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The absorption coefficient for ruby-laser photons in laser-produced hydrogen plasmas is cal-
culated for temperatures up to 5x10%°K using second-order perturbation theory. The calcula-
tions include inverse bremsstrahlung in the field of ions and excited neutral atoms and photo-
ionization. The results are compared to the existing data in literature, which cover the tem-

perature range only below 10 000 °K.

I. INTRODUCTION

The purpose of this paper is to calculate the photon-
absorption coefficient in a laser-produced hydrogen
plasma in which electron temperatures can reach
several hundred thousand degrees and densities may
be as high as 10'° cm™®. This work is primarily
motivated by the discrepancy between measured and
calculated absorption coefficients. Litvak and
Edwards® found that the measured absorption coef-
ficients were two orders of magnitude larger than
the calculated values. Their calculations included
inverse bremsstrahlung in the field of ions and
photoionization with corrections resulting from
stimulated emission. The Saha equation was used to
estimate the densities of neutrals in excited levels
in calculating the absorption coefficient due to photo-
ionization. Similar large absorptions have also been
observed by others in laser air breakdown experi-
ments.? 3 The discrepancy indicates that either an
absorption mechanism other than the above is re-
sponsible for the absorption of photons, or the use
of the Saha equation in evaluating the contribution of
photoionization is questionable.

Photons can be absorbed in partially ionized gases
through any of the following mechanisms: (i) bound-
bound transitions (resonance or line absorption),
(ii) bound-free transitions (photodetachment of
negative ions and photoionization of neutral atoms),
or (iii) free-free transitions (inverse bremsstrah-
lung of free electrons in the fields of ions and neu-
tral atoms). The relative importance of these mech-
anisms depends on electron temperature, radiation
frequency, and density of electrons, ions, and neu-
tral atoms. In this paper, we consider only bound-
free and free-free absorption mechanisms because
line absorption does not occur at ruby-laser fre-
quency (X=6943 A)in hydrogen plasma. In addition,
we omit consideration of photodetachment of negative
ions in bound-free absorption, since the density of
H" ions is negligible in pure hydrogen plasmas,
especially at high temperatures.* The paper, then,
will deal with the following absorption mechanisms:
(i) inverse bremsstrahlung of free electrons in the
field of ions, (ii) photoionization, and (iii) inverse
bremsstrahlung of free electrons in the field of
neutrals. The contribution of the first mechanism
will be small, since the free-free absorption of
electrons in the field of ions has been shown to be
two orders of magnitude smaller than the values
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observed by Litvak and Edwards.! The second mech-
anism, photoionization, will be of major signifi-
cance. Although ruby-laser photons (fiw=1.79 eV)
cannot ionize hydrogen atoms at ground level, the
absorption caused by photoionization may be a
dominant factor at high temperatures due to the
photoionization of excited levels. The absorption
contributed by these two mechanisms, inverse
bremsstrahlung in the presence of ions and photo-
ionization, will be included in our calculations using
conventional expressions .58

The importance of the third mechanism, free-free
absorption in the field of neutral hydrogen atoms,
has long been recognized in astrophysics. Numerous
calculations of the absorption coefficients for this
process have been reported.” 2 In Fig. 1, we plot
the values of the absorption coefficients at ruby-
laser frequency as functions of temperature using
the data in the above references. The differences
between these curves are due to approximations in
the derivations. These calculations have been re-
stricted to temperatures below 10000 °K, and con-
sequently only atoms in ground state have been con-
sidered. In laser-produced plasmas the tempera-
tures are much higher, and therefore the free-free
absorption of electrons in the field of excited atoms
has to be included. The results of extending the
calculation of the free-free absorption coefficient
in the field of neutral hydrogen atoms to high tem-
peratures are presented graphically in Fig. 1. In
these calculations, we have used second-order
perturbation theory where the interaction of elec-
trons with radiation and the Coulomb interaction
between electrons and atoms are treated as pertur-
bation. This analysis is equivalent to treating elec-
tron-atom collisions by the first Born approxima-
tion. We are aware that this calculation is crude
when compared with the method of phase shifts, %12
This is also apparent from the comparison of the
curves in Fig. 1 at low temperatures. However,
since our calculations include the free-free absorp-
tion of electrons in the field of excited atoms as well
as those in ground state, the use of more precise
methods would be prohibitively complicated. Fur-
thermore, uncertainties in measured values, due
largely to spatial inhomogeneities and lack of
equilibrium, do not warrant a more precise calcu-
lation for laser-produced plasmas at this time.

