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We show that the internal control of adaptation can be obtained from the properties of the phase lag
that results from phase synchronization of two nonidentical chaotic oscillators. The direction and
magnitude of the phase lag depend upon the relative internal properties of the coupled units, and
they can be used as indicators during the adjustment of dynamics, i.e., adaptation of the target unit
to match that of the control. The properties of the phase lag are obtained using a method based on
the estimation of properties of the distributions of relative event times of thathet and control

units. The phase lag dependent mechanism to control the adaptation process was applied to a system
of nonidentical Resler oscillators and a system of nonidentical Lorenz oscillators. We also elucidate

its importance as a control mechanism of the changes of neuronal activity showing its application
to neural adaptation. @004 American Institute of Physic§DOI: 10.1063/1.1772171

We present here a novel parameter adaptive control tech-
nigque, allowing for synchronization of a system of two
initially nonidentical units. The mechanism of adaptation
is based on a measurement of conditional entropies that
utilizes the properties of temporal distribution of inter-
event intervals of the coupled units. Those properties are
driven by the phase lag observed during phase synchro-
nization of the two units, which is measured by monitor-
ing a relative delay in the generation of an event by one
unit with respect to the other unit. The properties of this
phase lag depend on the relative frequencies of the two
units and thus can be used as an indicator during the
adaptation process. The major advantages of the pre-
sented adaptation mechanism are that it depends only on
the relative timings of the events generated by the units
that are often possible to obtain experimentally and it
does not contain any information about the mathematical
form of the system. We show the workings of the pro-
posed mechanism for a system of two coupled, noniden-
tical Rossler and Lorenz oscillators. We show that this
parameter adaptive technique works well over a wide
range of parameters of the two units as well as in the
presence of noise. In the last part of the paper we also
argue that a similar mechanism, based on relative spike
timings, could be used to control the adaptation in the
nervous system and as an example we demonstrate its
application to the system of coupled Hindmarsh-Rose
models of the thalamocortical neurons.

I. INTRODUCTION

that with the application of the appropriate coupling, the
identical systems will achieve complete synchronizatioh,
which is often observed in natufe!®

However in many cases even though the dynamics of the
coupled units are driven by the same underlying processes
(i.e., it is described by the same structural equajiotie
macroscopic properties of their trajectories will be dramati-
cally different and will depend upon the sets of control pa-
rameters. Such systems may synchronize only after the
coupled units undergo an adaptation process to make their
trajectories compatible. This is well exemplified in neural
systems where the generation of action potential by neurons
is driven by appropriate temporal changes in ionic currents,
but it is known that the receptor and ion channel repertoire of
different neuron types are not the same and thus the specific
properties of action potentialse., spike threshold, existence
of self slow excitation and inhibition currents, differences in
refractory time, etg.will vary. Moreover, it has been deter-
mined experimentally that the neurons can change their fir-
ing pattern dramatically by altering their ionic currents de-
pending on the cognitive state of the aniffadnd thus
indicating radical changes in its internal properties.

Parameter adaptive control techniques have been inves-
tigated by others but these techniques usually require con-
struction of the Liapunov functions based on the structural
information about synchronizing unit3-'’ This information
may often not be readily available and is definitely not avail-
able to drive the adaptation in dynamical systems found in
nature.

We have shown earlier that the parameter adaptive con-
trol of two initially nonidentical units can be achieved by
monitoring the changing differences of the spatial properties
of the trajectories of both unit€. The mechanism of param-

Synchronization of coupled identical systems has beee; adaptive control in that case was constructed from the
studied extensively during recent years and it is well knownyistribution of the spatial coordinates of the Poiricsgetion
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crossing was changing monotonically with the control pa-
rameter of the system. However, a question that becomes
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pertinent is whether and how the temporal information about
the interaction of coupled nonidentical systems can be used
to change their dynamical propertiés., induce an adapta- Al Ay
tion procespso that they can converge to similar dynamical
trajectories in a self-controlled manner, i.e., self-organize to g ‘%. nh 8oy
form a spatio—temporal response pattern. Thote

