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The reflection of strong point-source blast waves is studied using the continuum concept of flow
of ideal gases. Methods of obtaining the upper and lower bounds as well as a Taylor series expansion
of the position of the reflected shock is considered. The procedure of studying the flow variables near

the reflected shock is also described.

I. INTRODUCTION

HE purpose of this investigation is to study

the reflection of strong, point-source blast waves.
This study was motivated by the recent interests in
underground nuclear explosions and by the lab-
oratory experiments of exploding wires in cylindrical
tubes where the reflections of blast waves were
observed by means of smear camera pictures.

The propagation of a strong, point-source blast
wave in an ideal gas medium is known to be self-
similar. This property was first observed by Taylor'
in 1941. Closed form solutions describing the flow
variables for such a blast wave in n dimensions have
been obtained independently by Bethe, et al.,” and
Sedov.’ The concept of self-similarity, however, may
no longer be applied to the propagation of the re-
flection of blast waves. Due to the nonisentropic
flow variables ahead of and behind the reflected
shock, there does not exist an obvious or convenient
procedure to reduce the number of independent
variables. The problem of blast wave reflection is
further complicated by its associated initial and
boundary conditions. Such a nonlinear problem can-
not be treated by means of the conventional methods
of considering the changes of the flow variables
across a shock wave alone, since the description
of the position, speed, and acceleration of the re-
flected shock is also of prime importance.

In this paper, methods of obtaining the upper and
lower bounds of the position B(f) of the reflected
shock and the flow variables near it are introduced.
A series expansion of the position of the reflected
shock in powers of the elapsed time is also considered.

1 G. I. Taylor, Report of Civil Defence Research Com-
mittee of the Ministry of Home Security, RC-210, 12 (1941);
also, Proc. Roy. Soc. (London) A201, 159 (1950).

2 H. A, Bethe, K. Fuchs, J. von Neumann, R. Peierls,
and W. G. Penny; U. S. Atomic Energy Commission Report
AECD 2860, (1944)

3L I Sedov, Prikl. Math. Mekh. 10, 241 (1946); also,
Similarity and Dimensional Methods in Mechanics (Academic
Press Inc., New York, 1959).

II. SELF-SIMILAR SOLUTION OF A POINT-SOURCE
BLAST WAVE

Blast waves are produced in a gas medium due to
the sudden release of a large amount of energy in
a relatively small region of space. The propagation
of a strong, point source, planar (n = 1), cylindrical
(n = 2), or spherical (n = 3) blast wave in an ideal
gas medium may be described in terms of a single
similarity parameter

y =r/R, D

where r is the radial distance from the point of
explosion, and

R — K"(Eo/p0)1/(2+n)t2/(2+n) (2)

is the shock radius measured from the point of
explosion, E, is the energy released per unit area for
a planar wave, per unit length for a cylindrical wave,
and the total energy released for a spherical wave,
po is the initial density in the gas medium, ¢ is the
elapsed time, and K, is a constant yet to be
determined.

We follow Ref. 3 and express the flow variables
behind the blast wave in dimensionless forms as
follows:

p=pl/o®,  B=p/pe, )
where v, is the flow velocity, p, is the fluid pressure,
and p, is the fluid density behind the blast wave. The

solution of the flow variables may be expressed in
the following closed form:

4 = w,t/r,

f =w/u = Any,
g =p/p" = (4@)""[4:;1 — a/4A)]"
14, — A@)/(A, — AN,
k= p/p
[As(vt/ Az — DI[As(1 — 4/ A"
14, — A@)/(4, — AP, @)

I
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where

y =1/R = (A@) " [4:(vd/ 4, — DI"
‘[Ax(l - Arﬁ)/(Ai - Aﬁ)]A“"AQ’ (5)

and
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The flow velocity «/, fluid pressure p’, and fluid
density p" just behind the blast wave are:

)

¥

-2

u =

, 1
U* »p =zj1po,

™

where U = DR/Dt is the speed of propagation of the
self-similar blast wave, and the symbol D/Dt de-
notes differentiation with respect to time following
the blast wave.