The discrepancy between the measured and calcu-
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FIG. 1. Free-free absorption coef~
ficient of electrons in the field of
hydrogen ions and neutral atoms as
functions of temperature for ruby-
laser radiation (A=6943 &, hv=1.79
eV).
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lated values is much larger than the possible error
due to the use of the Born approximation.

II. FORMULATION OF THE PROBLEM (INVERSE
BREMSSTRAHLUNG OF FREE ELECTRONS IN THE FIELD OF
NEUTRAL ATOMS IN GROUND AND EXCITED STATES)

We consider a system which consists of neutral
atoms and free electrons in the presence of a radia-
tion field. Using detailed balance, the photon ab-
sorption coefficient {(i.e., absorption per unit length)
can be expressed as

a(h’w,e)zlz’TczS(ﬁw,B)(e"“’/e—1), 1)

where 8 =kT is the electron temperature in energy
units, and S(%w, 6) is the intensity of unpolarized
radiation. S(#w,9) is defined as the energy radiated
in all directions and polarizations per unit time and
per unit volume of the gas in a unit energy interval
about #Zw, w being the frequency of the radiation.

In order to calculate S(%w, §) with perturbation
theory, we define the unperturbed system as an in-
cident electron, a scattering medium made of
neutral atoms, and a radiation field with no inter-
action between the three. The momenta of the in-
cident electron in the initial and final states are
denoted by 7k, and #k,. The corresponding energies
are E; and E;. The wave function of the electron will
be normalized to 1 electron/unit volume. The initial
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and final states of the scattering medium are char-
acterized by the set of quantum numbers u, and p,,
where p in general includes a complete description
of an energy eigenstate with energy §. The pertur-
bation causing a transition from the initial state

(k;, 1,) to the final state (k,, u,) with the emission of
a photon #w (momentum 7%, direction of polariza-
tion €) consists of interaction of all the electrons
(incident and atomic) with the radiation field, and
the Coulumb interaction V between the incident elec-
tron and the scattering atoms. The intensity S can
be expressed as

S(fw, 0) =N, [~ dEM,(E)(hw, B,), (@)

where N, is the electron density in the system,
M,(E,) is the energy distribution of the electrons,
and

(7w, E,) = [" dE, [ dQ(&,) [ aa(®)
x 2

P Pu{vuZ}27rwp,lK|26(8i+A—8f), 3
et

where A is the energy given to the scattering
medium,

A:E{—Ef—ﬁw

and p, d2(K,) d(k) d(#w) is the density of final states
for the electron and photon. For a nonrelativistic
electron p, is given by

p; = [(Fw)PPmc?/2m)e(ic) k,.
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FIG. 2. The variation of g4y (cf. Eq. (35a)] as a function of
photon energy at various temperatures.

The summation on ¢ refers to the directions of po-
larization. F; is the probability of finding the scat-
tering medium in the state |u,).

In (3), K denotes the sum of the matrix elements of
the perturbation for the transitions from (k,, u,) to
(K;, ;) through an intermediate state. It can be
written as K=K +K,, where K, corresponds to
transitions involving the interaction of the incident
electron with the radiation, and K, corresponds to
those involving the interaction of the atomic elec-
trons with the radiation. Thus, K, refers to the
bremsstrahlung of the electron in the static field of
the atoms and X, to the induced dipole radiation due
to the polarizability of the atom. In this paper we
consider only the former and replace K with K.

