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The spacing of streaks of low-speed fluid has been studied experimentally in a wall-bounded 
turbulent flow in which sinusoidal unsteadiness was superposed on an otherwise steady mainstream 
over a range of frequencies. The modulation of phase-conditioned streak spacing about its mean 
value does not follow the steady wall-flow relation of hu Av equal to a constant. Instead, it is quite 
accurately described by a local length scale that models the momentary.value of the total shear 
distortion of large eddies of the flow. This single shear-distortion length scale also correlates well 
with the streak spacing measured in steady wall-bounded flows and in unbounded homogeneous 
turbulent flow at high shear rates. The apparent generality of these results implies that the 
streak-spacing selection mechanism depends strongly on the strain history of large-scale coherent 
motions and so should be investigated in the context of the coupled straining processes of turbulence 
production. 

1.lNTRODiJCTlON 

Streamwise streaks of relatively low- and high-speed 
fluid are distinctive features of near-wall turbulent flow. They 
are believed to arise through the process of redistribution of 
streamwise momentum by cross-stream roll-like motions, 
and play a central role in the production of turbulence. Since 
some of the earliest observations of these motions in a tur- 
bulent boundary layer were made by Kline and Runstadler,’ 
many subsequent studies have confirmed them to be general 
features of wall-bounded turbulent flow~.~-~ The more recent 
numerical simulations of Lee et al’ have demonstrated that 
very similar streaks may be formed-by high shear rates alone 
in homogeneous turbulent shear flows, without the need for 
blocking by a solid boundary; the spacing of these streaks 
was nearly twice those of wall-bounded flows when scaled 
by the local shear velocity. They have also shown that the 
mechanisms of streak generation and evolution are repro- 
duced by the equations of turbulent motion in the rapid- 
distortion approximation: thus streaks arise predominantly 
through linear distortions of turbulence by the mean shear 
rather than through nonlinear turbulent interactions. In this 
spirit, Landahl’ adopted an approach similar to the rapid- 
distortion approximation, with nonlinear effects retained for 
sufficient time to establish initial conditions, and demon- 
strated how streak-like motions evolved from certain three- 
dimensional disturbances. 

One of the most consistent features of streaks within the 
inner layer of turbulent wall-bounded flows is their average 
separation of approximately X+==hu,/v=lOO (where X is the 
average spanwise spacing of low-speed streaks and u, is the 
friction velocity), typically from a continuous distribution of 
spanwise scales ranging from 20 to 200.3,4 This average 
value is in agreement with numerical simulations at low Rey- 
nolds numbers,” as well as with the experimental studies 
cited above. Numerous suggestions have been offered for the 
existence of this preferred spanwise scale, but there is no 
concensus on what the true explanation is. Kawahara et al. lo 
recently illustrated how the long-wavelength instability of a 
spanwise rectilinear vortex with the background flow of a 

turbulent boundary layer could lead fo modes that generate 
streamwise vorticity, the most unstable of which had a span- 
wise spacing of about 100 wall units. Jang et al.” extended 
the work of Benney and Gustavssonr2 to illustrate how ob- 
lique vertical vorticity modes, forced by vertical velocity, 
achieved at a preferred spanwise scale a resonance that ini- 
tiated downstream rolls and hence streaks. These direct reso- 
nance explanations have been questioned by Waleffe and 
Kim,13 who claimed that the scale selection of these interac- 
tions was not significant. They proposed instead that the 
spacing of streaks retlected the length scale in a critical Rey- 
nolds number for the self-sustenance of a sequence of 
coupled processes, of which streak generation was one. 

In organized unsteady Rows, relatively little is known 
about the behavior of streaks or related coherent motions. 
Sarpkayar4 recently studied the initiation and evolution of 
low-speed streaks in a continuously oscillating flow, with no 
mean velocity. During the short development periods of this 
study, the birth of new streaks always took place during the 
deceleration phase of the cycle, without any apparent neces- 
sity for companion hairpin vortices. Hwang and Breretonr5 
have examined streak behavior in turbulent pipe flow with 
superposed unsteadiness and noted that new streaks were 
preferentially formed during the deceleration phase of oscil- 
latory unsteadiness. They also studied the meandering of 
streaks and concluded that there was no increased organiza- 
tion through imposed oscillation, but that streaks meandered 
as in steady flow. At o’>O.l (where w+ =wv/u”, and w is the 
circular frequency of unsteadiness), they found some evi- 
dence of a weak organizing effect of unsteadiness-new 
streaks were slightly more likely to be formed behind or 
around dr+=lOO distant from an existing streak, than be- 
tween existing streaks. 

Tardu and Binderr have addressed the related issue of 
burst and ejection events in fully developed turbulent chan- 
nel flows with superposed unsteadiness, and noted that bursts 
that produce single and multiple ejections respond differently 
to forced oscillation at different frequencies, and that each 
motion might be governed by different mechanisms. Brere- 
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ton and ReynoldsI studied the response of a well-developed 
turbulent boundary layer to superposed oscillatory shear, and 
concluded that many features of the unsteady response were 
modulations of robust turbulence-producing motions of the 
parent flow. Examples included the phase leads and lags be- 
tween U’U’ and u’u’, resulting from superposed oscillatory 
forcing, which marked the directions of intercomponent en- 
ergy transfer in the wall splatting of the parent flow. 