The constant K, in Eg. (2) may be evaluated
from the energy integral

b3
n-1f 2 2y P_l)
f; Ty (ul + =1 o dr 8)

2
7+1U’

Eoz

where r, = 1, =, 2r for n = 1, 2, 3, respectively.

The expressions §, g, h given in Egs. (4) may be
regarded as functions of the similarity parameter y
which has a convenient range of 0 < y < 1.

III. GOVERNING EQUATIONS FOR THE PROPAGA-
TION OF A VARIABLE-STRENGTH SHOCK
DISCONTINUITY

The jump conditio_n across a shock discontinuity
moving with speed U in an ideal gas may be writ-
ten as:

(uy — U)(un - U)
- Y — 1 o Te 2
R T U

where 1, u;; are the flow velocities just ahead of and
behind the shock discontinuity, a3 = ~yp:/p: is the

ot 9
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square of the sonic velocity just ahead of the shock
wave, and v is the adiabatic index. Equation (9) may
be applied to the planar, cylindrical, or spherical
propagations of shock waves. Denoting the shoek
position in these cases by R(t) and the differentiation
operator with respect to time along the shock
discontinuity by D/Dt, Eq. (9) may be written as

U = DR/Dt
= —3y — Dur + v + Dy + 3o

where

(10)

¢ = [y + D —ua) 4+ 4a7f. (D

Before proceeding to discuss the problem of blast
wave reflection and its upper and lower bounds, it is
appropriate here to derive an expression describing
the acceleration of a shock discontinuity separating
two nonisentropie, unsteady flow regions described
by the flow variables 41, P1, p1, and Us, P2, p2, TeSpec-
tively. Later, this result will be applied to the
determination of the leading terms of a Taylor
series expansion for the position of the reflected
shock.

Consider a flow variable G(r, {) either just ahead
of or just behind the shock discontinuity. Its varia-
tion along the shock can be expressed as follows:

dGQ(r, t) = (0G/at) dt + (3G/ar) dr (12)
where dr = dR = U dt. Therefore, we have
DG/Dt = 3G/dt + U 8G/ar (13)

where the expression is understood to be evaluated at
r= R and at { = (). Equation (13) indicates that
the differentiation operator D/Dt along the shock
discontinuity may be expressed as 3/0t + U a/or.
Differentiating Eq. (10) along the shock dis-
continuity with respect to time and utilizing the
above operator, we obtain an expression describing
the acceleration of the shock discontinuity as
follows:
DR _ [_7 =3 by Dl — un>]
D 4 8o

fo =9 y4+1_ Gt D — un)]
(6& +U r)ul - [ 4 + 8o
(i}

3 1(a 9_)
'(at+Uar>“2ia<at+Dar““

Equations (9) or (10) may be applied to the
problem of blast wave reflection.” Consider a strong,
point-source blast wave impinging against a rigid

iQ’ <@

(14)

4 The sign in front of 4o must be chosen to be negative for
blast wave reflection to Insure negative propagation speeds.
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boundary. This rigid boundary is assumed to be
planar, cylindrical, or spherical, depending upon
the type of the blast wave considered. The kinema-
tics and notations used for such a blast wave reflec-
tion may best be illustrated in an r—¢ diagram as
shown in Fig. 1. To solve either one of these equa-
tions, it is necessary to couple it with the flow
variables in regions ahead of and behind the reflected
shock subjected to the given initial and boundary
conditions. .
The flow variables u,p,, p, (and therefore a,);in
“region 1"’ ahead of the reflected shock are given by
the self-similar solution described in Sec. IT. Writing
out specifically for the reflected shock, we have