Using standard techniques we obtain the following
expression

K, =(@neh/m)@n/fw) 26 (| A| 1), (4)
where
G= m-i.g _—r———
E, - lw~={r%/2m)k, - «!?
. iE,E i
E, 7w = (0 /2m) [k, + k12’ ®)
A=ToA

=

Ay =gt T 1 (1 - ¥t (6)
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and
§ =k, -k, -%. )

The function A is essentially the Fourier transform
of the Coulomb interaction V. N is the number of
atoms which have Z electrons. T, and T, are the
positions of the " nucleus and its st® electron,
respectively. For nonrelativistic electrons we re-
place @' in (7) by

6=E¢ _Efs (8)
since k is negligible when compared with ¢ as we see
from (x/q)S(2E,/mc?)'/2 when 4=0.% Also, by
approximating the denominator in (5) with - 7w and
Tiw, we simplify G to G=~ (5 +€/#w). Substituting
K, from (4) into (3) and performing the summation
over the final states using the Fourier representa-
tion for the delta function, we obtain

16a® 7 - Tmax

Xfmz;f-r% eiAt/ﬁQ(t’q), (9)

where i
Quin=F; =Rsy Qe =Fk; TR, (10)
Q(t,q9) =§ P, jL‘, (B A0, 1y, (11a)
Aty =@ tHtINg eifistin, (11b)

and ¢ is the fine structure constant. H® in the ex-
pression of A,(f) is the Hamiltonian of the scattering
medium. A, represents A (0).

Equation (9) gives the spectrum of the bremsstrah-
lung of the incident electron moving in any arbitrary
medium. The problem is simplified by separating
I(fiw,E;) into I=1,+1, .. This is done by breaking
the summation in (11) into @, +Q,,, where,

Q=21P, 20,1 150,01 m)), (12)
Qint =§i Pu‘ g“‘“’l A}Al(t)l u£>, (13)

I, gives the radiation intensity from those electrons
scattered by a single atom (direct scattering, or
binary collision). I, , represents that part of radia-
tion intensity due to scattering by several atoms.
Thus it gives the interference effect. We observe
from the definition of A,(2) in (11) that @,,, does not
depend on time in the case of a dynamically uncor-
related medium such as an ideal gas where HS can
be written as the sum of the Hamilonians of indi-
vidual atoms. Therefore, the integration over time
in (9) gives a delta function which explicitly requires
A=E, ~fiw=-E,=0. This implies that [, , vanishes
when there is a net energy transfer to the scattering
medium. In the present analysis, we ignore I,,,
because its contribution is expected to be small in
dilute gases.
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FIG. 3. The variation of gy, [cf. Eq. (35b)] as a function of
photon energy at various temperatures.

This analysis will now be applied to a monatomic
ideal gas for which Eq. (12) takes the following
form:

Q=2 M@ 4G (@exp 5 (B, ~E, )1

XZPg(f, g iR TR |§> , (14)
]
where
Gunld) = e 153 (1 = 1) @) 12, (15)

and N(a) is the number density of the atoms in the
initial state |a@) of energy E, which describes the
internal motion of the atom. |a’) and E,, are the
final state and energy of the atom, respect1ve1y R
is the position of the center of mass of a represen-
tative atom, and 1K) is an eigenstate of the center-
of-mass motion. Pg is the probability of finding the
atom in | . R(#) is defined by

R(#)=exp (— ﬁHR’> Rexp(ﬁHka ,

where H, = - (%2/2M)V§ and M is the atomic mass.
Note that in (14) the center of mass of the atom is

assumed to coincide with the nucleus. For a gas in
thermal equilibrium, the particle momenta P=nK
are distributed according to the Boltzmann distri-

bution

(27M0OY8/2 exp[~p?/2M0]d3P.
We obtain from (9) and (14)
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10 ,5) =13 f l N & EN(a)G”(y)( )
SN
where

szE;/mg, y=4/ku

As a result of the large mass ratio M/m, the quan-
tity x is usually a large number. Therefore, we can
approximate the exponential factor in (16) by &[(a’/
2yE,) - (my/2M)]. The last term, (my/2M) in the
argument of this delta function accounts for the re-
coil energy of the gas atom which is not available to
photons. Thus, (16) includes the effect of finite atom
mass. However, for the sake of simplicity, the gas
atoms will be assumed to be infinitely heavy for the
remainder of the paper. Then, (16) becomes

I(riw,E,):gln,u(ﬁw,E,),

where

(16)

=Ea+A_Ea' .