Based on these observations, one might predict that the 
imposition of organized unsteadiness on a well-developed 
turbulent wall flow would modulate the streak spacing about 
its value in the parent flow. However, the steady wall-flow 
characterization of Xt=h~~,lv-lOO would not be expected 
to apply in a time-localized sense, since U, in an unsteady 
flow is not in phase with shear velocities away from the wall, 
in regions where streak presence and turbulence-producing 
motions are most important. Because U, represents the mean 
effects on wall shear of the motions of wall-bounded turbu- 
lence, should there be a related unsteady velocity scale for 
shear through those motions that dynamically determine 
streak spacing’? Motivated by this questions and an interest in 
the coupling between streak spacing and other aspects of 
turbulence production, an experimental study of streak spac- 
ing in well-developed turbulent wall flows with superposed 
unsteadiness was undertaken. For reasons of analytical con- 
venience, the unsteadiness was a continuous sinusoidal 
variation in streamwise velocity, superposed on a well- 
developed wall-bounded turbulent flow, and was applied 
over a broad range of frequencies of oscillation. 

II. EXPERIMENTAL APPARATUS AND MEASUREMENT 
TECHNIQUES 

The test facility comprised a recirculating water loop 
with a constant-head tank, sump, pump, and a test section of 
translucent pipe (57 mm in diameter, 160 diameters long, 
assuring fully developed flow over most of the test section). 
Flow control was achieved by motoring a profiled sleeve 
around a longitudinal slot milled in a bronze section at the 
downstream end of the pipe. Rotational position and speed of 
the profiled sleeve were controlled by a DC motor and am- 
plifier with position feedback, which operated under the con- 
trol of a laboratory computer. Further details of the experi- 
mental apparatus are described by Hwang.18 The mean flow 
Reynolds number (Re, referenced to centerline velocity and 
pipe diameter) was approximately 11 700 for steady flow and 
all frequencies of imposed unsteadiness, with an average 
burst frequency of about 1.5 Hz (according to the correlation 
of Luchik and Tiederman,” consistent with results of 
hydrogen-bubble visualization and burst detection tech- 
niques, such as the variable-interval time average). Super- 
posed oscillations were forced at up to 4 Hz in these experi- 
ments, with temporal variation of phase-averaged velocity 
always a good representation of a sine wave. The time- 
dependent velocity at the center of the pipe was then of the 
form 

(u~,)=U~~~-~~,~=U~+U~ sin(wt++), (1) 
where Ua is the mean streamwise velocity, A is the dimen- 
sionless amplitude of streamwise velocity at the pipe center, 

( > denotes an average conditioned on a particular phase of 
the unsteady cycle, and cl refers to a measurement made at 
the pipe centerline; the symbols - and - indicate the time 
mean and oscillatory components, respectively. The ampli- 
tude of flow oscillation decreased with increasing frequency, 
consistent with the impedance characterization of unsteady 
pipe flow by Shemer et al.” In this series of experiments the 
amplitude of oscillation at the pipe centerline varied between 
18% of the mean centerline velocity at 0.25 Hz and 10% at 
4.0 Hz. 

Phase-conditioned and time series measurements of 
streamwise velocity were made using a laser-Doppler an- 
emometer with frequency shifting, and a counter, which was 
interfaced with a laboratory computer to allow phase- 
resolved measurements of the instantaneous velocity of the 
flow. Since highly repeatable periodic motion could be im- 
posed by the flow-control apparatus, a phase-averaging pro- 
cedure was adopted for decomposition of flow variables into 
mean, oscillatory, and turbulent components.“’ All measure- 
ments were averaged over at least 1000 ensembles. Statisti- 
cal convergence in data was assumed to have been reached 
when the fractional tolerance (a measure of differences in 
(u’u’) over the first and second halves of the data set, nor- 
malized by the RMS level in (u’u’)) reached 0.1%. For 
oscillation at 4.0 Hz, the typical number of cycles required to 
satisfy this tolerance was around 5000. 

The relatively low Reynolds number allowed the use of 
hydrogen-bubble visualization to study timelines and streak- 
lines of the unsteady flow, using a pulsed voltage across a 
0.05 mm platinum wire in the manner outlined by Schraub 
et al.” In order to view timelines initiated a constant dis- 
tance from the wall, a very thin flat strip was inserted at the 
surface in the manner described by Achia and Thompson.23 
The strip was two diameters long and one quarter of a diam- 
eter wide, and reduced the cross-sectional area by less than 
1%. The leading edge of the strip was smoothly faired to the 
pipe surface to avoid generation of secondary flows such as 
separation eddies. Hydrogen bubbles were generated at a 
height above the strip of ~‘6, where wall units are refer- 
enced to the unperturbed steady flow. This location was cho- 
sen as the position closest to the wall at which streaks could 
be observed clearly and for which laser-Doppler anemometer 
measurements of the velocity field could be made still closer 
(for the purposes of resolving local velocities; turbulence in- 
tensities, and estimating their gradients). 

