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A new method to prove the absence of positive discrete spectrum of the Schrédinger operator is

given.

1. INTRODUCTION

Consider the equation

(V24 1%— p(x))u=0, xcR"A2>0. 0y}
Let us assume that

uel (= L*(R") . )
One of the most important steps in spectral analysis of the
Schrodinger operator (1) is to prove that the only solution of
(1) and (2) under some assumptions about p(x) is u==0. The
first result of this kind in potential scattering was obtained
by T. Kato.! It was generalized by many authors. In A.G.
Ramm? the boundary value problem was considered in do-
mains with infinite boundaries. In M. Reed and B. Simon’®
the result is obtained under more general assumptions about
p(x). Then, in Saito,* and in P. Mishnaevsky,’ the case of the
operator-valued Sturm-Liouville equation was treated,;
some results are known in case V? is replaced by an operator
Lu= —Z},_,(3/3x)(a;;(x)(0u/dx)), with a, (x)
= §,,(x), for |x| > R and which satisfies some other assump-
tions (M. Shifrin®). It is not our purpose to mention all the
papers which deal with the question under discussion. For us
it is important that all known proofs of the above mentioned
uniqueness theorem are rather complicated and technical. It
is our purpose to outline a new approach to this question and
to present a new proof of the known result. We shall not
present the result in the most general form but try to explain
a new idea in our approach. It should be mentioned that in
Ref. 1 the absence of positive eigenvalues of the Schrodinger
operator was proved under the assumption
| p(x)|<C (1 + |x|) ¢, a> 1, whereas here we handle only
the case | p(x)|<Ce ~ <.

2. THE SIMPLEST CASE

First let us consider the simplest case when p(x) is a
bounded continuous function with compact support. Sup-
pose that ueL *(R") and satisfies Eq. (1). Taking the Fourier
transform of both sides of the equation, we find

. A .

A2 —EHa¢)=(pw)&), &eR", (3)
where £ 2= ¢ 2 + - + ¢ 2 and the denotes the Fourier
transform

a¢)= (%)n f prl” EFu(x) dx . @)

Since pucL *(R") and has support in some compact set in R”,
its Fourier transform p2(¢ ) is an entire function of {eC".

2395 J. Math. Phys. 21(9), September 1980

0022-2488/80/092395-03%$1.00

Further, ﬁ is an entire function of exponential type and its
restriction to each of the real subspaces of C*, Im{ = con-
stant, is in L (R"). The class of all Fourier transforms of L 2
functions with compact support in R” will be denoted L 2.
We then claim that Eq. (3) implies del 2.

Lemma 1: If ucL *(R") and satisfies (1) with A 2 > 0, and
if p(x) is a bounded measureable function with compact sup-
port in R", then 4L 2. That is, u has compact support in R".

If we assume Lemma 1, then the conclusion ¥=0 fol-
lows from the unique continuation theorem for Schrodinger
equation [3].

Proof of Lemma 1: We will check first that 2 is an entire
fu}¥:tion and, second, that del. 2. To see this note/\that
(pu)(&)/(A? — £?) = el *(R"). Itfollows that (pu)(£) = 0
onthesphereS, = {£eR™¢2? = A 2}, since 1/(A 2 — £ )isnot
square integrable over any neighborhood in R” of a point in
S, . Then, since (@)@‘ ) vanishes on {£eR":¢ 2 = A 2}, it fol-
lows by analytic continuation that ( ﬁ)@ ) vanishes on the
analytic variety in C", ¥V = {{eC™:{ ? = A 2}. But, the gradi-
entof¢ 2 — A 2doesnotvanishon V,so(a)(¢ )/(E 2 — A ?)isa
smooth function and, therefore, analytic on C". Thus,

4(C) = (PU)E)/(E? — A %) is an entire function.

To prove that del &, we will use a version of the Paley—
Wiener theorem (Ref. 7, p. 20, 21). It is not hard to verify
that each el 2 satisfies for some C,R > 0,

(i) [66)[<Clv| Ly EXP(R Img {), 5)
(i) the restriction of § to R" belongs to L *(R").

The Paley—Wiener theorem implies that the converse also
holds.

Theorem 1: If § is an entire function on C" satisfying the
growth conditions (i) and (ii), then pel 2. In fact, (i) can be
replaced by the weaker growth condition,

(@) [8@)|I<CexpR £ ]).
Further, v has support in {|x|<R }.