Here we show that the parameter adaptive control can be =Unitl  —Unit2
achieved based on temporal interdependencies of the inter-
event imings o thetwo, coupled unis. Namely we use thg 1S Foahe Bt enali o o scumeste ovaons ey
fact that the prppe.rtles of the phase lag . achieved dF‘“”Qf the last event of the other one. This assures asymmetF;y of the measugre
phase synchronization depend on the relative frequencies @iith respect to the sign of the relative phase shift between the two units.
the coupled units. We monitor the properties of the phase lag
using a measure based on calculation of conditional
entropigé? and use the differences reported by that measurg (12 of ynjt 2 with respect to unit 1 are calculated as a time
as a driving mechanism during the adaptation pro¢ess itference from the last event of unit 1, and conversely the
adjustment of control parameter of the target unithe ad-  jyierevent intervals\t? of unit 1 are calculated as a time
a_\ptati?nhis thus Iba:jsed_solel;:jocriw the relative temporal ?mpeﬁiﬁerence with respe(I:t to the timing of the last event of unit
ties of the coupled units and does not require any informar /r: il (1 P ;
tion about underlying equations of the system nor specifiqzz (::zlgaré)'ﬂ;rehlgégtt ti,r';zinare t?e event imings ?f ulnlt gner

_ ; : : , _ %2 12 gs of unit 2, and if>t2>t3>13,

properties of the units trajectories. This fact makes it app"'then one distribution will be updated only with one inter-

cable to many experimental systems as it is often possible 19 ent value At21:t%_ti) whereas the second distribution
detect and monitor event timings but not the unit trajectorieg, i pe updated twice with AtlZZti_t%) and (Atlzztg

themselves.
We show applicability of the method for two different
systems:(1) coupled nonidentical Resler oscillator® and interdependencies of both units.

(_2) COPP'Ed non_identical Lo_renz oscillato’ﬁslq _Sec. Il we _ The distributions are updated throughout the simulation
link this adaptation mechanism to neural activity by Showing,,, »16\y monitoring of the changes of the relative phases of

fcgat t.helsam.edphenor:nenon can bg ?bser}/edrllnlcoupled,- n?ﬂﬁ'e events. The distributions are updated by increasing the
! enncaszz_Zm. marsh—Rose mo els o t aamocor_tlca bin of the appropriate distribution within which the latest
neurons:=""Finally, we show that this control mechanism ;o event length falls, by a fixediP. Specifically, if thenth

can also be applied to control the dynamics of two neuronEvent occurs at unit 1 at a tinte so that the relative inter-

AU
B
. B
i -
B
=
-

—t%). The distributions defined in that way are complemen-
tary to each other and provide full information about timing

and may lead to the formation of the complete synchronize 21
. vent lengthAt -, (measured from the last event of unit 2
state observed in the brafi:'3 gthaty—y ( "

is of the intervalAT(1 —1)<At2! ,<IAT and it falls within
the bin I, then the cumulative probability of bih of the

II. MONITORING PROPERTIES OF THE PHASE LAG distribution pf the iqtergvent lengths of unit 1 with respect to
DURING THE PHASE SYNCHRONIZATION those of unit 2 aty, is given by

It has been established that a periodically driven nonlin- Pi(tn) =Pi(th-1) AP, @
ear oscillator or a system of coupled, nonidentical oscillatorand the updated distribution is then renormalized.
can achieve phase synchronizaticii-?° Here, to establish To determine the properties of the two distributions we
the adaptation mechanism, we use the fact that the phase laglculate their entropieS=—X,P,InP,. The value of the
achieved during phase synchronization will depend criticallyentropy will depend on the direction of the phase lag when
on the relative propertie§.e., relative frequencigsof the  the phase synchronization of the two units is achieved.
coupled unit$>2° Namely, when one unit has a consistently constant phase