Visual information was recorded using both a high-speed 
video camera (Kodak Ektapro 1000) and phase-conditioned 
photography. The split-screen capability of the video-camera 
system allowed both the streak patterns and the momentary 
phase of the unsteady forcing (the position of the profiled 
sleeve) to be recorded and displayed on the same frame. A 
recording rate of 500 frames per second could be achieved 
with illumination by focused video lighting, allowing excel- 
lent temporal resolution in recordings. Streaks were counted 
using an unsteady implementation of the technique and iden- 
tification criteria of Smith and Metzler.aQ A window of span- 
wise extent AZ’ ~120 was marked on a video monitor, and 
the number of streaks within that window was counted in 
successive time intervals during slow-motion replay of the 
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taped visualizations. The streak patterns observed at this lo- 
cation were also transcribed to paper to facilitate subsequent 
interpretations of these data in other ways. Time intervals of 
t ’ = tU>v-4 were used, which allowed many observations 
of individual streaks, the typical lifetime of which is t+=480 
in steady 00w.‘~ For unsteady flows with cyclic oscillation, 
the streak counts during these time intervals were then 
grouped within eight equally spaced bins per cycle. 

Average streak spacings were typically computed from 
1500 observations made at equal intervals during a period of 
65 s (6500 viscous units in time). The number of observa- 
tions within each of the eight bins was therefore eight times 
fewer. This number of observations ensured that averages 
were well converged and that contributions of random errors 
were negligible. Systematic errors in the deduction of At 
were thought most likely to arise through uncertainty in ii, 
(estimated at f3% with 95% certainty), and through system- 
atic differences from other researchers in interpreting which 
hydrogen-bubble patterns momentarily constituted streaks 
(estimated at 25% with 95% certainty). These errors com- 
bined to yield an estimated uncertainty in (hf) and x’ of 
t8% at the stated confidence level. 

III. EXPERlMENTAL RESULTS 

Measurements of streak spacing and profiles of stream- 
wise velocities (u) and turbulence levels (zL’u’) were made 
in time-averaged form for steady flow, and as phase- 
conditioned measures for unsteady flows, over a range of 
frequencies of oscillation about the fully developed mean 
flow (see Hwang18 for detailed measurements). The range of 
frequencies of unsteadiness of the study was chosen to ex- 
tend from a slowly varying disturbance (of the time scale of 
the largest eddies of the flow) to the high-frequency asymp- 
tote at which a Stokes solution was matched by the oscilla- 
tory component of streamwise velocity. Oscillation frequen- 
cies were expressed in wall units of the mean flow as 
w+ =ovIU2,, where U, was deduced from the log-linear re- 
gions of U profiles; the consistency of U, values measured 
from the near-wall velocity gradient with those from log- 
linear regions in unsteady wall-bounded flow has been as- 
sessed by Brereton.= The dimensionless frequencies of os- 
cillation of the study were w+=O.Ol, 0.02, 0.04, 0.06, 0.08, 
and 0.12, with centerline amplitudes A of 17.9%, 17.4%, 
16.5%, 15.7%, 14.4%, and 12.2%, respectively. The burst 
frequency of the mean flow, expressed as w+, was approxi- 
mately 0.06. 

Preliminary validation measurements of the streamwise 
velocity and turbulence fields were carried out under steady 
conditions, and were generally in excellent agreement with 
reference near-wall measurements.” With the hydrogen- 
bubble wire located a fixed distance from the wall, average 
streak spacings were measured for ffow at Re,=8000, 
10 500, and 13 000, corresponding to dimensionless wire po- 
sitions of yf=4, 6, and 8, respectively. The streak counting 
procedure described above yielded mean streak spacings of 
I’== 105, 108, and 106, respectively, in good agreement with 
the widely accepted values of X+=1OO+2O.24 Photographs 
of typical streaks observed in steady and unsteady turbulent 
flow are shown in Hwang and Brereton.” 
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FIG. 1. Mean streak spacing at y’c-6 in steady and unsteady turbulent 
wall-bounded flow; CO’ is the dimensionless frequency of forced oscillation. 

