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Absolute instability in a traveling wave tube model
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~Received 15 June 1998; accepted 27 July 1998!

A model is constructed to evaluate absolute instability which may lead to bandedge oscillations in
a traveling wave tube. Under the assumptions~a! that all modes have forward group velocities, and
~b! that the slow wave structure has a parabolic dispersion relation in thev-k plane, the threshold
coupling constant~Pierce’s parameterC! is calculated for the onset of absolute instability. The
effect of distributed resistive loss in the circuit is included. The axial wave number and the
characteristic frequency of the oscillation at the onset are given. ©1998 American Institute of
Physics.@S1070-664X~98!00512-6#
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I. INTRODUCTION

There is a rekindling of interest in traveling wave tub
~TWTs!, due to the recent advances in microwave pow
module1 and to the rapid growth in satellite communicatio
where TWTs are extensively used. In a TWT, the elect
beam interacts with the forward wave of the slow wave c
cuit, resulting in spatial amplification of the signal. A serio
threat to the stability of TWT is bandedge oscillation,2 char-
acterized by a frequency in the vicinity of thep-mode of the
slow wave circuit. A candidate for bandedge oscillation
the excitation of absolute instability,3 which may occur when
the beam current exceeds some threshold value, evenall
modes~beam and circuit! of interaction haveforward group
velocities.4 In this note, we present a calculation of th
threshold current based on a simplified model of TWT.

In general, absolute instability can occur even if t
TWT is perfectly matched at both ends.4 Thus, it is different
from the regenerative oscillations caused by partial refl
tions of the amplified signal at the ends of the tube.2 It is also
different from the backward wave oscillations that occur
the event that the beam mode intersects the circuit mode
negative group velocity.5 While absolute instability has bee
predicted4 and observed in great detail6 for the ~fast wave!
gyro-TWTs, we are not aware of similar calculations on t
conventional~slow wave! TWTs. Toward the end of this
paper, we briefly discuss the differences in absolute insta
ties in fast wave and slow wave tubes.

The helix or ring-bar circuits in a conventional TWT2

lead to a rather complicated dispersion relation for the circ
mode. To simplify the calculations of the threshold curre
for the onset of absolute instability, we assume that the
cuit mode dispersion relation is a parabola in thev-k plane
~Fig. 1!. This could be a reasonable assumption near
p-mode~bandedge!, but is entirely inadequate to model ov
a much wider band that is typical of a TWT.1,7 Nevertheless,
we choose the parameters in such a way that, for sync
nous interaction~defined to be the case where the phase
group velocities are all equal in the beam mode and in
circuit mode!, our simplified dispersion relation is identica
to Pierce’s standard form.2 In addition, the simplified disper
4401070-664X/98/5(12)/4408/3/$15.00
r
,
n
-

-

t a

e

li-

it
t
r-

e

o-
d
e

sion relation allows us to readily investigate the effects
velocity detune and of a distributed resistive loss in the c
cuit. When the resistive loss is absent, the threshold coup
constant~Pierce’s parameterC3!, the frequency, and wave
number at the onset of absolute instability are derived a
lytically.

II. ANALYSIS

In our model, electrons drift axially with a velocityv
inside a slow wave structure with pinchL @Fig. 1~a!#. The
beam mode isv5kv, with exp(jvt2jkz) dependence in the
small signal regime@Fig. 1~b!#. We approximate the struc
ture mode by a parabolav5vBE2a(k2kBE)2, wherekBE

5p/L is the wave number at bandedge,7 vBE is the band-
edge frequency, anda determines the ‘‘shape’’ of the pa
rabola. Whenv5v0 , the beam mode dispersion curve
tangent to the parabola atv5v0 , k5k0 @Fig. 1~b!#. We call
this case,v5v0 , the synchronous case. In terms ofkBE, vBE

and a, we find k05(kBE
2 2vBE/a)1/2, v052a(kBE2k0)/

k0 , and v05v0 /k0 . Note that for v.vBE, where vBE

5vBE/kBE, all interacting modes have forward group v
locities @Fig. 1~b!#. In this paper, we concentrate only o
such cases.

By normalizingv with respect tov0 and k to k0 , we
model the TWT dispersion relation as8

D~ k̄,v̄ ![@ k̄~11d!2v̄#2@P~ k̄21!22~ k̄2v̄ !1D~12 j !#

5«, ~1!

P5
k0

2~kBE2k0!
. ~2!

Here,v̄5v/v0 , k̄5k/k0 , and«.0 («}current) is the di-
mensionless coupling constant. In Eq.~1!, the first square
bracket represents the beam mode and the second sq
bracket represents the structure mode, when these sq
brackets are set equal to zero individually. We have includ
the effects of beam detuning throughd5(v2v0)/v0 ~either
positive or negative! in the beam mode, and of a distribute
resistive loss throughD(.0) in the structure mode. We tak
8 © 1998 American Institute of Physics
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the dimensionless parametersd and D to be small, and 0
,k0 /kBE,1. In terms of P, we find k̄BE[kBE/k051
11/2P and v̄BE[vBE/v05111/4P.