2

2 9
=11 1 =TT oU )
W= Ufy), » TEiP g(y) a5
_y+1
P = ’Y _ .I. Poh(y),

wherey = r/R, R, U refer to the primary blast wave,
as if it were not reflected by the rigid boundary
(see Fig. 1). Therefore,

oo WP 2 = DUG)

p1 v + ’hly)

The differential equations governing the flow

variables wuy, p., ps, and a, in “region 2" behind the
reflected shock are

(16)

9pz | Ipshy

Ipalhy 1y P _
ot ar + @ 1 r 0,

6u2 auz ]. @_p_z_
By 4 oy, & LD 17
at 2 or + p2 OF 0, (17)

9 (2) 4o, 2 () -
at(,,; gy =0

where a = vyp,/p.. The function u, must satisfy the
boundary condition of

+ u.

(18)

where the subscript 0 denotes evaluation at the
rigid boundary of r = r,.

In addition, the following conditions (internal
boundary conditions) along the reflected shock must
be satisfied

U20=0

(uI) pI) P1, a%) = (uly pl; P1y af) r=FR 3

t=t(E)

(19)

(rr, Py prry @11) = (o, P2y P2y 3)| -7 _ -
t=t(R)

Finally, the initial condition of the reflected shock
must be satisfied. This means that at the instant
the reflection originates, { = ¢,, we have
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Fra. 1. Notations used for the reflection of
blast waves.
r=1, = Ro = Rg. (20)
From Eq. (2), this implies that

=t = (pra"™"/K3"E,)}. (21)

IV. UPPER BOUND OF THE REFLECTED SHOCK

The main purpose of this section is to determine a
criterion of establishing an upper bound of the posi-
tion R(t) of the reflected shock. As it can be observed
from Egs. (9) or (10),° the coupling of the governing
equation along the reflected shock are through the
flow variables u;, a;, u,; only. If it is assumed that
u;r vanishes everywhere behind the reflected shock,
the integral curve of Eq. (9) or (10) can be obtained
when considered with the description of the flow
variables ahead of the reflected shock given by
Egs. (15) and (16).

Due to the sharp variation of the fluid pressure
ahead of the reflected shock (behind the blast wave),
it is reasonable to expect that the resultant low with
the assumption of u;; = 0 will introduce a sharp rate
of change of pressure gradient behind the reflected
shock. This means that in all probability, a reverse
flow (u;; < 0) will be induced behind the reflected
shock to counter-balance this effect. This will there-
fore increase the strength of the reflected shock as it
propagates inward causing it to bend in a more
horizontal direction in the r—¢ diagram, (see Fig. 2).

In other words, the assumption of u;; = 0 will
result in a lesser pressure ratio across the reflected
shock, which therefore appears weaker than the
actual shock and travels more slowly. This means
that the integral curve of Eq. (10) for wi;; = 0 will
lie above that of the true curve for shock reflection
in the r~t diagram as depicted in Fig. 2. Therefore,
the integral curve for the estimated reflected shock
by assuming u;; = 0 will form an upper bound of the

¢ As mentioned previously, the negative sign in front of
30 in Eq. (10) must be used.
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Actual
~~ Reflection

——

Blast Wave

o r

Fie. 2. Figure depicting the various approxi-
mations of the reflected shock. (A) Upper bound,
urnr = 0, (B) Lower bound, d*¢/dy. = 0, (C) Lower
bound, d?p1;1/dys* = 0, (D) Almost “strong” shock,
P11 = Piro.

exact location of the reflected shock in the r—¢ dia-
gram. The above consideration is justified by the
numerical calculations for a planar blast wave
reflection. It should be noted that due to the arbi-
trary assumption of u;; = 0, the flow variables just
behind the reflected shock may not be compatible
with the equations and boundary conditions govern-
ing them. The values of the flow variables obtained
in this section form bounds of the actual values. It is
shown that these bounds do not deviate too much
from the true values.

