in nature.8–13

However in many cases even though the dynamics of the
coupled units are driven by the same underlying processes
~i.e., it is described by the same structural equations!, the
macroscopic properties of their trajectories will be dramati-
cally different and will depend upon the sets of control pa-
rameters. Such systems may synchronize only after the
coupled units undergo an adaptation process to make their
trajectories compatible. This is well exemplified in neural
systems where the generation of action potential by neurons
is driven by appropriate temporal changes in ionic currents,
but it is known that the receptor and ion channel repertoire of
different neuron types are not the same and thus the specific
properties of action potentials~i.e., spike threshold, existence
of self slow excitation and inhibition currents, differences in
refractory time, etc.! will vary. Moreover, it has been deter-
mined experimentally that the neurons can change their fir-
ing pattern dramatically by altering their ionic currents de-
pending on the cognitive state of the animal14 and thus
indicating radical changes in its internal properties.

Parameter adaptive control techniques have been inves-
tigated by others but these techniques usually require con-
struction of the Liapunov functions based on the structural
information about synchronizing units.15–17This information
may often not be readily available and is definitely not avail-
able to drive the adaptation in dynamical systems found in
nature.

We have shown earlier that the parameter adaptive con-
trol of two initially nonidentical units can be achieved by
monitoring the changing differences of the spatial properties
of the trajectories of both units.18 The mechanism of param-
eter adaptive control in that case was constructed from the
distribution of the spatial coordinates of the Poincare´ section
crossing was changing monotonically with the control pa-
rameter of the system. However, a question that becomesa!Electronic mail: michalz@umich.edu
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pertinent is whether and how the temporal information about
the interaction of coupled nonidentical systems can be used
to change their dynamical properties~i.e., induce an adapta-
tion process! so that they can converge to similar dynamical
trajectories in a self-controlled manner, i.e., self-organize to
form a spatio–temporal response pattern.

Here we show that the parameter adaptive control can be
achieved based on temporal interdependencies of the inter-
event timings of the two, coupled units. Namely, we use the
fact that the properties of the phase lag achieved during
phase synchronization depend on the relative frequencies of
the coupled units. We monitor the properties of the phase lag
using a measure based on calculation of conditional
entropies19 and use the differences reported by that measure
as a driving mechanism during the adaptation process~i.e.,
adjustment of control parameter of the target unit!. The ad-
aptation is thus based solely on the relative temporal proper-
ties of the coupled units and does not require any informa-
tion about underlying equations of the system nor specific
properties of the units trajectories. This fact makes it appli-
cable to many experimental systems as it is often possible to
detect and monitor event timings but not the unit trajectories
themselves.

We show applicability of the method for two different
systems:~1! coupled nonidentical Ro¨ssler oscillators20 and
~2! coupled nonidentical Lorenz oscillators.21 In Sec. III we
link this adaptation mechanism to neural activity by showing
that the same phenomenon can be observed in coupled, non-
identical Hindmarsh–Rose models of thalamocortical
neurons.22–24 Finally, we show that this control mechanism
can also be applied to control the dynamics of two neurons
and may lead to the formation of the complete synchronized
state observed in the brain.8,9,13

II. MONITORING PROPERTIES OF THE PHASE LAG
DURING THE PHASE SYNCHRONIZATION

It has been established that a periodically driven nonlin-
ear oscillator or a system of coupled, nonidentical oscillators
can achieve phase synchronization.7,25–29 Here, to establish
the adaptation mechanism, we use the fact that the phase lag
achieved during phase synchronization will depend critically
on the relative properties~i.e., relative frequencies! of the
coupled units.25,26

To measure the phase lag, we have converted the phase
interdependencies of the coupled units into relative inter-
event intervals that correspond to specific phase differences
between the two. Such formulation may be particularly use-
ful when the timing of the event defining the phase can be
measured experimentally—i.e., the spike of a neuron, or in
the case of the Lorenz and Ro¨ssler oscillators the timings of
trajectory of the unit crossing a defined Poincare´ section.