To measure the phase lag, we have converted the phadelay with respect to the other uridue to a phase synchro-
interdependencies of the coupled units into relative internization, the distribution of relative interevent intervals of
event intervals that correspond to specific phase differencebat unit with respect to the events of the other one will have
between the two. Such formulation may be particularly usea very narrow distribution and thus the entropy will tend to
ful when the timing of the event defining the phase can bezero. Conversely, if the phase of one unit will systematically
measured experimentally—i.e., the spike of a neuron, or iprecede that of the other one, the interevent interval calcu-
the case of the Lorenz and &ser oscillators the timings of lated with respect to that other unit will be widely distributed
trajectory of the unit crossing a defined Poincaeetion. as the next pair of phase locked events happens after a time

We applied the measure based on dynamic evaluation dhat varies chaotically. An example of this is shown in Fig. 2.
conditional entropi€s to monitor changing distributions of The distribution of the interevent intervals of unit 1 which
the relative interevent intervals of the two units. The distri-has a smaller value of control parameter with respect to that
butions are created for every unit and simultaneously keegith a larger value of the control parametanit 2) is plotted
track of relative lengths of the interevent timings of unit 2 in Fig. 2(A). The distribution is very narrowly peaked around
with respect to the events of unit 1 and, unit 1 with respect tahe value of the delay of the events at unit 1 with respect to
the timings of unit 2. Specifically, the interevent intervalsthose at unit 2. This suggests that events at unit 1 systemati-
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1.0 A 1.0 |i
08 Unit 2 08 Unit 1
FIG. 2. Distributions of the relative interevent lengths
:E 0.6 0.6 of the two, nonidentical Resler oscillators(A) distri-
'-§ bution of the interevent lengths of the unit(dontrol
S 04 0.4 parametera;=0.1) with respect to latest event of the
& unit 2 (control parametea,=0.3) and(B) distribution
02 0.2 of the relative interevent lengths of the unit 2 with re-
spect to latest event of the unit 1. The distributions are
significantly different.
o 10 20 30 0 10 20 30
Length of interevent durations Length of interevent durations
(iterations) (iterations)

cally occur within the similar time interval shortly after those nearly close to zero, whereas that of the other unit remains
of unit 2. On the other hand, the distribution for the reversedsignificantly higher. When the values of the control param-
situation is depicted in Fig.(B). In this case the distribution eters of both units have the same value, the values of the CE
is significantly wider, indicating an unpredictability of the are the same and zero—complete synchronization state is
delay of the next event pair. obtained. Figures (8) and 3D) plot the difference of the

To show robustness of the measure, the conditional ensgnditional entropies for the system of two $&ter oscilla-
tropies based on the distributions of interevent intervals arg, < and Lorenz oscillators, respectively. The figures under-

calculated for different control parameter mismatch for bOthscore the rapid transition of the conditional entropies near the

Rqssler and Lorenz systems plotted in Fig. 3. In ”“?S.e‘ S'mutboint when the control parameters of the two units are iden-
lations, the value of control parameter of one unit is kept.

constant and the simulation is repeated for different values otfcal' i . o
As it is expected in the case of phase synchronization,

the control parameter of the other unit. No adaptation is

present and the distributions are updated throughout 300 0d9€ fact that the phases of the two, coupled units are highly
iterations during which time the two nonidentical units correlated does not correspond to synchronization of the co-

values of the entropies is calculated from the distributionsynchronization error of the two units to bé&(t)
obtained for every simulation run. The value of conditional= V(X1(t) — Xa(t))* + (ya(t) — y2(t)) + (z1(t) + zx(1))%.
entropy (CE) of the unit[Fig. 3(A): Rossler oscillator, Fig. Figures 4A) and 4B) depict synchronization error and its
3(B): Lorenz oscillatol having a larger control parameter is autocorrelation function of the two coupled, nonidentical Lo-