A. Unsteady flow results 

Phase-conditioned streak spacings (X} and profiles of 
streamwise velocity (u) and turbulence intensity (u’u’) 
were recorded for imposed sinusoidal oscillation at each of 
the values of CC+ listed above. The time-average unsteady 
profiles of (z) and ( u’u’) were scarcely distinguishable 
from steady-flow profiles,r8 consistent with the results of 
many other studies of flows with imposed sinusoidal un- 
steadiness. The mean streak spacing (r;)UJv is plotted in 
Fig. 1 as a function of CJ.I+, and it is clear that it scarcely 
changes from its steady-flow value, regardless of the fre- 
quency of imposed unsteadiness. The phase-averaged streak 
spacing, and the streamwise velocity and turbulence intensity 
measured at y ’ -6 are plotted together as functions of phase 
angle in Fig. 2, for sinusoidal oscillation at a representative 
frequency of 0 ‘=0.08. In each of these figures, error bars 
indicate the uncertainty estimates given in the previous sec- 
tion; these uncertainties also apply to all subsequent figures 
in which streak spacings are plotted. 

The streak spacing was strongly modulated about its 
mean value, and shared a similar phase dependence to 
(u’u’). The phase-averaged streak separation was also 
roughly in phase with the local turbulence intensity at other 
frequencies of this study, and this approximate phase align- 
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FIG. 2. Phase-averaged variation of streamwise velocity, turbulence inten- 
sity, and streak spacing in unsteady How; 0, (h)/X; A, (u’u’)/u’u’; 0, 
(u)/U;--, sine wave fitted to (u) data. Measurements were made at y+=S, 
w+=O.O8. 
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FIG. 3. Time series of streak position just downstream of a hydrogen-bubble 
wire at ys=6, for 12 continuous cycles of unsteady flow at 0+=0.12. The 
reference sine wave describes the local velocity. 

ment is described in detail later. Video footage’s demon- 
strated clearly that the initiation of new streaks was strongly 
organized to favor the deceleration phase of (u), when the 
Aow is believed to be most susceptible to instability. This 
observation is consistent with that of Sarpkaya14 for oscilla- 
tory flow with no mean. Tardu and Binder” have noted a 
similar organization in bursting activity during the decelera- 
tion phase, The insensitivity of mean burst frequencies and 
streak spacing to frequency of imposed unsteadiness implies 
that the bursting, ejection, and streak-formation processes of 
turbulence production dynamically adapt to oscillatory forc- 
ing, yet are sufficiently resilient to preserve the mean char- 
acter of the unforced parent flow. 

A representative record of the streak positions observed 
at a fixed location (y’=6) is shown in Fig. 3, for 12 cycles 
of oscillation at of=0.12, aligned with a reference sine 
wave fitted to the local phase-averaged streamwise velocity. 
In this figure, the spanwise extent of the observed field is 
A~‘%150 with subdivisions of Az.+-50. From this tran- 
scription of the video recording, a number of interesting ob- 
servations may be made. First, the hydrogen-bubble wire in- 
tercepts (and marks with tracer bubblesj solitary streaks and 
streaks that undergo bifurcation and coalescence. Similar ob- 
servations have been made by Sarpkaya% in oscillatory-flow 
experiments, in which there was no mean velocity. Second, 
the number of observed streaks is greatest jand their average 
spacing smallest) toward the end of the deceleration phase of 
the cycle, as discussed above in reference to Fig. 2. Third, 
the most likely phase for the signatures of previously marked 
streaks to disappear is close to that of the maximum local 
phase-averaged velocity. Similar observations were made 
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FIG. 4. Phase lead of (A}, (u’u’) and a(u)l over (q,) close to the wall; 
O2 gstreh - +i,; 0, +,,r,~ - &, aty+=6; V, hu’ aty+=R q , 4m~~ 
- &+,aty’=+. 

from a time series of streak position at other frequencies of 
unsteadiness. In the case of reciprocating flow, SarpkayaZ6 
observed a tendency for streaks to evolve into A-shaped vor- 
tical structures, which were lifted up, stretched, and then lost 
the coherence of their signatures. This sequence of events 
took place regularly in the acceleration phase, and it is con- 
ceivable that a similar series of events might lead to the 
termination of the streak signatures observed in this experi- 
ment. Unfortunately, the resolution of the visualization tech- 
nique used in this study did not allow this issue to be ad- 
dressed. Thus, while it is plausible that a mechanism for 
destruction of streaks exists, it. must be borne in mind that an 
organized elevation change of the streaks, or the enhance- 
ment of diffusion during periods of strongest advection, 
might also terminate observation of a streak’s signature with- 
out necessitating any destruction. Because the average re- 
ported lifetime of streaks in steady-flow studies is roughly 
t ’ ~-480,~~ and signatures of the same streak in Fig. 3 may 
only be observed continuously at a fixed point for consider- 
ably shorter periods, it is likely that streak lifting and bubble 
diffusion are responsible for the termination of many of the 
signatures. 