We applied the measure based on dynamic evaluation of
conditional entropies19 to monitor changing distributions of
the relative interevent intervals of the two units. The distri-
butions are created for every unit and simultaneously keep
track of relative lengths of the interevent timings of unit 2
with respect to the events of unit 1 and, unit 1 with respect to
the timings of unit 2. Specifically, the interevent intervals

Dt i
12 of unit 2 with respect to unit 1 are calculated as a time

difference from the last event of unit 1, and conversely the
interevent intervalsDt i

21 of unit 1 are calculated as a time
difference with respect to the timing of the last event of unit
2 ~Fig. 1!. Thus, if t1

1 ,t2
1 are the event timings of unit one,

t1
2 ,t2

2 are the event timings of unit 2, and ift1
1.t1

2.t2
1.t2

2,
then one distribution will be updated only with one inter-
event value (Dt215t2

12t1
2), whereas the second distribution

will be updated twice with (Dt125t1
22t1

1) and (Dt125t2
2

2t2
1). The distributions defined in that way are complemen-

tary to each other and provide full information about timing
interdependencies of both units.

The distributions are updated throughout the simulation
to allow monitoring of the changes of the relative phases of
the events. The distributions are updated by increasing the
bin of the appropriate distribution within which the latest
interevent length falls, by a fixedDP. Specifically, if thenth
event occurs at unit 1 at a timetn so that the relative inter-
event lengthDtn21

21 ~measured from the last event of unit 2!
is of the intervalDT(I 21),Dtn21

21 <IDT and it falls within
the bin I , then the cumulative probability of binI of the
distribution of the interevent lengths of unit 1 with respect to
those of unit 2 attn is given by

PI~ tn!5PI~ tn21!1DP, ~1!

and the updated distribution is then renormalized.
To determine the properties of the two distributions we

calculate their entropiesS52( I PI ln PI . The value of the
entropy will depend on the direction of the phase lag when
the phase synchronization of the two units is achieved.
Namely, when one unit has a consistently constant phase
delay with respect to the other unit~due to a phase synchro-
nization!, the distribution of relative interevent intervals of
that unit with respect to the events of the other one will have
a very narrow distribution and thus the entropy will tend to
zero. Conversely, if the phase of one unit will systematically
precede that of the other one, the interevent interval calcu-
lated with respect to that other unit will be widely distributed
as the next pair of phase locked events happens after a time
that varies chaotically. An example of this is shown in Fig. 2.
The distribution of the interevent intervals of unit 1 which
has a smaller value of control parameter with respect to that
with a larger value of the control parameter~unit 2! is plotted
in Fig. 2~A!. The distribution is very narrowly peaked around
the value of the delay of the events at unit 1 with respect to
those at unit 2. This suggests that events at unit 1 systemati-

FIG. 1. Relative interevent lengths used to calculate the conditional entropy.
The interevent intervals of one unit are calculated with respect to the timing
of the last event of the other one. This assures asymmetry of the measure
with respect to the sign of the relative phase shift between the two units.
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cally occur within the similar time interval shortly after those
of unit 2. On the other hand, the distribution for the reversed
situation is depicted in Fig. 2~B!. In this case the distribution
is significantly wider, indicating an unpredictability of the
delay of the next event pair.

To show robustness of the measure, the conditional en-
tropies based on the distributions of interevent intervals are
calculated for different control parameter mismatch for both
Rössler and Lorenz systems plotted in Fig. 3. In those simu-
lations, the value of control parameter of one unit is kept
constant and the simulation is repeated for different values of
the control parameter of the other unit. No adaptation is
present and the distributions are updated throughout 300 000
iterations during which time the two nonidentical units
reached a constant phase dependence. The plotted pair of
values of the entropies is calculated from the distribution
obtained for every simulation run. The value of conditional
entropy~CE! of the unit @Fig. 3~A!: Rössler oscillator, Fig.
3~B!: Lorenz oscillator# having a larger control parameter is

nearly close to zero, whereas that of the other unit remains
significantly higher. When the values of the control param-
eters of both units have the same value, the values of the CE
are the same and zero—complete synchronization state is
obtained. Figures 3~C! and 3~D! plot the difference of the
conditional entropies for the system of two Ro¨ssler oscilla-
tors and Lorenz oscillators, respectively. The figures under-
score the rapid transition of the conditional entropies near the
point when the control parameters of the two units are iden-
tical.