(17a)

L, (fw, 13)_16"3 7 N( )f (dg/q)G ,(q). (17b)

In (17b) the limits, whlph are given by (10), are
evaluated for E,=E; ~fw + E, — E ., and thus depend
on a and a¢’. We observe that the radiation intensity,
hence the absorption, can be expressed in terms of
a single quantity G,..(q) which contains all the atomic
parameters. It can be related to the differential
scattering cross section per unit solid angle for
electron-atom collisions in which the atomic state
changes from la) to la):

a, (E,,u)_ag[(E +E, ~E.)/E\I" 307G (0),

where the relation between u and ¢ is given by
¢ =(2m/R?K2E, +E, -~ E,,~2u[E(E, + E, - E,)]*/?},
(19)

and p is the cosine of the angle of deflection of the
electron. a,=(%2/me?) is the first Bohr radius of
hydrogen atom. Substituting (18) into (17b) we obtain

(18)

E 1/2
=_ a8 i
Ia’n (ﬁ‘-U’El) az N(a) (Ei T Ea — Eal)

max
[ dago (B, ). (202)
min

The absorption coefficient is obtained by substituting
(20a) into (17), (2), and (1):

aio,0) =22E I pagiersrotive [ az,
0
a) max 3
< (eB) D R g ol )

(20Db)

Equation (20b) is the free-free absorption coefficient
as functional of the differential-scattering (elastic
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FIG. 4. The variation of gy; [cf. Eq. (35c}] as a function of
photon energy at various temperatures.

as well as inelastic) cross sections for electron-
atom collisions. If the latter are known experimen-
tally we can then compute @ numerically. Some of
these cross sections, such as the elastic crcss sec-
tion for atoms in ground state, and some of the ex-
citation cross sections, have been calculated by
various techniques.!* In this paper we compute all
the relevant cross sections using the Born approxi-
mation for the sake of consistency. This requires
the calculation of G,,(¢q) in (18). However, we can
determine I, {#w, E;} in (1), and hence a, directly
without introducing the cross section once G, (q) is
known. Using this procedure we found'® that the con-
tribution to the absorption cross sections of the in-
elastic transitions in (20b) is negligible as compared
to those involving elastic scattering. Therefore, in
the subsequent analysis, we shall focus our attention
on the elastic-scattering events for which E,=E,

In this case, (18) and (19) reduce to

0'a'a(Ei ’ “') = <;247) Ga'a (q)s (21)
= =5 E,(1-up). (22)

Integrating both sides of (21) with respect to L,
changing variable from u to g on the right side, and
using (22) we obtain

0, (v,) =8n(i/aymv,)? fo

Zrn.vi/h

(da/ )G, (a), (23)
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which is the total elastic~scattering cross section
for electron-atom collisions, as a function of initial
electron velocity v,. Differentiating both sides with
respect to v;, we obtain

2mv a2 (v, do,, va)"
) =0 (21 Tag L
Ga'ﬂ( 7 ) 1617(2 @, )(T ’

» in terms of total elastic-scat-

(24)

which expresses G,,
tering cross sectlon

We can now eliminate G,,.(¢) in (17b) using (23) to
obtain

16 N(a)
Lo, E) =506 (5 ) &,
v do,, (v)

xﬁ:: dv'u3(o' () += —-:i-———>, (25)

where v, = (v, +v,)/2 and v, = (v, -v,)/2. Equa-
tion (25) indicates that the intensity of bremsstrah-
lung is not determined by the value of the elastic-
scattering cross section at the incident electron
energy, as might be expected, but it depends on the
variation of the cross section in the velocity region
(Vmin = Vmax) - If 0, (v) varies slowly up to the inci-
dent energy, we can approximately evaluate the
integral in (25) as

