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Exact solutions, expressed in closed form in terms of elementary functions, are presented for the three
sets of curved characteristics behind a self-similar, strong blast wave.

Blast waves are produced in gaseous media due to the
sudden deposition of large amounts of energy in
relatively small regions. The propagation of a point-
source blast wave into an ideal gas, whose initial
pressure is assumed to be negligibly low, is known to be
self-similar. This property can be deduced using either
dimensional arguments! or invariant theorems of con-
tinuous groups of transformations.? Closed form
solutions describing the flow variables in the nonisen-
tropic region behind such a blast wave in #n=1, 2, 3
dimensions were obtained independently by von
Neumann® and Sedov.* The reflection of strong blast
waves was discussed in an earlier paper® by the authors.

It is known that the basic equations governing the
nonisentropic flow behind a propagating blast wave
admit three distinct characteristic directions given by

(1)

where 7 is the radial distance from the point of ex-
plosion, ¢ is the elapsed time, » is the velocity, and e
is the isentropic speed of sound. The first characteristic
direction coincides with the local particle velocity and
the family of characteristics is, therefore, composed of
particle lines. This direction corresponds to the speed
of propagation of entropy disturbances. The other two
characteristic directions correspond to the local speeds
of propagation of pressure, density, or velocity dis-
turbances. The purpose of this note is to report the
interesting result that these three families of curved
characteristics can also be represented in closed form,
and remarkably, still in terms of elementary functions.

First, consider the (u) characteristics or particle
lines. According to its definition and the self-similar
solution of Ref. 5, it may be easily deduced that along

a (u) characteristic,

dr/dt= (24n) Utiy(4)/2, (2)

where
U=[2K./(2+n)](Eo/po) Ctm i @tn (3)

is the shock speed, y(4) is given by Eq. (5) of Ref. 5,
A=ut/r, F, is the energy released per unit area for a
planar wave, per unit length for a cylindrical wave, and
the total energy released for a spherical wave, po is the
initial density, and K, is determined by the condition of
conservation of total energy.

But, from the definition of the similarity parameter
and the expression for the shock radius of Ref. 3, it can
be shown that, in general,

dr/di= K (Eo/ po) @100 2y/ (24-n) +1 dy/df].
4)

Therefore, from Eq. (5) of Ref. 5 and Egs. (2)-(4),itis
found that,

dlny an
o 4—[2/(2+n)]’

along a particle line, where,

dlny  (y=1)a/2+[4—2/2+n) [2—2/y(24n)]
da  A02/y(2+n)— 2L 2—n+ny)4/2—1]

dInt= (5)

)

(6)

and v is the adiabatic index. Thus, Eq. (5) can be
integrated in terms of elementary functions. The result

18
I=at(ds— )P (d— As/y) (84— A58, (7)

where
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a=A1 (A= A7) "B (A1 — Ao/v) (AT — A7) TR,
Bi= (2y+n—2)[n(y—2) 1B,
Ba=mny(2+n) (2—v) (v— 1) [2(2ny+2y—n+2)
X (2=n—2v)+2ny(2—7) (ny+4) +2(v+1) (2+n)
X (my?=2my+n+2y—2)T7,
Bs= (2+n) (ny*—2ny+n-+2y—2)[n(2~7)
X(wy—n+2)1'Be—1, (8)

=1/l is a dimensionless time normalized with respect
to some convenient time scale 4, and the A’s are given
by Egs. (6) of Ref. 5.

To complete the solution for the particle lines, an
expression relating (r, ¢, #) is obtained from Egs. (2)
and (5) of Ref. 5. In dimensionless form, this expression
becomes,

T= (A1) 4 Ag(vh/A,—1) T4+
X[A1(1—As) / (A1~ A5) Pedsppietn - (9)

where 7=r/R (). Equations (8) and (9) form the
closed form parametric solution for the family of ()
characteristics or particle lines behind a self-similar
blast wave.