B. Phase dependence of streak spacings 

The phase relation between (X), (u’u’), and d(u)/dy is 
shown in Fig. 4, in which the phase lead of the first Fourier 
mode of these quantities over the centerline velocity is plot- 
ted against the frequency of forced oscillation. The timelines 
from which the streak spacings were measured were initiated 
at y+ “6, while the phase of (~4 ‘u’) is shown for measure- 
ments made at y ’ = 6 and 8. with the exception of a single 
data point at wt=0.02, the agreement between the phase of 
(h) and that of (u’u’) at y t-6 is extremely good. In a 
time-dependent sense, an increase in the phase-averaged 
streak spacing generally signifies an increase in the level of 
u’u’, as shown in Fig. 2. This variation is the direct opposite 
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of the behavior one would anticipate from a quasisteady ex- 
tension of the steady-flow correlation: Xu,fv==lOO. Close to 
the wall, u’u’/u~ is a function of y ’ that grows with increas- 
ing y ‘. Therefore, at a fixed y position, y + and u ‘U ’ in- 
crease with increasing u?, and a decrease in X would be 
required to preserve the steady-flow relation for dimension- 
less streak spacing. Thus, the correlation hu,/v=lOO may 
have no relevance beyond steady wall-bounded flows, which 
is consistent with its inability to describe streak spacing in 
unbounded homogeneous turbulent shear ~Iow.~ 

The data of Fig. 4 also show how the phases of (U ‘u’) 
and (1) are related to the organized shear d(u)/dy . They are 
deduced from Fourier decomposition of data. For as few as 
eight data points per cycle, the phase of (A) is thought to be 
no more accurate than +20”. In the near-wall region, the lag 
in phase of (u’u’) behind d(u)/dy grows with W+ from its 
quasisteady value of zero toward an asymptotic high- 
frequency value of 90”, when d(n’u’)/dt is essentially in 
balance with - u’u’d u)/dy in the phase-conditioned 

\ Reynolds-stress equation.’ This orderly variation suggests 
that the unsteady shear and streak spacing share some rela- 
tion, though its form is not obvious from these data. To ex- 
plore possible dependences of streak spacing on organized 
shear, it is useful to approximate the temporal variation of 
the shear and velocity fields with the analytical solution to 
Stokes’ second problem, for the boundary conditions of a 
superposed oscillatory mainstream bounded by a stationary 
wall. This approximation (which ignores Reynolds stress) is 
lent justification by the experimental data and analytical so- 
lutions plotted in Fig. 5, in which the phases and amplitudes 
of measured values of U are in reasonably good agreement 
with the Stokes solutions. Discrepancies are within 5” in 
phase and typically less than 5% of the mainstream ampli- 
tude of oscillation, and these are no worse than the uncer- 
tainties in the measurement of (X). 

C. Amplitude dependence of streak spacings 

Phase-averaged streak spacings and turbulence intensi- 
ties measured at y+==6 are plotted as functions of phase 
angle in Fig. 6, for sinusoidal oscillation over a range of 
frequencies. Although the streak spacings and turbulence in- 
tensities~ are quite well aligned in phase, the amplitudes of 
streak spacing scarcely change, while the amplitudes of 
(u ‘u’), and so the velocity scale dm, decrease mono- 
tonically with increasing frequency. These data for velocities 
and turbulence intensities are consistent with the results of 
numerous other unsteady-flow experiments.15-ts The streak 
spacing and local turbulence intensity are obviously coupled 
through their association with turbulence production. How- 
ever, the different dependencies of their amplitudes on W+ 
indicate that one cannot simply form a length scale from the 
local momentary velocity scale \l(u’u’) and v, and expect it 
to correlate with (I). 

The variation of the shear amplitude may be approxi- 
mated from a Cartesian-coordinate Stokes solution, and takes 
the form 

ai+ -+&yT--r+E* 
ay+ =%l 

0’ ’ ’ ’ ’ * ’ ’ ’ . 
0 4 8 12 16 20 

(a) tl+ 

-15’ 3 ’ * ’ * ’ ’ ’ 9 ’ 0 4 8 12 16 20 

(W fl+ 

FIG. 5. (a) Near-wall profiles of amplitudes of streamwise velocity and the 
corresponding Stokes solutions; 0, w+=O.Ol; A, wc=0.02; Cl, w’=O.O4; 
V, wf=0.06; 0, w+=O.O8; 0, 0+=0.12;-, Stokes solutions for each fre- 
quency. (b) Near-wall profiles of the phase of streamwise velocity and the 
corresponding Stokes solutions; 0, w+=O.Ol; A, wf=0.02; Cl, w’=O.O4, 
V, w’=O.O6; 0, w+=O.O8; 0, w+=O.12;-, Stokes solutions for each fre- 
quency. 

In this expression, ci denotes the Fourier amplitude of the 
fundamental mode of (u), and + implies the use of wall units 
referenced to u r of the mean flow. This analytical result is in 
close agreement with the experimental data of Hwang,r* as 
illustrated in Fig. 5. 