L0, B) =22 a N(a)o,, (0)c<_12>8/2

fiw Biw\1/2
x{9_hkw _hw
(2-5) (-5) "

where o, is the cross section of the atom for elas-
tic scattering of electrons in the limit of v—0.
Equation (26) is identical to that obtained by Akcasu
and Wald® and Firsov and Chibisov!® using the par-
tial wave method, and assuming that the atom is in
ground state. In this particular case, the absorption
coefficient can be obtained analytically by substi-
tuting (26) into (1) through the use of (2), as it was
shown in Ref. 9,6

¢’ 2
oo =gz NNy <1Tm9>

X e-hw/ze(ehw/e - 1)’

(26)

1721

L) s (3)

27

where Kz(x) is the modified Bessel function of the
second kind. Since the cross sections 0,,,(v) are
decreasing functions of v, the expression in (27),
which is obtained replacing o,.,(v) by 0,,(0) in (25),
yields an upper estimate for the absorptlon coef-
ficient @, . We plotted (27) in Fig. 1 (curve D) as a
function of temperature for %Zw=1.79 eV (ruby laser
frequency) using ¢,, (0) =607a2, the limit of the
elastic-scattering cross section for hydrogen in
ground state!* " as v —0. (In the Born approxima-
tion!® o, (0) =4ma2.) Although (27) provides a simple
method to compute free-free absorption coefficient
in the field of neutral atoms in excited, as well as
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in ground state, it is valid only at low electron tem-

peratures. At high temperatures greater than 10*°K,

the variation of the elastic-scattering cross section
has to be taken into account,

III. ABSORPTION COEFFICIENT AT HIGH
TEMPERATURES FOR HYDROGEN

A. Inverse Bremsstrahlung

The absorption coefficient due to free-free transi-
tions of electrons in the field of hydrogen atoms in
the nth excited level can be obtained by substituting
(17) into (1) and (2):

a,, (fiw,0) = NN( (et /o - f dE,eB1/8

where

OKTAY, AND AKCASU

X f " (aq/ 9)G (a0, (28)
9min
where
Conl) = 2, , 1/ Im? 11 = ¥ i nim)l2, (29)
2 2.3
C, _ 32 r*r’c®ad (30)

T 32 (nom )8 /23’

and N(r) is the number density of the H atoms in the
n'" energy levels. Furthermore, inlm) in (29) de-
notes the wave functions of the H atom in the absence
of spins. The matrix elements indicated in (29) seem
to have been computed explicitly in the literature!®s 1°
only for n=1 and n’=1, 2, 3, 4. We evaluated®

G, forn=1,23, »' _1 2,3, using the method in-
troduced by McCoyd, Milford, and Wahl.?® We pre-
sent only G,,, G,,, and G,,, which we use in the
subsequent calculations, as

1

G, lg)= <1 -m)z, x=(ga,/2P, (31)
2 2 10 5
Gzz(q)=2x<1 tx A+xP QAR +x)6> » ¥=q"a;
(32)
9 9 3 83 256
Gss(q)=x<(1 B (R A R A (R (o
260 . 140 140
* T+xp @+a7 (1 +x)8> =9¢%as/4. (33)

Substituting (31), (32), and (33) into (28) we obtain

m(w)=Cyle"®/® = 1)liwg, (iw,6)N(n)Ne, (34)

(35a)

1 1+d) 6d2+9d +1 6d2+9d, +1] (1. 0.
gu(h‘w,@)—Z[ dx[1n< T 6 +4,) ] ’

1+d/ 61 +d.)®

1+6_

1/ 1+b 6b% +24p° +46b% +44b +13
9)== & = = = -
Zpn (P, 0) 4[ dx [Zln( >+ AL

_ 603 +24b3 +460% +44b, +13 o nw/ox  (35b)
3(1+b.5 ’

1 [~ 145\, 545° +333S° +1021S* +1450S® +1056S? +6455_+177
Zos (7w, 9) = dx(9In( 52

6(1 +S.)