For the (#4a) characteristics, we have

(lif— ’ ‘yp,g 12
at _ufi[ o'h ]
=[U/(v+1) J{24.y(s)

=[2y(y—Dg@)/h(4) ]2}, (10)

where g(#), h(#), and y(#) are given by Egs. (4)
and (5) of Ref. 5, and the shock speed U by Eq. (3).
Combining with Eq. (4) and after considerable manipu-

=
:; ka/v/
~

0.8 -

O.GF

04 -

02—

0.0 2
0.0

Fi1c. 1. Curved characteristics behind a strong blast wave for
n=3, y=5/3.
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lation, it is found that

d Int=G() da, (11)

where,
G(2) = (dIny/df) {[2—2/ (2+n)]
+ly(y—1) (2—24—na) /2(2vi+nya—2) 24}
(12)

The expression d Iny/d# in G(#) is known and given by
Eq. (6). Therefore, G(4) may be reduced to an alge-
braic function involving square roots of second degree
polynomials of # as radicals. This means that Eq.
(11) can be integrated in terms of elementary, albeit
transcendental, functions. The results are

Inf=K,+In | Asft/ (1— Asft) | &= (m/12)

Xsin{[I/ (457 —a) ~k]/ (B2—D)'2},  (13)

where,
k=A7— (v+ D) [y 2+0) T,
1= 45722457 (v+ 1) [y (2+0) I +4ALy (2+1) T,
=—A7[(v—1)/2]" (14)

Equation (13) and the parametric expression for
(7, 1, 4) given by Eq. (9) form the closed form para-
metric solutions for the two families of (#d4-a) char-
acteristics in the dimensionless 7 plane. The constant
K, in Eq. (13) must be evaluated for each character-
istic from a set of known values of (7, i, #).

Figure 1 displays a typical set of solution curves ex-
pressing the dimensionless time ¢ as functions of the
dimensionless distance 7 for #=23 and y=4§. The termi-
nating curve A is the path of the front of the blast wave.
Behind A, there are three families of characteristics:
(1) The solid curves are the (#) characteristics or
particle lines; (2) the dashed curves are the (#+a)
characteristics; and (3) the dot-dashed curves are the
(u—a) characteristics.
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Burgers’ model equation of turbulence is studied for the case when the driving force is periodic. Analytical
solution is obtained for the inviscid flow and numerical integration is performed for the viscous flow.

As is known, the extreme complexity of the equa-
tions governing incompressible fluid flow has led to the
extensive use of model equations to examine certain
characteristics of the processes involved in turbulence.
One most useful such model equation is due to Burgers.!
The proposed forced model equation? is

S 4u—=y— 4F. (1)
X X

This equation can be thought of as a model for many
physical problems. For instance, it could be said to be
somewhat analogous to a problem of wind forcing the
buildup of waterwaves where the wind drag is the func-
tion F. The model is written here with a forcing term F.
This equation has many of the properties of real fluid
flow although, of course, it is a one-dimensional model,
lacks a pressure term, and has no associated equation
of continuity. The solutions do have the property that
the nonlinear transfer term, » du/dx, conserves energy.
It is known that the solutions of the equation, at least
for a decaying process (where F=0), behave as follows.
Any large, initial velocity function quickly forms a
system of waves with shock-like structure, the dissipa-
tion being concentrated primarily in the thin shock
region. The thickness of the shock region is known, at
least in simple examples, to be of order,?

§=(2/R’) In2xR’ (2)

thus, approximately inversely proportional to the
fluctuation Reynolds number.

We investigate the question of whether or not 5 is
altered by the forcing function F. We restrict to forcing
functions those F which are sinusoidal, although the
remarks presented here are readily extended to other
forces. Furthermore, we shall be interested in steady-
state solutions of the nonlinear equation (1). Thus,
suppose

F=—A4 sin¢, A>0, 3)
with
t=kx—wl.

We look for a solution of the form
u(x, ) =£(£). (4)
We can find analytic solutions of this form for the sim-

plified inviscid problem, »=0 in Eq. (1). Substituting
Egs. (3) and (4) in Eq. (1) and solving we find

fe=ctc(acost+K)12,  a=24/kd, (5)
where ¢, the speed of the moving force, is given by
c=uw/k. (6)

The constant K remains to be determined. It is easily
shown that for a force of the type (3) the integral of
the velocity over one period of the wave must vanish.
This condition can be used to determine the choice of
sign and of K in (5). The restriction on the integral
of u leads to the solution of the following transcendental
equation for the value of K:

2l o N 2r
/o (1+Ecos£) dt= = . o

This equation has a real root if
a(=24/ke) <n*/8. (8)

The solution is #=f_. Thus, for a force small enough so
that (8) is satisfied, the velocity field is a continuous
function. Derivatives of the velocity are small so that
the dissipation function analogous to ®, is small.

For values of the force larger than (8) there is a
discontinuous solution to the inviscid form of Eq. (1).
For such larger values of force, the solution becomes

u=c-—c(2a)”2cos§, _g<E<r—t (9

and periodic outside this range, where using the prop-

erty that
2T
/ u dt=0
0

we have