Note that the dimensionless coupling constant,«, is es-
sentiallyC3, whereC is the Pierce parameter.2 To see this,
take the synchronous, lossless limit~d50, D50!. Upon ap-
proximating k̄'1, Eq. ~1! then reduces to (v̄2 k̄)35«
5C3, which is Pierce’s standard TWT dispersion relati
for synchronous interaction.2 Furthermore, for synchronou
interaction, the cold-tube dispersion relation yieldsk̄'v̄
1D(12 j ) according to Eq.~1!. Thus,D represents a distrib
uted resistive loss on the circuit. Numerically,D
5ZLv0/8.686v0 , where ZL is the cold-tube loss rate in
dB/m, v0 is the beam velocity in m/s, andv0 is the fre-
quency in radians/second.

We use the Briggs–Bers criterion3 to calculate the
threshold value of«, «s , for the onset of absolute instabilit
for various combinations ofP, d, D. First, for a lossless
structure (D50), we use the techniques of Ref. 4 to sho
from Eq. ~1! that bothv̄5v̄s and k̄5 k̄s are real at the onse
of the absolute instability. We solvev̄s and k̄s by setting
]D/] k̄50, ]2D/] k̄250 and choosing the meaningful root4

We then obtain«s5D( k̄s ,v̄s), which reads, for a lossles
structure,

«s5
27~11d!6L4

P3 , ~3!

where

k̄s511
1

2P
@122L~11d!#, ~4!

v̄s5~11d!F11
1

2P
@128L~11d!#G , ~5!

FIG. 1. ~a! A helix of pitch L. ~b! The beam modev5kv and the structure
mode, approximated by a parabola. Thep-mode wave number iskBE

5p/L.
L5A11
112d~112P!

8~11d!2 21. ~6!

It is obvious from Eq.~3! that «s decreases with increasin
P. This occurs whenk0 approaches the bandedge wave nu
ber kBE @cf. Eq. ~2!#. Note from Eqs.~6! and ~3! that when
d521/2(112P), L50 and«s becomes zero. This case o
zero threshold current may be shown to correspond to
beam mode intersecting the structure mode at the band
~v5vBE, see Fig. 1!. At synchronism (d50), Eqs.~3!–~5!

yield k̄s5110.4393/P, v̄s5110.2574/P, and «s53.66
31024/P3. In Fig. 2~a!, «s

1/3 for D50 is shown as a function
of k0 /kBE at variousd, the corresponding frequency of os
cillation at the onset is shown in Fig. 2~b!. From Fig. 2~a!,
we see that the threshold increases~decreases! with positive
~negative! d, and becomes very small ask0 approachingkBE.
The frequency of oscillation,vs , is in the vicinity of the
bandedge frequencyvBE @Fig. 2~b!#.

The analysis for a lossy structure (D.0) is more in-
volved. Here,v̄s remains real andk̄s becomes complex at th
onset of absolute instability. In this case, we first find a
lation k̄5 k̄(v̄) from the condition]D/] k̄50. For real values

FIG. 2. ~a! The threshold coupling constant,«s
1/3 as a function ofk0 /kBE for

a lossless structure (D50) at variousd. ~From top to bottom,d515%,
13%,0%,23%,25%.! ~b! The frequency of oscillation at the onset o
absolute instability, expressed in terms of the fractional departure from
bandedge frequencyvBE .
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of v̄, this function k̄(v̄) is in general complex; so is«
5D( k̄(v̄),v̄). The critical value of« is obtained for that
real value of v̄ at which Re@D(k̄(v̄),v̄)#.0 and
Im@D(k̄(v̄),v̄)#50. We have checked that in the limitD50
~lossless case!, this numerical procedure yields the same
sults as those derived analytically for the lossless case g
above. In Fig. 3,«s

1/3 for d50 is shown as a function o
k0 /kBE at variousD. Here, we see that the presence of lo
(D.0) raises the threshold current for absolute instabil
The stabilization of the bandedge oscillation is more eff
tive at largerk0 /kBE. In Fig. 4, the dependence of«s

1/3, v̄s

and k̄s ~real and imaginary part! on k0 /kBE is shown for the
caseD50.001 andd50.

The above analysis may offer some guidance on impr
ing the stability of TWT, in terms of the required distribute
loss and, more importantly, of the separation between

FIG. 3. The threshold coupling constant,«s
1/3 as a function ofk0 /kBE for a

lossy structure withd50 at variousD. ~From top to bottom,D50.1, 0.05,
0.01, 0.005, 0.001, 0.!

FIG. 4. «s
1/3 , v̄s and k̄s ~real part and imaginary part! as a function of

k0 /kBE for a lossy structure withD50.001 andd50.
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p-mode frequency and the amplifying band. The analy
solution provides a scaling on the gain parameter. Becaus
the sensitivity to the parameterP, which is a measure of the
separation between the synchronous mode and thep-mode
wave numbers@cf. Eq. ~2!#, P needs to be assigned empir
cally for the tube under study.

III. CONCLUDING REMARKS

Finally, we note some differences between absolute
stability in fast wave TWT and in slow wave TWT. In a fa
wave TWT, such as the gyrotron4,6 or gyropeniotron,9 abso-
lute instability always occurs near the waveguide cut
~with zero group velocity!, at which the axial wave numbe
is close to zero. Thus, absolute instability in a fast wave tu
is quite sensitive to the axial length of the tube, and may
be as readily detected.4 On the other hand, absolute instab
ity in a slow wave TWT occurs near thep-mode~also with
zero group velocity7!, whose axial wavelength is muc
shorter than the axial length of the tube. Thus, absolute
stability in a conventional TWT is much less sensitive to t
length of the tube, and is much more readily observed.
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