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Absolute instability in a traveling wave tube model
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A model is constructed to evaluate absolute instability which may lead to bandedge oscillations in
a traveling wave tube. Under the assumpti@shat all modes have forward group velocities, and

(b) that the slow wave structure has a parabolic dispersion relation im-tkelane, the threshold
coupling constanfPierce’s paramete€) is calculated for the onset of absolute instability. The
effect of distributed resistive loss in the circuit is included. The axial wave number and the
characteristic frequency of the oscillation at the onset are given19@8 American Institute of
Physics[S1070-664X98)00512-4

I. INTRODUCTION sion relation allows us to readily investigate the effects of
velocity detune and of a distributed resistive loss in the cir-

There is a rekindling of interest in traveling wave tubescuit. When the resistive loss is absent, the threshold coupling

(TWTs), due to the recent advances in microwave powefconstant(Pierce’s paramete€®), the frequency, and wave

modulé and to the rapid growth in satellite communication, number at the onset of absolute instability are derived ana-

where TWTs are extensively used. In a TWT, the electroniytically.

beam interacts with the forward wave of the slow wave cir-

cuit, resulting in spatial amplification of the signal. A serious

threat to the stability of TWT is bandedge oscillatfoohar-  1l. ANALYSIS

acterized bygfrgquency n the vicinity of themode.of t.he . In our model, electrons drift axially with a velocity

slow wave circuit. A candidate for bandedge oscillation is. . . ) :

the excitation of absolute instabilifyvhich may occur when inside a slow wave structure with pindh[Fig. 1@)]. The

the beam current exceeds some threshold value, evalh if grena;? :Or?; 'f: :irI:]l:{’F\iN'thl(%))(]p G\(;’Vte_g( 2 S)i?rig?eer:ﬁ: I:trtlii
modes(beam and circujtof interaction havdorward group g 9 9. ' bp

o . : ._ture mode by a parabola= — a(k—kgg)?, wherek
velocities? In this note, we present a calculation of this yap g~ a(k~ Kee) BE

- ; 7 ; )
threshold current based on a simplified model of TWT. dg/eL frlzqtsgn\gavgnryrg:tirmi}nzzng]zd93}2‘%‘;}2‘? tkr)l?anga-
In general, absolute instability can occur even if the y

. L rabola. Whenv=v,, the beam mode dispersion curve is

fTWT ,'; perfectly mtgtched a|: t:_o th enﬁihuds,blt IS dlzfelren';l tangent to the parabola at= wy, k=kq [Fig. 1(b)]. We call
rom ine regenerative osciiations caused by partial retiecy casey =vg, the synchronous case. In termskgf, wge
tions of the amplified signal at the ends of the tabeis also - (L2 12 _ .

. . . . and o, We f|nd ko_(kBE wBE/a) y wO—Za(kBE ko)/
different from the backward wave oscillations that occur in -
th t that the b de int ts the circuit mod tsz’ and vo=wqy/ky. Note that forv>vgeg, where vgg

© event that tne beam mode INTersects e clrcUlit mode atd ¢ /kee, all interacting modes have forward group ve-

negative group velocity While absolute instability has been L : :
predicted and observed in great defafor the (fast wave !s?uccl:trllec?a[s':elg 1b)]. In this paper, we concentrate only on
gyro-TWTs, we are not aware of similar calculations on.the By norn-1alizingw with respect tow, andk to kg, we
conventlonal-(slow _Wave TWT;. Toward_ the end of this _model the TWT dispersion relation s
paper, we briefly discuss the differences in absolute instabili- o o .
ties in fast wave and slow wave tubes. D(k,w)=[k(1+ ) —w]P(k—1)2—(k—o)+A(1—j)]

The helix or ring-bar circuits in a conventional TWT

lead to a rather complicated dispersion relation for the circuit —-& @)
mode. To simplify the calculations of the threshold current Ko
for the onset of absolute instability, we assume that the cirP = m- 2

cuit mode dispersion relation is a parabola in &k plane o

(Fig. 1). This could be a reasonable assumption near thélere,w=w/wy, k=k/ky, ande>0 (excurrent) is the di-
7-mode(bandedgg but is entirely inadequate to model over mensionless coupling constant. In Ed), the first square

a much wider band that is typical of a TWT.Nevertheless, bracket represents the beam mode and the second square
we choose the parameters in such a way that, for synchrdsracket represents the structure mode, when these square
nous interactio{defined to be the case where the phase anthrackets are set equal to zero individually. We have included
group velocities are all equal in the beam mode and in the¢he effects of beam detuning throudi (v —v) /v (either
circuit mode, our simplified dispersion relation is identical positive or negativein the beam mode, and of a distributed