To conclude the proof of Lemma 1, we will prove that i
satisfies (i) and (ii), assuming that @ = pu satisfies (i) and
(ii). Since ucL *(R™), we already know that (ii) holds. We also
know that (A * — & ) #({ ) satisfies an estimate of the form (i).
It is then an immediate consequence of the “division
lemma,” (see Corollary 1.3, p. 8 of L. Ehrenpreis®), that 4
also satisfies an estimate of the form (i). This completes the
proof.

Remark: The hypothesis that p is bounded can be con-
siderably relaxed in Lemma 1. All that is needed is that
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& = () is an entire function of exponential type. This will
be true if pu is a distribution with compact support; for ex-
ample, if peL © for some € > 0. However, to conclude the
result of the theorem, ¥=0, we apply the unique continu-
ation theorem which requires stronger hypotheses. See re-
mark 1 of Sec. 5.

3. EXPONENTIALLY DECREASING POTENTIALS

In this section we show how the idea of Sec. 2 can be
used to prove u==0 when the assumption on the potential
p(x) is relaxed to

| px)|<Cexp(—a|x]), xeR" ®

for some C,a > 0. The steps are the same except that an addi-
tional induction argument is required. First, recall that the
main point was to prove fieL 2, and the first step in this
argument was to prove that # could be analytically contin-
ued from R” to C". To handle potentials of the form (6), we
need a local version of this result. A more general version
will be stated and proved, since it isolates the crucial proper-
ty satisfied by the polynomial £ 2 — A 2 and is therefore per-
haps of independent interest.

Lemma 2: Let (2 be an open set in C". Suppose Q is a
polynomial on C", @ is analytic on 12, fis locally square inte-
grable on R"nf2, and

Qf =&, on R"nM2, @)
if Q satisfies the following condition:

Each irreduciblecomponent Vof {{e02:Q (&) = 0} inter-
sects R"n(2 in a real analytic set of dimension n — 1, ®)

then f has an analytic continuation to all of £2.

We will postpone the proof of Lemma 2 to the next
section. Let us remark, however, that Q need not be a poly-
nomial—Q analytic on £2 is all that is needed. Further, the
property (8) satisfied by Q is exactly what is needed to con-
clude that fis analytic, at least when (2 is a domain of holo-
morphy which is homeomorphic to a ball. That is, if £2 satis-
fies these conditions, if £2nR" is not empty, and if each f
satisfying the hypotheses of Lemma 2 is also analytic on {2,
then Q must also satisfy (8). We will not include a proof here,
since it does not seem relevant to the problem.

The other ingredient needed for the proof'is a version of
the Paley—Wiener theorem for functions with exponential
decay. However, we need to have fairly explicit estimates of
the constants appearing in the theorem. The form stated be-
low is adequate. We will not give the proof, since any stan-
dard proof of the Paley-Wiener theorem will give the result
just by explicitly carrying through the estimates.

Lemma 3: Let €> 0, a0, and suppose that ¢ + 29~
u(x)eL 2(R") has L* norm at most K. Then ticL *(R"), 4 is
analytic in the strip |Im¢ | < a + 2€ and there is a constant
C = C(e,n) dependending only on € and n, and independent
of a, such that

l[a(¢)|<K-C

Jor all £ with |Im £ | <a + €. In the converse direction, if
deL (R"), i is analytic in the strip |Im & | < a + 2€ and satis-
Sies |G(& )| <K in that strip, then e“ + ©lu(x)eL *(R") and has
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L * norm at most K-C,, where C, is a constant depending only
on nande.

We can now prove the theorem.

Theorem 2: Suppose p(x) is a locally bounded, measur-
able function such that for some € >0,

| plx)| <Ke ™ *M.

Suppose further that ucL *(R") satisfies for some A >0,

Au(x) + A 2u(x) — p(x)u(x) =0, xeR".

Then u=0.

Proof: Taking the Fourier transform of the equation
yields(A % — £ Da() = (Pu)¢ ). Becauseoftheestimateonp,
we have from Lemma 3, with ¢ = 0 that ( pu) is analytic in
the strip |Im £ | < 4€ and bounded by KC ||| ... in the strip
|Im £ | < 3€. Because A > — & * satisfies (8), it follows that 4 is
analytic in |Im ¢ | < 4¢. Further, from a standard division
lemma (see Corollary 1.3, p. 8 of L. Ehrenpreis®) it follows
that 4($ ) is bounded by C,K ||u]|,.. in the strip |[Im § | < 2¢,
where C, is a constant depending only on n and €. Finally,
from the converse part of Lemma 3, we deduce that e“*u(x)
€L *(R") and, further, has L *-norm at most C,K ||| .g;
where C, is a constant depending only on 7 and €.