As it is expected in the case of phase synchronization,
the fact that the phases of the two, coupled units are highly
correlated does not correspond to synchronization of the co-
ordinates of the two units. To illustrate this fact we define the
synchronization error of the two units to beE(t)
5 A(x1(t) 2 x2(t))2 1 (y1(t) 2 y2(t))2 1 (z1(t) 1 z2(t))2.
Figures 4~A! and 4~B! depict synchronization error and its
autocorrelation function of the two coupled, nonidentical Lo-

FIG. 2. Distributions of the relative interevent lengths
of the two, nonidentical Ro¨ssler oscillators:~A! distri-
bution of the interevent lengths of the unit 1~control
parametera150.1) with respect to latest event of the
unit 2 ~control parametera250.3) and~B! distribution
of the relative interevent lengths of the unit 2 with re-
spect to latest event of the unit 1. The distributions are
significantly different.

FIG. 3. Dependence of the conditional
entropies on the parameter mismatch
when no adaptation is present. The
unit having larger value of the control
parameter has much lower value of CE
than that with lower parameter value:
~A! two nonidentical Ro¨ssler oscilla-
tors, ~B! Lorenz oscillators,~C! and
~D! the difference of CEs is plotted as
a function of the parameter mismatch
to underscore abrupt transition around
the point when the parameters are
identical; ~C! Rössler system and~D!
Lorenz system.
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renz oscillators. The autocorrelation function of the error
rapidly converges to zero, indicating lack of synchronization
between the amplitudes of their coordinates. The conditional
entropies@Fig. 4~C!# remain significantly different, indicat-
ing a fixed phase dependence of the two coupled units.

As it will be shown below when the parameter adaptive
control process is activated, the distributions of the inter-
event intervals change due the dynamic updating of the dis-
tributions in Eq.~1!. This permits the use of the difference
between the conditional entropies of the two units as a con-
trol mechanism of the adaptive process.

III. ADAPTATION AND SYNCHRONIZATION USING
PROPERTIES OF THE PHASE LAG DURING PHASE
SYNCHRONIZATION

To illustrate the feasibility of phase lag between the two
units being the underlying mechanism during the adaptation
and synchronization process, we studied the system of two
coupled initially nonidentical Ro¨ssler and Lorenz oscillators.
For both systems, one of the units had a constant value of the

control parameter~we refer to it as the control unit!, whereas
the control parameter of the other unit, the target unit, was
being modified during the adaptation process.

The equations of the system of two coupled, non-
identical Rössler oscillators are given by

ẋc,t52~zc,t1yc,t!,

ẏc,t5xc,t1ac,tyc,t1a~yt,c2yc,t!, ~2!

żc,t5b1~xc,t2c!zc,t ,

where the subscript denotes the control and the target unit;
ac,tP@0.1,0.4#, b50.2, andc510.0 are the control param-
eters of the oscillators; anda50.4 is the coupling. The val-
ues of parametersac andat were different for both units. The
events for the Ro¨ssler oscillator were defined as the times at
which the oscillator’s trajectory~unit 1 or 2! crossed a speci-
fied Poincare´ section (z51), whereas the two coupled Lo-
renz oscillators are defined by

ẋc,t5s~yc,t1xc,t!,

ẏc,t52xc,tzc,t1r c,txc,t2yc,t1a~yc,t2yt,c!, ~3!