Consider a given point (R, t) on the reflected shock.
It is readily shown that the shock speed U = DR/Dt
is completely determined by Egs. (10), (15), and
(16), if u; is neglected.

To find the flow variables u;, pr, p;, and a? just
ahead of the reflected shock at (R, t), note the
relation y = R/R, where y is the similarity parameter
forr = R, and R is the shock radius of the blast wave
at time ¢ as if it were not reflected by the rigid bound-

1.0
- Upper Bound
08— \§
N\
06 |-
Lower Bound
(Sl -
04—
0.2 [— Blast Wave
0.0 P N T T B
0.0 0.2 04 06 08 1.0

Yo

F1e. 3. Upper and lower bound integral
curves of the reflected shock forn = 1
and vy = 1.4. Dashed curve is the
gars,bolic approximation of the upper

ound of the reflected shock.
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ary, Fig. 1. Define a new dimensionless variable
yo = R/r, characterizing the location of the position
of the reflected shock. We have

¥ = yo(ro/R). (22)

Thus, for each value of y, (or ) and the corres-
ponding time ¢, the value of the similarity parameter
y may be calculated from Egs. (20) and (2). This
means that the values of the flow variables u;, py, p1,
and a? just ahead of the reflected shock at (&, t) may
be obtained by means of Egs. (15) and (16).

The equation for the propagation of the reflected
shock, Eq. (10), with 4;; = 0 becomes

DR/Dt = —(y — 3w
— 300 + D%l + et (23)
Therefore, the value of DR/Dt may be calculated
for each value of y,. _
To find a neighboring point (%', ¢') on the integral

curve for the upper limit, the following relations
may be applied:

¢ =t+ AR/(DR/Dt), AR =R —R. (24

Following the procedure outlined above, the
entire integral curve of the upper bound of the
reflected shock may be calculated. The starting
point on the integral curve is given by Egs. (20)
and (21).

Such an integral curve for a planar blast wave
reflection with ¥ = 1.4 is obtained and presented in
Fig. 3. The numerical values of u:, p;, p1, and a?
corresponding to this integral curve for the upper
bound are also calculated. These values are plotted
in dimensionless form in Fig. 4.

1.0

08 I~

06 [—

04—

Fiec. 4. Flow variables ahead of the reflected
shock for n = 1 and v = 1.4. The ordinates are:
(A) uI/qu where Ui = 0.556 (Klan/poro)*,
(B) p1/p1o where pro = 0.371 K3E/rq, (C) pr/100
where pro = 6p9, (D) ar?/are* where ajo* = 0.259
K3Es/pero. Solid and dashed curves refer to the
upper and lower bound integral curves of the
reflected shoek, respectively.
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It is seen from Fig. 4 that the pressure gradient is
indeed very large near the wall and decays rapidly
as the reflected shock propagates inward. This effect
was assumed from the onset in the derivation of the
general theory.

The remaining task in this section is to present a
method of calculating the flow variables just behind
the reflected shock for the integral curve of the
upper bound. This may be accomplished by applying
the well-known Rankine-Hugoniot relations which
state that

1 y—=1+ @+ 1)
vy ey v (@)
where £ = (u; — U)/(u;; — U) is the ratio of the
relative flow velocity just ahead of the reflected
shock to the flow velocity just behind it, y=p:/pn
is the ratio of the fluid pressure just ahead of the
reflected shock to the fluid pressure just behind it,
and ¢ = p;/pi; is the ratio of the fluid density just
ahead of the reflected shock to the fluid density
just behind it.

From the assumption of u;; = 0, Eq. (25), and the
definitions of £, 9, ¢, it follows that

o= -tz Y,
8¢ U Ty

) ) (26)
» =_(7+1)(1_JT—U)+(7—1)EJP
" v+ DU -G — D —O)° "

Equations (26) completely determine the values
of the flow properties just behind the upper bound of
the reflected shock in terms of the flow properties
ur, P1, pr and the propagation speed of the reflected
shock U. As mentioned earlier, these calculated
values form bounds of the values of the flow variables
behind the actual reflected shock. In fact, the
calculated values of p;, pr; and the assumed value
of u;; = 0 should be the lower bounds of their actual
values.