20 Rossler Oscillators: |A— 207 Lorenz Oscillators: | L
" 1 a1=03;0.1<a; <04 " 1 11 =185;160 <r; <210
216 .2 1.6
g Unit 2
12 12 7]
F F
:‘5 0.8 .‘5 0.8 FIG. 3. Dependence of the conditional
é é entropies on the parameter mismatch
04 _ 04 when no adaptation is present. The
. unit having larger value of the control
Unit 1 | parameter has much lower value of CE
0 T 1 0T T (| (| than that with lower parameter value:
0.2 01 0 0.1 30 20 -10 0 10 20 30 (A) two nonidentical Resler oscilla-
parameter mismatch (Aa) parameter mismatch (Ar) tors, (B) Lorenz oscillators,(C) and
(D) the difference of CEs is plotted as
AS2 |C_ As 2 D a function of the parameter mismatch

to underscore abrupt transition around
1 the point when the parameters are
1 identical; (C) Rossler system an¢D)
Lorenz system.
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li control parametefwe refer to it as the control unjtwhereas
the control parameter of the other unit, the target unit, was
being modified during the adaptation process.
The equations of the system of two coupled, non-
identical Rasler oscillators are given by

Lorenz Oscillators
11=160; 1,=188

Xc,t: - (Zc,t+ yC,t)!
YC,t:XC,t+aC,tyC,t+ a’(yt,c_yc,t)v (2

2c,t: b+ (Xc,t_ C)Zc,t )

Synchronization Error

Tterations (x10%) _ .
17— [B where the subscript denotes the control and the target unit;

a.:<[0.1,0.4, b=0.2, andc=10.0 are the control param-
eters of the oscillators; anel=0.4 is the coupling. The val-
ues of parametei&, anda; were different for both units. The
events for the Rssler oscillator were defined as the times at
which the oscillator’s trajectoryunit 1 or 2 crossed a speci-
fied Poincaresection g=1), whereas the two coupled Lo-
renz oscillators are defined by

0.8 =

04 =

Autocorrelation

04

0 ) ) 20 ’ XC,t: U(yc,t+xc,t)a
1(x10%

YC,t: —XetZettletXet— Yerr T a’(yc,t_ yt,c)v (3

Bul Ze 1 =Xe Yot~ bZts

wherer . €[ 160,21Q is the control parameter of the Lorenz
oscillators and is initially different for both units. The values
of other parameters were setde=10 andb=£. Each event
was defined when the trajectory of a unit crossed the Poin-
- — caresection defined ag=0.
. — —— —— The adjustment of the control parameter of the target
0 » ecations i) unit was linked to the difference of the CEs measured at both
units (S.—S;) [Figs. 3C) and 3D)]. Thus, the adaptation
FIG. 4. Synchronization of two coupled nonidentical Lorenz oscillatgxs: ~ mechanism is based solely on the distributions of relative
synchronization error of the two units as a function of tiri} autocorre-  interevent intervals of the events appearing at both units and
lation function of the synchronization error; af@) conditional entropies is not linked to the specific equations describing the dynam-
calculated during the same simulation. The autocorrelation function of the
synchronization error rapidly converges but the significantly different CEsICS Of the system. For both systems the control parameter of
indicate phase synchronization of the two units. the target was adjusted according to equations:

ACR(H)=B(S~S), 4
renz oscillators. The autocorrelation function of the error, 4
rapidly converges to zero, indicating lack of synchronization
between the amplitudes of their coordinates. The conditional CR(t)=CPR(t—1)+ACR(t), (5)
entropies[Fig. 4C)] remain significantly different, indicat-
ing a fixed phase dependence of the two coupled units.

g
|
B

Conditional Entropies
& & &
1 o1

o

a

]
E
[3%]