to Pierce’s standard forfin addition, the simplified disper- resistive loss through (>0) in the structure mode. We take
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FIG. 1. (a A helix of pitch L. (b) The beam mode=kv and the structure
mode, approximated by a parabola. Themode wave number ikge W 0.02 \
=m7/L. g
Ty 0.015
¢
. . g’
the dimensionless parametefsand A to be small, and 0 = 0o
<kg/kge<1l. In terms of P, we find kgg=kge/ko=1 0.005
+1/2P andJBEE wBE/wOZ 1+1/4P. ’
Note that the dimensionless coupling constantis es- 0 R
sentially C3, whereC is the Pierce parametéiTo see this, 01 02 03 04 05 06 07 08 09
take the synchronous, lossless lirdt=0, A =0). Upon ap- (b) k, / Kee

proximating k~1, Eq. (1) then reduces to §—k)3=¢
— CS, which is Pierce’s standard TWT dispersion re|a,[i0r.|FIG. 2. (a) The threshold coupling cons'[amli’3 as a function ok, /kgg for

for synchronous interactichFurthermore, for synchronous 2 [0SSIess structured=0) at variousa. (From top to bottom = +59%,
y ! y _ +3%,0%,-3%,—5%.) (b) The frequency of oscillation at the onset of

interaction, the cold-tube dispersion relation yielklss @  absolute instability, expressed in terms of the fractional departure from the
+A(1—j) according to Eq(1). Thus,A represents a distrib- bandedge frequenayge .

uted resistive loss on the circuit. NumericallyA

=Z,v0/8.686vy, where Z, is the cold-tube loss rate in

dB/m, vy is the beam velocity in m/s, and, is the fre-
guency in radians/second. A= \/ w_ (6)
We use the Briggs—Bers criteriorto calculate the 8(1+59)

threshold value o, ¢, for the onset of absolute instability It is obvious from Eq.(3) that s, decreases with increasing

for various combinations oP, §, A_. First, for a lossless 5 s oceurs wheik, approaches the bandedge wave num-
structure @ =0), we ise_the tec_hngues of Ref. 4 to ShOWber kge [cf. EqQ. (2)]. Note from Egs(6) and (3) that when
from Eq. (1) that bothw = ws andk=k are real at the onset 5— _1/2(1+2P), A=0 ande becomes zero. This case of
of the absolute instability. We solves and ks by setting  zero threshold current may be shown to correspond to the
aD/3k=0, 9?D/Jk?=0 and choosing the meaningful rdot. beam mode intersecting the structure mode at the bandedge
We then obtaine =D (ks,».), Which reads, for a lossless (v=vge. see Fig. L At synchronism $=0), Egs.(3)-(5)
structure, yield ks=1+0.4393P, w,=1+0.2574P, and £,=3.66
X 10" 4/P2. In Fig. 2a), s2*for A=0 is shown as a function
27(1+ 6)5A% of ky/kgg at variouss, the corresponding frequency of os-
- p3 (3 cillation at the onset is shown in Fig(l®. From Fig. Za),
we see that the threshold increagdscreaseswith positive
where (negative 8, and becomes very small kg approachindge.
The frequency of oscillatione,, is in the vicinity of the
— 1 bandedge frequencyge [Fig. 2(b)].
Ks=1+ ﬁ[l_ZA(l+5)]’ ) The analysis for a lossy structuré 0) is more in-
volved. Herew, remains real anllg becomes complex at the
onset of absolute instability. In this case, we first find a re-

Iation?=?(6) from the conditioryD/dk=0. For real values

Es

_ 1
ws=(1+6)|1+ ﬁ[l—SA(l-i‘ 01|, (5)
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m-mode frequency and the amplifying band. The analytic
solution provides a scaling on the gain parameter. Because of
the sensitivity to the paramet@, which is a measure of the
separation between the synchronous mode andrtheode
wave numbersgcf. Eq. (2)], P needs to be assigned empiri-
cally for the tube under study.

IlI. CONCLUDING REMARKS

Finally, we note some differences between absolute in-
stability in fast wave TWT and in slow wave TWT. In a fast
wave TWT, such as the gyrotrbfior gyropeniotror?, abso-

‘ ‘ D o ‘ lute instability always occurs near the waveguide cutoff
01 02 03 04 05 06 07 08 09 (with zero group velocity, at which the axial wave number
- is close to zero. Thus, absolute instability in a fast wave tube
is quite sensitive to the axial length of the tube, and may not
FIG. 3. The threshold coupling constant”® as a function ok, /kse fora  be as readily detectédOn the other hand, absolute instabil-
lossy structure with5=0 at variousA. (From top to bottomA=0.1, 0.05, ity in a slow wave TWT occurs near themode(also with
0.01, 0.005, 0.001, p. zero group velocit), whose axial wavelength is much
shorter than the axial length of the tube. Thus, absolute in-
stability in a conventional TWT is much less sensitive to the
length of the tube, and is much more readily observed.
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of , this functionk(w) is in general complex; so is
=D(k(w),w). The critical value ofe is obtained for that
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