żc,t5xc,tyc,t2bzc,t ,

wherer c,tP@160,210# is the control parameter of the Lorenz
oscillators and is initially different for both units. The values
of other parameters were set tos510 andb5 8

3. Each event
was defined when the trajectory of a unit crossed the Poin-
carésection defined asy50.

The adjustment of the control parameter of the target
unit was linked to the difference of the CEs measured at both
units (Sc2St) @Figs. 3~C! and 3~D!#. Thus, the adaptation
mechanism is based solely on the distributions of relative
interevent intervals of the events appearing at both units and
is not linked to the specific equations describing the dynam-
ics of the system. For both systems the control parameter of
the target was adjusted according to equations:

DCPt~ t !5b~Sc2St!, ~4!

and

CPt~ t !5CPt~ t21!1DCPt~ t !, ~5!

where CP is the control parameter of the target (at or r t for
Rössler and Lorenz oscillators respectively!; and b
50.00001 is a proportionality constant. The magnitude ofb
determines the rate of adaptation~the convergence of the
control parameter of the target! but is limited in its value by
DP. If the rate of change ofat or r t is too fast in comparison
with the changes of the distributions of the timings@mea-
sured as (St2Sc)] the parameter adjustment will overshoot
and oscillate around the value of the control parameter of the
control unit. Note that Eq.~4! requires a monotonic relation
between the differences of the conditional entropies and the
parameter values. Thus the presented technique can be ap-
plied successfully only for the parameter regimes where the
direction of the phase lag during phase synchronization of
the two units remains constant. However, this constraint is
significantly less restrictive than the one encountered in our
earlier work.18

FIG. 4. Synchronization of two coupled nonidentical Lorenz oscillators:~A!
synchronization error of the two units as a function of time;~B! autocorre-
lation function of the synchronization error; and~C! conditional entropies
calculated during the same simulation. The autocorrelation function of the
synchronization error rapidly converges but the significantly different CEs
indicate phase synchronization of the two units.
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The example of convergence of the control parameter of
the target unit to the value of that of the control unit, together
with the changes in the conditional entropies for both units
during the adaptation process, is shown in Fig. 5. Figures
5~A! and 5~B! show the evolution of the CEs during the
adaptation for the Ro¨ssler and Lorenz system, respectively,
whereas Figs. 5~C! and 5~D! show the control parameter con-
vergence for both systems during the same simulation. The
control parameter of the target (at , r t for Rössler and Lorenz
oscillators, respectively! converges at a constant rate to that
of the control unit (ac , r c , respectively!, as the values of the
conditional entropiesSc andSt remain relatively unchanged
during the initial stages of the adaptation process, when the
parameter mismatch is relatively high. This indicates the two
units remain phase synchronized. However, when the control
parameters of the control and target converge and their mis-
match becomes small (at→ac , r t→r c), the difference in
conditional entropies rapidly decreases (uSc2Stu→0) and
thus the adaptation process is halted. This is due to the fact
that the two units became identical and achieved the state of
complete synchronization in which the phase lag is consis-
tently zero.

We tested the convergence of the control parameters dur-
ing the adaptation process as a function of their initial values
for both systems. We constructed a grayscale map spanning
the ranges of the convergence values of the units’ control
parameters (at,c and r t,c for Rössler and Lorenz oscillators,
respectively! in Fig. 6. The values of the control parameters
in both systems span chaotic as well as periodic regimes. The
grayscale represents the time~in iteration steps! needed for
the control parameter convergence of the two units. The

simulation was halted when the synchronization errorE
<0.001 was achieved. Every pixel corresponds to six simu-
lation runs that were initialized with different initial condi-
tions (x(t0),y(t0),z(t0)) and averaged over symmetrical pa-
rameter pairs. In our simulations, the two units converged for
any pair of initial values of the control parameters
@(ac(t0),at(t0)) and (r c(t0),r t(t0)), respectively#. This indi-
cates that the measurement of the properties of the phase lag
provides a robust mechanism for driving the adaptation in
the system of initially, nonidentical coupled units. The speed
of convergence, as expected, depends linearly on the magni-
tude of the initial difference between the values of the con-
trol parameters of the control and target units, as the conver-
gence rate does not depend on the magnitide of the phase lag
and thus is approximately constant.