(=]

where CP is the control parameter of the targgtdr r, for

As it will be shown below when the parameter adaptiveF_ec())szlg(r)ma insda Lroorecr)]rztior?jl(i:tlIlﬁggztaﬁsgi(gl\rbne;yi?ti dgof
control process is activated, the distributions of the inter-, . prop y ' 9

event intervals change due the dynamic updating of the disc_ietermlnes the rate of adaptatigthe convergence of the

tributions in Eq.(1). This permits the use of the difference control parameter of the targdiut S limited In its value_ by
o . . AP. If the rate of change dd; orr, is too fast in comparison
between the conditional entropies of the two units as a con- . o e
. . with the changes of the distributions of the timinjgeea-
trol mechanism of the adaptive process. . .
sured as §—S;)] the parameter adjustment will overshoot
and oscillate around the value of the control parameter of the
control unit. Note that Eq4) requires a monotonic relation
between the differences of the conditional entropies and the
parameter values. Thus the presented technique can be ap-
To illustrate the feasibility of phase lag between the twoplied successfully only for the parameter regimes where the
units being the underlying mechanism during the adaptatioulirection of the phase lag during phase synchronization of
and synchronization process, we studied the system of twthe two units remains constant. However, this constraint is
coupled initially nonidentical Resler and Lorenz oscillators. significantly less restrictive than the one encountered in our

For both systems, one of the units had a constant value of thearlier work!®

I1l. ADAPTATION AND SYNCHRONIZATION USING
PROPERTIES OF THE PHASE LAG DURING PHASE
SYNCHRONIZATION
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204 Rossler Oscillators: | A 207 Lorenz Oscillators: | B
4 a1=01;a2=03 1 1 =160; r; = 188
g
g 51.2'
;é 3 087
: 3
O 044 Unit 2 ) S 044 FIG. 5. Convergence of the target con-
o k Y Unit 2 trol parameter and changes of the CE
T Ny q,\ Y difference during the adaptation pro-
o-b T ll T T :; e T“"‘"‘; 0 0I T 4I T 8| T ll2 : ll6 : 2l0 cess for Resler and Lorenz systems.
2 4 ) _
Tterations (x106) Tterations (x105) As the values of the target control pa:
rameter converges to that of the con-
| C | D trol the difference between CE rapidly
024 30 decreases(A) and (C) Difference of
— b the entropies and the convergence of
S 0154 C) the control parameters for the”Baler
= = 20+ system;(B) and (D) difference of the
g entropies and the convergence of the
g 0.1 control parameters for Lorenz system.
g : 10
0.05
o 2 o
VST T7 -10 —T T T T
0 1 2 3 4 5 0 4 8 12 16 20
Iterations (x106) Iterations (x105)

The example of convergence of the control parameter o§imulation was halted when the synchronization eror
the target unit to the value of that of the control unit, together<0.001 was achieved. Every pixel corresponds to six simu-
with the changes in the conditional entropies for both unitdation runs that were initialized with different initial condi-
during the adaptation process, is shown in Fig. 5. Figuresions (x(to),y(to),z(to)) and averaged over symmetrical pa-
5(A) and §B) show the evolution of the CEs during the rameter pairs. In our simulations, the two units converged for
adaptation for the Resler and Lorenz system, respectively, any pair of initial values of the control parameters
whereas Figs. &) and §D) show the control parameter con- [(a (t,),a,(ts)) and <(to),r«(to)), respectively. This indi-
vergence for both systems during the same simulation. Thgates that the measurement of the properties of the phase lag
control parameter of the targed,(, r, for Rossler and Lorenz  rqvides a robust mechanism for driving the adaptation in
oscillators, respectivelyconverges at a constant rate to thaty,e system of initially, nonidentical coupled units. The speed

of the control unit @, rc, respectively, as the values of the - ¢ oonvergence, as expected, depends linearly on the magni-
conditional entropies; andS; remain relatively unchanged tude of the initial difference between the values of the con-

during the initial staggs of the adgptatioq Process, when thﬁ’ol parameters of the control and target units, as the conver-
parameter mismatch is relatively high. This indicates the two ence rate does not depend on the magnitide of the phase lag

units remain phase synchronized. However, when the contrc():‘i . .
and thus is approximately constant.