At a fixed amplitude of centerline oscillation and a given 
wall-normal position, the amplitude of J(u)/dy scales with 
J;;-ie y’G5 and so peaks before decreasing with in- 
creasing w + . This trend imitates the variation in amplitude of 
(A), which can be discerned in Fig. 6. However, since (A) and 
d(u)ldy are in phase at low values of W+ and around 90” out 
of phase at the highest measured values of w’, a simple 
streak-spacing correlation such as (1) dw, cannot 
follow the phase of the experimental data. Based on these 
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FIG. 6. Phase-conditioned variation of streak spacing and turbulence inten- 
sity; 0, (A)/>;; A, (u’u’)/ur;;‘; measurements made at y+=6. 

phase and amplitude results, simple momentary length _-_^_-. 
scales, such as V/(U), v~~u’II’), and d-y) are in- 
adequate for correlating (A). Instead, a new length scale that 
incorporates the average cumulative distortion of the local 
turbulent motions at any instant is proposed and developed in 
the following section. 

IV. DISTORTION LENGTH SCALE FOR UNSTEADY 
TURBULENT SHEAR FLOW 

Distortion of the most energetic motions of turbulent 
shear flows has been characterized by, amongst others, 
Townsend and co-workers28-30 using the rapid-distortion 
theory. Although the formal assumptions of rapid-distortion 
theory restrict its use to flows in which distortion by mean 
shear is much greater than the fluctuating strain rates of large 
eddies, Townsend’s and Maxey31 have shown how the struc- 
ture of shear flows undergoing slower distortion is well char- 
acterized by an effective shear-strain parameter. In a simple 
shear flow, the local rapid-distortion strain, 

J‘ 
f aJ(x,t’) aa au a!(x,t) = JY dt’ 
+I 

or x zdy, 

may be combined with the strain relation for equilibrium 
flow: 

au 
CY=T-, 

f3Y 
(4) 

with T as a slow-distortion (large eddy) time scale, to form a 
generalized relation that holds for both asymptotically rapid 
and slow strains3i or 

da au a! 
- =---I. 
dt ay T (5) 

The average effective distortion undergone by the large-scale 
motions of the flow may be estimated as the value of cz 
necessary to produce the same local turbulence structure (in 
terms of ratios of turbulent stresses) under continuous 
uniform-shear distortion from an initial state. Maxey31 has 

shown that good agreement is found between experimental 
and predicted values of turbulent velocity moments in fully 
developed pipe and channel flows, when the initial state is 
taken as that of approximately axisymmetric turbulence at 
the centerline. A more physical interpretation is that the his- 
tory of large-scale coherent motions is one of entrainment 
from the outer regions of the flow {i.e., through sweeps) to 
the location of interest, as if under a continuous sequence of 
locally uniform shears. 

Since the local shear-strain parameter cx carries informa- 
tion on the turbulence structure, the scaling of (Y by a local 
viscous length scale forms a local shear-distortion length 
scale. The strong association between streak eneration and 
shear S suggests the viscous length scale: P v/S. It simplifies 
to dm in steady parallel flows and to v/u T at a wall. 
In unsteady f-lows, the shear-distortion length scale is then 
( LY) &l(S). The rapid-distortion basis of this length scale, 
and the capability of the rapid-distortion approximation to 
describe the essential dynamics of streak formation7 suggest 
a general unsteady scaling of streak spacing on a momentary 
shear-distortion length scale. Therefore, (A) m/( LY) is 
proposed as a characteristic dimensionless streak spacing to 
relate the distortion of large-scale eddies to the scale selec- 
tion of streak separation. 

The strain parameter (c$ may be estimated in unsteady 
flow by rewriting (5) in its phase-conditioned form: 

alaY> J(U) (4 __ =---- 
at ay T’ (6) 

In the case of sinusoidal oscillation superposed on a parent 
mean flow, 

(a) = ti+ iieiwt and (u)=U+lieiwf, (7) 

where * is now a complex amplitude. Substitution into (6) 
and reversion to wall units of the parent flow yield the strain 
amplitude and phase lead (relative to the velocity field): 

The strain amplitude may then be rewritten using the shear 
amplitude from (2) as 

(9) 

By referencing the large-eddy time scale T+ to the parent 
flow using (4), T+=ii close to the wall. Maxey31 has found 
that C? takes the value of approximately 3.5 as the wall is 
approached in parallel flows. In the vicinity of y t-=6p the 
normalized amplitudes l&l/& and [AI/X are in good agree- 
ment. This result is shown in Fig. 7, in which the streak 
separation data of Fig. 6 are superposed on plots of (a). The 
agreement is comparable if (a) is computed at yt -5 or 7. 
There are discrepancies in phase for the results at ws =(X12, 
which may represent the limits in this single length scale 
theory. Finally, the streak separation data of Fig. 6 are replot- 
ted in normalized form as (A) dm/( cy) in Fig. 8 as a 
function of phase angle. The collapse of phase-averaged 
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$ - 4~ (degrees) 

FIG. 7. Phase-conditioned variation of streak spacing and the distortion 
strain parameter; 0, (X)/i; A, (C)/C?; measurements made at y  ‘=6. 

streak spacing as (X) dm/( a) with a mean of 29.2 and a 
standard deviation of 5.5 (from a sample of 56 data) is quite 
reasonable, given the experimental uncertainty, the approxi- 
mations made, and the characterization by a single length 
scale. It indicates clearly the significance of the momentary 
value of this length scale in streak spacing selection. 