We can then repeat the argument, except usinga = € in
Lemma 3, to deduce

EMu()eL (R,
and has L > norm at most (C,)*K ||u[|, .z~ - Continuing in
this fashion, we find that e*<*'u(x)eL %(R") and has L *-norm
at most equal to (C,)K ||u| Lagny K =1,2,... . It therefore
follows from Lemma 3 that

Iﬁ@)|<K||”||L'(R") exp(G;|Im £ ),

for some constant C, > 0. Thus, by the Paley-Wiener theo-
rem, u must have compact support in the ball |x| < C;.
Therefore, the problem has been reduced to the case treated
in Sec. 2, and we conclude that u=0.

4. PROOF OF LEMMA 2

We will prove that if & /Q is locally in L * (or even in
L' * ) on 2nR" and if Q satisfies (8), then @ /Q is analyticin
0. By factoring Q into a product of powers of prime factors
(in the ring of functions analytic on £2—not in the polynomi-
al ring), it is seen that it is enough to consider the case when
Qisirreducible. In this case, @ /Qis analytic on {2 ifand only
if the variety {£ef2:@ (§) = 0} contains
V= {{ef2:Q () = 0}. Now, sincedimg (VN20R") =n —1,
we must have @ = 0 on Vnf2. Otherwise, there exists
x,cVn2 and € > 0 such that

dx
< + o
jx - Xyl € |Q(x)|2

But, the integral f|, <. dx/ |Q (x)|* must diverge. To see
this, choose linear coordinates (¢,...,¢, ) near x, so that t =0
corresponds to x,, and for each choice of (¢,...,2,),

t, — Q(t,...,t,) has a zero near ¢, = 0. This is possible since
dimg; (VnR"2) =n — 1. Then

dt f J‘ dt,
—— = | dthedt, | —————= + ».
f FIOK i 1Q (t1tanent )
Consequently, @ = 0 on FnR"n(2.
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Next, since V'is irreducible, to prove VC {@ () =0},
all we have toshow is that { @ (§) = O]JnUD VnU, where Uis
a neighborhood of a point z,eV. Thus, let x,eVnR"nf2. Then
the germ of the real analytic set { @ (§) = 0}nR” at x,, con-
tains the germ of VnR" at x,, which is of dimension » —1. It
follows that the complex germ of the real analytic set
{@ (&) = 0}nR" at x, contains the complex germ of @ = O at
X, (a consequence of Proposition 2, p. 92 of R. Narasimhan,”
which is also a good reference for the other facts about ana-
lytic sets which have been used in the proof). This completes
the proof.

5. REMARKS

1. The method given in this paper can be used in many
cases when the potential p(x) has singular points. Our argu-
ments require only that pu be a distribution of exponential
rate of decrease and of finite order. For example, this will be
the case if for some ¢, @ > 0, p(x) is measurable and
Sixi> 1| )| dx<e~“!"|. However, the proof also uses the
unique continuation theorem for the Schrédinger operator
in R", which is only known for p(x)eL &, (R?) for g>3/2, and
inR"forp(x)eL?, g=¥n—1), n35;9g=2forn=4;¢9>1
for n = 1,2. (See Refs. 3, 7, and 10).

2. It would be interesting to extend the ideas of this
paper in order to prove absence of the positive eigenvalues of
Schrodinger operator | p(x)|<c(1 + |x|) =% a> 1. The
Wigner-von Neumann example shows that there exists a
potential | p(x)|<c(1 + |x]) ~', which has a positive eigen-
value [Ref. 3, p. 223]. It would be interesting to understand
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from the standpoint of our technique why a = 1 plays the
role of frontier.

APPENDIX

We give an example which shows the importance of

condition (8). If f >0, feC &(R?), k> 0 and u(x)

= exp(— k |x — p))(d7lx — »]) ' f(3) dy, then
u(x)>0, ueL*(R®), —Au+ k*u=f(x), 4 *u

+ g(x)u — k*u = 0,q(x)=(k *f + Af)u ~'(x). Thusk*> 0
is the eigenvalue of 4 * + g(x), g(x)eC &. In this case
Q@)=L —k*=@C*~ k)G + kP and V=V P,
Vi={£6eC87 + €3 + & — k*=0}. Hence ¥, does not
intersect R®, condition (8) is not fulfilled and hte operator
A? + g(x) has a positive eigenvalue. The potential g(x) was
used also in the review article, D. Eidus, “The principal of
limit amplitude,” Russ. Math. Surv. 24, N3, 97 (1969).
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