To further investigate the applicability of changing prop-
erties of the phase lag as a possible mechanism to control the
parameter adaptation of the coupled, nonidentical units, we
investigated the convergence of the mismatched control pa-
rameters as a function of noise amplitude. The termAnj(t)
was added to the evolution of they coordinate of the control
and target unit, wherej(t)P@21,1# was a random variable
having uniform distribution. For both Lorenz and Ro¨ssler
systems, the noise amplitude was varied so that the ratio
between the noise amplitude and the maximal signal ampli-
tude (As5A(xmax2xmin)

21(ymax2ymin)
21(zmax2zmin)

2),
An /As P@0,0.25#. The addition of noise widens the transi-
tion region of the conditional entropies around the point
(ac5at) for both Rössler and Lorenz systems. This is illus-
trated in Fig. 7, where we calculated the conditional entro-

FIG. 5. Convergence of the target con-
trol parameter and changes of the CE
difference during the adaptation pro-
cess for Ro¨ssler and Lorenz systems.
As the values of the target control pa-
rameter converges to that of the con-
trol the difference between CE rapidly
decreases.~A! and ~C! Difference of
the entropies and the convergence of
the control parameters for the Ro¨ssler
system;~B! and ~D! difference of the
entropies and the convergence of the
control parameters for Lorenz system.

587Chaos, Vol. 14, No. 3, 2004 Phase lag adaptation



pies for control and target for different magnitudes of param-
eter mismatch when adaptation is not present. The apparent
widening @Figs. 7~A! and 7~C!: Rössler system; Figs. 7~B!
and 7~D!: Lorenz system# is due to the fact that when the
parameter mismatch is small the phase shift between the two
synchronized units is relatively small and the noise signifi-
cantly perturbs the relative order of the events of the control
and target unit. However, the fact that the transition of the
conditional entropies is widened does not significantly
change the location ofSc5St being atac5at and therefore
the adaptation based on theSc2St is still achieved. Addi-
tionally, we measured the speed of convergence as a function

of An /As . Figure 8 plots the convergence rate of the control
parameters as a function of the noise-to-signal ratio. Every
point is an average of ten simulation runs. The calculation is
initialized randomly, however the initial difference between
control parameters between control and target units@(ac

2at) and (r c2r t), respectively# is kept constant for all
simulation runs. It is considered that the convergence is
achieved when the synchronization error isE(t)<0.01. The
convergence time increases significantly with the noise am-
plitude, however even for the values ofAn /As50.25 conver-
gence is still achieved.

Finally, we investigated the convergence speed of the

FIG. 6. Convergence of the control
parameters for initially different pa-
rameter pairs (at,c r t,c). The grayscale
denotes the time of convergence. Ev-
ery point ~pixel! is an average of six
simulation runs taken over symmetri-
cal parameter pairs. The time of con-
vergence is dependent on the magni-
tude of the initial difference of the
control parameter values for control
and target units. The lowest and high-
est convergence time was 2000 and
106 iterations, respectively, for Ro¨ssler
system and 10 000 and 6.53106, re-
spectively, for Lorenz system:~A!
Rössler system and~B! Lorenz sys-
tem.

FIG. 7. Changes in CEs as a function
of parameter mismatch in the presence
of noise~no adaptation!. The transition
near the pointac5at , r c5r t becomes
wider, however the values of CE re-
main the same at the point when the
control parameters are identical:~A!
Rössler system,~B! Lorenz system.
~C! and ~D! Difference of CEs shown
on ~A!, ~B!, respectively.
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control parameters as a function of the coupling strengtha.
As before, the convergence time is calculated from the start
of the simulation until the synchronization error isE(t)
<0.001. The parameter convergence is obtained even for
relatively low coupling strengths~Fig. 9!. The convergence
time initially decreases rapidly with the coupling strength. It
then stabilizes and remains constant for higher values ofa.
The successful adaptation was obtained fora50.15 for the
Rössler oscillators@Fig. 9~A!# and a51.5 for coupled Lo-
renz oscillators@Fig. 9~B!#. Every point on each graph is an
average of four simulation runs.