It is useful to expand (1) <S)/ v/( cr) by replacing (S) 
and (ct$ by s+s and G-l-5 and using (2) and (9). When this 
expansion is made for small variations of (S) and (cr) about 
their means, the contributions of ,!? and & to 
(1) ml/( a) are in the ratio 

&u/is 2T+ -= 
s/c 2s) 

=7, (10) 

where the approximate value of 7 holds for all frequencies of 
unsteadiness of this study. Thus, the effect of unsteady strain- 
ing is much more significant to changes in streak spacing 
than that of unsteady shear, and m  can be approximated 
by the mean shear velocity of the parent flow Ur. 

Nearly all related experimental studies of unsteady wall- 
bounded turbulence have been at frequencies in the range 

z 8 
=z 
i 
I E; 

30-i fj ; I ; i I : 
7 20 - 
z 

10 - 
i 

0-M 
0 100 200 300 400 

4 - hsd (dw==d 

FIG. 8. Streak spacing normalized by the local momentary distortion-strain 
length scale; A, w+=O.Ol; 0, wf=0.02; V, ~‘-0.04; 0, 0’=0.06; 0, 
o+ =0.08; q , w= =O.lZ. 

O.OOl<w+<O.2. When Tf is taken as its parallel-flow near- 
wall yalue of about 3.5, the relative change in the total strain 
of eddies, l&l/&, is typically more than three times larger 
than that of the local shear, Iii/s. Thus, quantities that are 
dependent on the momentary distortion strain (Y, such as ra- 
tios of Reynolds stresses and components of turbulent kinetic 
energy, should respond more strongly to organized unsteadi- 
ness than those that are primarily determined by the local 
shear. For example, in unsteady turbulent boundary-layer 
flow, the production of z’ is through interactions between 
mean and oscillating components of Reynolds stress and 
shear, via the terms - u’v’&Vay and - ;I’;;‘XJ/C?~. Mea- 
surements of Brereton and Reynolds17 showed that the 
former term exceeded the latter at all frequencies studied, 
though no explanation was offered. If (a) is taken as propor- 
tional to the stress ratio ( - zl’u ‘)/(u’u’), with a constant of 
proportionality at approach to the wall of about 4 in steady 
flow (see Maxey,31 Fig. 6), then 

(-u’u’) -u’u’ 
IiiI=&+-(YI=4 (*‘*,) --IIxzx- 

zz’u’ 

-iT l(--UW ) 
=4 --- --- ~.- _ -- 7 (11) 

ZLtZZrIU’Ur 

and substitution from (8) leads to 

-u’u’(aiilay) 4 Jl+iwirc)zuI11) ____ ---.- y- 
~~l(~u,ar) du+/Jy+ T+ lE;-;;;l * 

02) 

For du ‘/dy+S 1 and T+-3.5 at the wall, and u’u’ neces- 
sarily less than u’u’, this expression exceeds unity for all 
values of tic in the range given above. Thus, the experimen- - 
tal results17 that - u’u’dL/dy>-u’u’dU/dy in unsteady 
wall-bounded are consistent with this rapid-distortion de- 
scription of the importance of unsteady straining relative to 
unsteady shear. Further details of these rapid-distortion char- 
acterizations of turbulence in unsteady flows will be reported 
in a subsequent paper. 

In general, it is difficult to predict the relative strength of 
response of unsteady turbulence phenomena according to 
their dependence on unsteady strain and shear, because it is 
rare that they are strongly associated with one effect but not 
the other. However, when unsteadiness is superposed on es- 
tablished turbulent flows, components of the Reynolds-stress 
tensor,17 burst frequencies,r6 wall-shear stress,16 and turbu- 
lence production terms17 are all modulated about their 
parent-flow values, rather than responding as independent 
facets of an oscillatory flow field alone. Thus, the turbulent 
processes of the pa.rknt flow are likely to be resilient to or- 
ganized deformation through effects of both unsteady shear- 
ing and straining. 

V. DISCUSSION AND CONCLUDING REMARKS 
The generality of the scaling proposed for streak spacing 

in developed flows with superposed unsteadiness may also 
be tested against data for steady wall-bounded 0ow and un- 
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bounded homogeneous shear flow. While it may be inferred 
from the unsteady data of this study (Fig. 8) that there is a 
momentary dimensionless streak spacing of 

e-4 w w?- -- (4 d- T=((u>v -29, (13) 

the equivalent steady-flow form of this correlation, with an 
effective near-wall value of a=3.5, is 

Art, lOOk20 
-- 3.5 au 

-29+6, (14) 

which is in excellent agreement with the unsteady relation in 
(13). Moreover, (Y decreases with increasing distance from 
the wall in steady flo~s,~l consistent with experimental 
measurements’44’32 of X growing with y + and results of the 
rapid-distortion-theory computations of Lee and Hunt.33 