parameters of the control and target converge and their mis- . . - .
) . To further investigate the applicability of changing prop-
match becomes smalla{(—a., r;—r.), the difference in . ; ;
erties of the phase lag as a possible mechanism to control the

conditional entropies rapidly decreasd$.tS;|—0) and . o :
thus the adaptation process is halted. This is due to the fa&arameter adaptation of the coupled, nonidentical units, we

that the two units became identical and achieved the state (l)@vesngated the coqvergencg of the msmatched control pa-
complete synchronization in which the phase lag is consis/@Meters as a function of noise amplitude. The tép(t)
tently zero. was added to'the evolution of tlyecoordinate of the cohtrol
We tested the convergence of the control parameters dufi"d target unit, wherg(t) e[ —1,1] was a random variable
ing the adaptation process as a function of their initial value®aving uniform distribution. For both Lorenz and $ter
for both systems. We constructed a grayscale map spannirRyStems, the noise amplitude was varied so that the ratio
the ranges of the convergence values of the units’ contrdpetween the noise amplitude and the maximal signal ampli-
parametersg; . andr, . for Rossler and Lorenz oscillators, tude (As= V(Xmax—Xmin)“+ Ymax—Ymin)“+ (Znax—Zmin))»
respectively in Fig. 6. The values of the control parametersA,/As €[0,0.25. The addition of noise widens the transi-
in both systems span chaotic as well as periodic regimes. THgn region of the conditional entropies around the point
grayscale represents the tirfia iteration stepsneeded for (a.=a;) for both Rassler and Lorenz systems. This is illus-
the control parameter convergence of the two units. Therated in Fig. 7, where we calculated the conditional entro-
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Rossler Oscillators: | A Lorenz Oscillators: | B

210

FIG. 6. Convergence of the control
parameters for initially different pa-
rameter pairsg; . r.). The grayscale
denotes the time of convergence. Ev-
ery point (pixel) is an average of six
simulation runs taken over symmetri-
cal parameter pairs. The time of con-
vergence is dependent on the magni-
tude of the initial difference of the
control parameter values for control
and target units. The lowest and high-
est convergence time was 2000 and
[ 160 1P iterations, respectively, for Rsler
0.1 control parameter: a; 04 160 control parameter: r; 210 system and 10000 and 630, re-

o _ spectively, for Lorenz system(A)
Convergence (xlO6 iterations): Convergence (xlO6 iterations): Rossler system andB) Lorenz sys-

[T T T ] tem.
10

control parameter: a,
control parameter: r,

0.1

[=]

pies for control and target for different magnitudes of param-of A,/A. Figure 8 plots the convergence rate of the control
eter mismatch when adaptation is not present. The appareparameters as a function of the noise-to-signal ratio. Every
widening [Figs. @A) and 7C): Rassler system; Figs.(B) point is an average of ten simulation runs. The calculation is
and 7D): Lorenz systeris due to the fact that when the initialized randomly, however the initial difference between
parameter mismatch is small the phase shift between the tweontrol parameters between control and target up(ts.
synchronized units is relatively small and the noise signifi-—a;) and {.—r;), respectively is kept constant for all
cantly perturbs the relative order of the events of the controsimulation runs. It is considered that the convergence is
and target unit. However, the fact that the transition of theachieved when the synchronization erroEig)<0.01. The
conditional entropies is widened does not significantlyconvergence time increases significantly with the noise am-
change the location db.=S; being ata,=a; and therefore plitude, however even for the valuesAf/A;=0.25 conver-
the adaptation based on ti$— S, is still achieved. Addi- gence is still achieved.

tionally, we measured the speed of convergence as a function Finally, we investigated the convergence speed of the