IV. ADAPTATION OF NEURONAL ACTIVITY THROUGH
MODIFICATION OF INTRINSIC CELL PROPERTIES

We have shown above that the changing properties of the
phase lag during phase synchronization of two nonidentical
units can be used as a driving mechanism for parameter con-
vergence in the coupled system. The parameter convergence
causes the two units having initially different dynamical
properties to become identical and achieve a complete syn-
chronization state. Here, we show that such a mechanism of
adaptation, based on temporal interdependencies of spike
timings, can be easily extended to a system of coupled neu-
rons and thus may lead to synchronization of neural activity

in the brain. As an example, we use two coupled
Hindmarsh–Rose models of thalamocortical neurons:

ẋc,t5yc,t2axc,t
3 1bxc,t

2 2zc,t1I 0c,t
1a~xt,c2xc,t!,

ẏc,t5c2dxc,t
2 2yc,t , ~6!

żc,t5r @s~xc,t2x0!2zc,t#,

where a51.0, b53.0, c51.0, d55.0, r 50.006, s54.0,
andx0521.6 are the parameters of the model anda51.1 is
the coupling strength. As before, the subscriptsc,t corre-
spond to the control and target neurons, respectively. The
parameterI 0c,t

represents the amplitude of external current
applied to the neuron and is the control parameter of the
units.

As before, the relative timings of the action potentials of
the two neurons are used to construct the appropriate distri-
butions and to calculate the CEs for both neurons and the
difference in those entropies, (Sc2St) is used to adjust the
control parameter of the target neuron. The adaptation and
complete synchronization is achieved relatively quickly~Fig.
10!, indicating that the relative timings of the action poten-
tials can be used to determine the internal changes required
to adjust the firing patterns of the neurons to achieve the
synchronized state. Figure 10~A! plots the magnitude of the

FIG. 8. The convergence time of the target control parameter as a function of the ratioAn /As . The convergence time increases significantly for both systems:
~A! Rössler system (b50.00004) and~B! Lorenz system (b50.0075).

FIG. 9. The convergence time of the
target control parameter as a function
of the coupling strength. The success-
ful adaptation was obtained for the
value of the coupling as low asa
50.15 for the Ro¨ssler system~A! and
a51.5 for coupled Lorenz system~B!.
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entropy difference of the two neurons, whereas Fig. 10~B!
plots the magnitude of the control parameter mismatch. The
target control parameter converges quickly to that of the con-
trol neuron—the two neurons synchronize after a brief adap-
tation of the target neuron. Thus the information about the
relative timing of the spike firing of the two cells is~at least
theoretically! enough to control the adaptation of their prop-
erties to obtain synchronization.

V. CONCLUSIONS

We have shown that the properties of the distributions of
the relative event timings can be used to control the param-
eter adaptation process in a system of two coupled, noniden-
tical units. This is due to the fact that the mismatch of the
control parameters causes the nonidentical coupled units to
achieve phase synchronization with a phase lag depending
on their relative frequencies. Based on the latter finding we
have defined a measure that monitors the changes of the
relative distributions of the interevent lengths by calculating
the difference of entropies of both distributions.

The crucial advantage of this adaptation scheme is that
the information used to control the convergence of initially
different units is based on the properties of the time series of
their relative event timings that can be observed experimen-
tally and does not use any information about the mathemati-
cal formulation of the units’ dynamics.

We applied the proposed adaptation scheme to systems
of two coupled, nonidentical Ro¨ssler oscillators as well as to
two nonidentical Lorenz oscillators and have shown that for
both systems the proposed adaptation scheme is robust as the
two initially nonidentical units converge over a wide range
of parameter spanning periodic as well as chaotic behavior of
the control and target. Moreover, the proposed mechanism of
adaptation is relatively robust in the presence of noise.

The proposed parameter adaptive control may possibly
be applied to systems of multiple units. The parameter
changes in such systems can be driven by the pairwise as-
sessment of the mutual phase interdependency between the
individual units, or by assessment of the phase relation be-
tween the individual unit and its mean coupling signal.

Finally, we show that the same adaptation mechanism
can be used to control the adaptation of a system of the
thalamocortical neurons. The target neuron modifies the
magnitude of external input current to achieve complete syn-

chronization with the control neuron. One can also foresee
application of other control variables as it is established that
the neural excitation could be controlled intrinsically by neu-
rons through the expression of appropriate receptors.30,31
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