(35¢)

54SG +33355 +10215% + 145083 + 105652 + 64585, +1'I'7:| C(hw/8)x
?

6(1 +S )7

and

b, =@matiw/B?)[x* 2 £ (x - 1)1/, 4,=1b,, S,=3b,.

Figures 2—4 show the results of the numerical
computations for g,,, £, and g,, as functions of 7w
and T.

The total free-free absorption coefficient for hydro-

gen atoms in all excited states is

(35d)

a®¥(fiw, 6) =C (e"*/® = l)h’wNeZ") gonFiw, O)N(n).
(36)

The values of g, for n>3 are determined as fol-
lows: The absorption coefficient per neutral atom
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FIG. 6. Absolute absorption coefficient due to photoioniza-
tion of hydrogen atoms from levels » 23 with ruby-laser ra-
radiation (A\=6943 &, Av=1.79 eV) as a function of T, for
various values of #n,.

due to the free-free absorption of electrons in the
field of an excited atom approaches the absorption
coefficient per ion due to the free-free transition of
electrons in the field of ions, as n— «. The latter
is given by®* ¢

aBl(fiw,0)  64m c*, E3/2 hw /o
N, = 3@nT ) g N - et ),
(37)

where N, is the number density of ions, w is the
frequency of radiation, E is the ionization potential
of a hydrogen atom, and g, is the free-free Gaunt
factor depending on temperature and the absorption
radiation frequency which is already calculated
elsewhere.?! The variation of (a?//N,N,) as a func-
tion of the temperature is shown in Fig. 1 (curve G)
for 7w =1.79 eV. The limit of g,, as n—~ « can be
obtained by equating @, (7w)/N@®) in (34) to a®(7w)/
N, in (37) for large n. The values of g, .. are obtained
for temperatures between 9x10% and 2.2X105°K
(these are typical temperatures attained in laser-
produced hydrogen plasmas such as reported by
Litvak and Edwards'), and the variation of g,, as a
function » is plotted as 1/#2 in Fig. 5 by reading
Z11s &2 and gy, from Figs. 2—4. The values of g,,

5475

for n>3 can now be obtained by interpolation on
these curves which connected through the values of
8115 822y 8a3>» and g,...

To estimate the population N(x) of the excited atoms
in (36) we assume local thermal equilibrium for the
internal states of atoms:

NN, .
aB¥(fw, 6) = Cyliw(eh*/? - 1)—;—“2 2 g, e Fn,

(38)
where Z is the partition function, viz.,
erg); 252 ¢ En /6

and N, is the density of the neutral H atoms. The
summation on # is truncated at n* due to the lower-
ing of the ionization potential of a free atom when it
is in a plasma. An excited atom in a level above n*
must be treated as an ion and a free electron even
though the level may be below the ionization potential
of an unperturbed atom. Drawin and Felenbok?? have
reviewed several theories for the determination of
n* and the lowering of the ionization AE which yield
similar results, viz.,

¥ < 1 2] >1 /2
aogﬂezNe !

where n* is the largest integer satisfying this in-
equality. It is interesting to note that the free-free
absorption coefficient per electron per atom becomes
a function of electron density as a result of the
dependence of #* on N, in (40). The values of (a®¥/
NeNa) at ruby-laser frequency are plotted in Fig. 1
as functions of the electron temperatures using (38),
(39), (40) and the graphs in Figs. 2-—5.

(39)

(40)

B. Photoionization

In addition to the absorption due to the inverse
bremsstrahlung of electrons in the field of neutral
atoms as developed above, the photoionization of
the neutral atoms in the energy level E, and its in-
verse will also contribute to the absorption of pho-
tons. The cross section for this absorption mecha-
nism has been calculated elsewhere® for hydrogen
atoms as

64a E\?3

o =305 "% (‘ﬁa) "
where g, is the Gaunt factor for free-bound transi-
tions and available in tabulated form.?! (Under pres-
ent conditions, g,, is approximately unity.) The
photoionization absorption coefficient, a¥’, is ob~
tained by multiplying o, by the density of atoms in
the »,, state and by the induced emission correction
term:

(41)

64a EN? N(n)
Pr __ 2§ ——
&= T (ﬁw) = n

NN ® N2z :[
- Z pEw /8, hw/e]
X |:1 % <Z1T'm6> 3 efx/og (42)
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FIG. 7. Induced-emission correction to photoionization
absorption coefficient of hydrogen atom.