2.0 Rossler Oscillators: | A 20 - Lorenz Oscillators: | B
-] a1=0.3;01<a2<04 - r1 =185; 160<r2 <210
P Noise-to-signal ratio: 0.12 2.6 Noise-to-signal ratio: 0.02
= 1.67] = 1.6 T
) &
g ] Unit 2
E 1.27 Unit 2 E 1.2
[} i [}
8 i
'-g 0.87 -g 0.8
8§ 1 3
0.4 Unit 1 04 Unit 1 FIG. 7. Changes in CEs as a function
] 1 of parameter mismatch in the presence
0 0 - e p—— of noise(no adaptation The transition
-0.2 -0.1 . 0 0.1 30 20 -10 0 10 20 30 near the poina.=a,, r.=r, becomes
parameter mismatch (Aa) parameter mismatch (Ar) wider, however the values of CE re-
| C | D main the same at the point when the
AS 2+ AS 24 control parameters are identicdlf)
Rossler system,(B) Lorenz system.
i 1 (C) and (D) Difference of CEs shown
14 14 on (A), (B), respectively.
1 Tt LI DL L |
0.1 30 -20 -10 10 20 30
Aa Ar
-1
2
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1 |Rossler Oscillators: i Lorenz Oscillators:
a1 =03; a;=0.15 r; =188; ry = 160
€ 4 g 41
] CR
g g,
= =

1
LN DL DL DL L |
0 0.5 01 015 02 025 0 0.5 01 015 02 025

A/A A/A

FIG. 8. The convergence time of the target control parameter as a function of thA rafig. The convergence time increases significantly for both systems:
(A) Rossler system g=0.00004) andB) Lorenz system g=0.0075).

control parameters as a function of the coupling strength in the brain. As an example, we use two coupled
As before, the convergence time is calculated from the staflindmarsh—Rose models of thalamocortical neurons:

of the simulation until the synchronization error Et)
=<0.001. The parameter convergence is obtained even for
relatively low coupling strength&ig. 9. The convergence e dy . — ©)
time initially decreases rapidly with the coupling strength. It Yer e Ve

then stabilizes and remgins constant for higher values. of 2o =T[S(Xe.t—Xo) — Zc.1],

The successful adaptation was obtainedder0.15 for the

Rossler oscillatorgFig. (A)] and @=1.5 for coupled Lo- Wherea=1.0, b=3.0, c=1.0, d=5.0, r=0.006, s=4.0,

renz oscillator§Fig. 9(B)]. Every point on each graph is an @ndxo=—1.6 are the parameters of the model and1.1 is
average of four simulation runs. the coupling strength. As before, the subscripts corre-

spond to the control and target neurons, respectively. The
parameter,_ represents the amplitude of external current

applied to the neuron and is the control parameter of the
units.

We have shown above that the changing properties of the As before, the relative timings of the action potentials of
phase lag during phase synchronization of two nonidenticathe two neurons are used to construct the appropriate distri-
units can be used as a driving mechanism for parameter coputions and to calculate the CEs for both neurons and the
vergence in the coupled system. The parameter convergendéference in those entropiesS{—S;) is used to adjust the
causes the two units having initially different dynamical control parameter of the target neuron. The adaptation and
properties to become identical and achieve a complete syrcomplete synchronization is achieved relatively quidig.
chronization state. Here, we show that such a mechanism @f0), indicating that the relative timings of the action poten-
adaptation, based on temporal interdependencies of spikals can be used to determine the internal changes required
timings, can be easily extended to a system of coupled neue adjust the firing patterns of the neurons to achieve the
rons and thus may lead to synchronization of neural activitysynchronized state. Figure (X)) plots the magnitude of the

. 3 2
Xei=Ye % T oXg = Zc i H o, F a(Xc—Xc ),

IV. ADAPTATION OF NEURONAL ACTIVITY THROUGH
MODIFICATION OF INTRINSIC CELL PROPERTIES

10 Rossler Oscillators: | L2 - Lorenz Oscillators: |B—
1 a;=0.1;2,=03 r; =170; r; = 190
g e Nl .
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