A further test can be made against data from the high- 
shear homogeneous turbulence simulations of Lee et al.7z27 
Their correlation of X J7aular>lv = 200 in a shear flow for 
which a=Jh(dU(t’)/dy)dt’ = 8 reduces to one of 
XX/-ICY = 25, which is within the uncertainty of 
(14) and within one standard deviation of the result of (13). 
These tests indicate that the relation may have considerable 
generality beyond the flows considered, and that the steady 
wall-flow result of XU,/V-100 is merely a special case of the 
.m@v--t( > v a correlation, in which the effective strain of 
energetic motions tends to around 3.5 at approach to a wall. 
It is not clear that this approach is relevant to undeveloped 
unsteady flows, such as reciprocating flows.14 In these flows, 
streaks periodically appear and disappear, turbulence may 
not be sustained throughout a cycle, and in the absence of a 
mean flow the slow-distortion time scale must also evolve 
with time to limit the growth of a in (6). These added com- 
plexities require considerably more than a single length scale 
description and are beyond the scope of this paper. 

The results given above indicate that a local distortion 
strain and a shear length scale carry sufficient information to 
describe the average spacing of streaks in several developed 
turbulent flows. The apparent success of this approach has 
interesting implications for studies of turbulent structures be- 
lieved to be connected with streaks and their spacing. While 
different boundary conditions can presumably favor different 
kinds of structures, the results of this study suggest that a 
given structure’s identification with shear and the average 
local distortion strain determines its importance in selecting 
the spacing of streaks. 

The local distortion strain incorporates strain-history ef- 
fects and strongly reflects moment ratios such as local ratios 
of (x- and z-direction-averaged) components of the Reynolds 
stress tensor. Energetic vertical structures and eruptive mo- 
tions within a quiescent background turbulent field would 
certainly make strong contributions to these ratios. In wall 
flows, those that are parts of quasicyclic processes like burst- 
ing events, contribute strongly to the mean strain history, 
through their large distortion during rapid passage from outer 
parts of the flow. Motions that are also closely linked with 
the average local value of the velocity gradient (again X- and 
z-direction averaged) should be influential in determining 

streak spacing, since the local shear level appears to be a 
principal requirement for sustaining streak-like behaviot7 In 
the case of wall-bounded turbulent flow, the hairpin vortex 
has been argued for by a number of researchers34,35 as a 
principal structure associated with streaks. If one considers 
the action of (near-wall) shear on a vortex line in the z di- 
rection, which subsequently distorts into a hairpin vortex 
(see, for example, Aref and Flinchem or Smith et aZ.37), the 
evolution of such a structure will certainly change averaged 
turbulent stress ratios. A companion mechanism of eruption/ 
sweeping would also have profound effects on the local av- 
eraged distortion strain. Thus, such a structure potentially 
bears a strong identification with the local averaged shear 
and strain levels, though Sandham and Kleiser38 have cau- 
tioned that the attention given to this particular structure may 
be misleading, because of its relatively infrequent occur- 
rence. Similar arguments could be made for the behavior of 
counter-rotating eddy pairs in shear layers, which have also 
been proposed as the principal large eddies of near-wall tur- 
bulent Row,~~*~’ though little can be said conclusively with- 
out more detailed study. The computations of Lee et aL7 sug- 
gest that structures that interact with background turbulent 
motions, as if subjecting them to locally linear distortions, 
are those that are of importance to the presence and the sta- 
tistical qualities of streaks. Thus, in principle, to assess the 
relative importance to streaks of a candidate structure, one 
might interrogate such structures within databases from nu- 
merical simulations of turbulence and assess how strongly 
and frequently they are identified with high levels of local 
mean shear, distortion strain, and with linear interaction with 
neighboring motions. 

In conclusion, new experimental measurements of the 
average spacing of streaks in unsteady turbulent pipe flow 
have been used to develop a general scaling between streak 
spacing and a local shear-distortion length scale. This scale 
appears to be a dominanf length scale in streak spacing se- 
lection. The “strain-history” approach that revealed this new 
length scale is significantly different from other attempts to 
link streak spacing to secondary flows, which result from 
different local near-wall instabilities. By incorporating the 
strain history of large eddies in a length scale, a link is made 
between the weakly strained outer fluid, swept toward the 
high-shear regions near the wall where streaks are formed, 
and the ejection/sweep motions that sustain production of 
new turbulence. The strain history also contains some of the 
features deemed essential by Waleffe and Kim13 to explain- 
ing the mechanism of streak-spacing selection. In the context 
of their critical Reynolds number X4/v for sustaining the 
coupled processes of turbulence production, ml/< cz) con- 
stitutes the local critical velocity scale 8 referenced to a local 
shear velocity, which carries large-scale structural informa- 
tion through the strain-history parameter LY. For developed 
flows with qualitatively the same coupled processes of tur- 
bulence production, one would also expect this relation be- 
tween streak spacing and the shear-distortion length scale to 
hold. Interesting examples that might further confirm the 
usefulness of this approach include turbulent flow over wavy 
walls and curved surfaces. 
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