(p=3 for #w=1.79 eV), where the expression in
the bracket, the correction term, is derived by
starting from the quantum-mechanical probabilities
for absorption and for induced emission, and by as-
suming that the velocity distributions of electrons,
ions, and neutral atoms are Maxwellian. When the
Saha equation is applicable, this term reduces to
the more familiar expression (1 — e ?“/f),

The expression for a®’ can be written as o®’ =K2
- KIE, where K4 is the absolute absorption coeffi-
cient for photoionization and KIF is the correcting
term for induced emission. The values of K#/N,
and K!£/N_N, are plotted in Figs. 6 and 7 as func-
tions of temperature at ruby-laser frequency for

various values of electron density.

To show the n* dependence, hence N, dependence of
K2/N,, we write

K4 1 128c E\?3
LT P _ - =
7 ~Cz§" exp(— En/9), C=37 Taz (h’w) .

a

(43)

The summation in this expression approaches a con-
stant value rapidly with ». Therefore, for »*>5 or
so, the expression for K4/N, varies as 1/Z. Since
the value of Z is a strong function of #*, K4/N,_ is
affected significantly by the choice of #*.
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IV. CONCLUSIONS

The coefficients are calculated for the absorption of
ruby-laser radiation in laser-produced hydrogen
plasmas. The results are plotted as a®’/NN,, a3¥/
NN, K4/N,, and K'E/N N, vs T. If the plasma
parameters (N,, N,, and T) are known, the absorp-
tion of laser radiation in these plasmas can be easily
predicted using these results.

The main uncertainty in these calculations is in the
choice of the value of #n* (or the partition function).
As has been discussed by Jackson and Klein?® and
Cooper,?* there is no exact method by which the
value of partition function of atoms in plasmas can
be determined either experimentally or theoreti-
cally. We have used only one of the plausible meth-
ods to obtain approximate results for the absorption
coefficients.

Since the expression for K4/N, is Z! dependent, as
shown in Eq. (43), we suggest that the value of the
partition function may be obtained experimentally if
the photoionization absorption coefficient and the
related plasma parameters can be measured ac-
curately. This type of measurement should make it
possible to test the existing theories on the calcula-
tions of n*.

The results of the absorption-coefficient calculations
are given in terms of per particle densities. There-
fore, these results should be applicable to plasmas
in which the Saha equation may or may not be appli-
cable to relate electron, ion, and neutron atom den-
sities. In the case when the Saha equation is not
applicable, neutral atom densities should be deter-
mined independently of electron densities.

The results of this paper were adopted recently®® for
the adsorption of He-Ne laser radiation of Li plas-
mas and have been compared with the experimental
results. The neutral density was estimated from the
thickness of the Li wire, the measured electron
density, and the plasma size after explosion using
particle conservation. The experimental and calcu-
lated values of absorption coefficients agree within
a factor of 5.

We have compared the experimental values of ab-
sorption coefficients obtained by Litvak and Ed-
wards! with those calculated!® using the data pro-
duced in this paper for hydrogen plasmas, and the
two values differ at most by a factor of about 10. In
these calculations also, the neutral atom densities
were estimated using particle conservation before
and after formation of the plasma in hydrogen by the
laser pulse.

Although the method of estimating the neutral-atom
densities on the basis of particle conservation
rather than using the Saha relation and the interpre-
tation of the observed large absorption coefficients
in terms of neutral atoms may be questionable (the
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agreements reported in the above references may be
fortuitous), we think that the formulas developed and
the curves presented in this paper will be useful in
general in the study of the absorption coefficient and
its frequency dependence in hydrogen plasmas. This
is the main objective of the paper.
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