For the upper bound of the reflected shock of a
planar blast wave against a rigid boundary with
v = 1.4, the values of py, pi1, a%y, and g, ¢ are cal-
culated. These values are plotted in dimensionless
form along the position of the reflected shock in
Figs. 5-7.

It is seen that the rate of change of the pressure
gradient as well as of » and ¢ decrease rapidly along
the reflected shock. These are the results anticipated
in the general discussion.

V. LOWER BOUND OF THE REFLECTED SHOCK

In the previous section, an upper bound of the
reflected shock was obtained by assuming the flow

1.0
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F16. 5. Flow variables behind the reflected shock
forn = 1andy = 1.4. The ordinates are: (A) u/uro
where Ut = 0.556(K13Eo/poro)‘, (B) p[[/pxq where
Pro = 0.371 K*Eo /7, curves start at 8.0 fory, = 1,
(C) p11/p1o where pyo = 6pq, curves start at 3.5 for
Yo = 1, (D) au’/am’ where ape® = 0.259 K]an/poTo.
Solid and dashed curves refer to the upper and
lower bound integral curves of the reflected shock,
respectively.
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F1a. 6. Variation of the pressure ratio
across the reflected shock corresponding
to the upper and lower bound integral
curves forn = 1 and v = 14.
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Fia. 7. Variation of the density ratio
across the reflected shock corresponding
to the upper and lower bound integral
curvesforn = 1 and v = 1.4,
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velocity behind the reflected shock to vanish. It is
the purpose of this section to present a method which
yields a reasonable lower bound of the same re-
flected shock.

If the assumption of negligible after-flow (u;; = 0)
behind the reflected shock is correct, the pressure
gradient behind it should also be equal to zero. Due

to the large rate of change of the pressure gradient -

ahead of the reflected shock in the vicinity of the
rigid boundary, there will exist correspondingly
a large rate of change of the pressure gradient behind
it in the same neighborhood. This means that the
assumption of negligible after-flow can at most be a
reasonable upper bound of the reflected shock. There
must exist a backward flow w;; behind the reflected
shock in an effort to balance the difference of pressure
prr in the same region.

There appear to be at least four approaches for the
determination of the lower bound of the reflected
shock:

(i} It appears reasonable that a lower bound of the
reflected shock may be obtained if the fluid pressure
pir is assumed to take on the same value as that at
the point of reflection. Due to the fast rate of de-
crease of pressure ahead of the reflected shock,
however, this assumption is almost equivaient to the
assumption of “‘strong’” shock waves as the reflection
propagates inward.

(ii) A more realistic assumption is to consider a
constant pressure behind the reflected shock taken
as the average of the value of the pressure p;; near
the rigid boundary and its value far away from the
rigid boundary. Since at distances far away from
the rigid boundary, the pressure ratio across the
shock is nearly unity,’ it is possible to obtain this
average value (p;) as follows:

<p11> = (e + lim pr)-

Yo

@7

Such an assumption may fit the actual reflected
shock reasonably well, but it bounds the actual
shock from below at far distances away from the
rigid boundary, and from above near the point
where the reflection originates.

(iii) Due to the fast rate of decay of the pressure
gradient ahead of the reflected shock as the shock
propagates inward, the rate of change of this gra-
dient should also be of the same trend behind it.
Thus, a lower bound can be obtained by assuming
the decay rate of the pressure gradient behind the
reflected shock to vanish, i.e.,

¢ Even though the shock becomes sonie, since it penetrates

into regions of increasing sound velocity, 1t becomes progres-
sively faster.
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d’pu/dR® =0 or dpu/dyi =0. (28)

(iv) Although (iii) is a plausible assumption for a
lower bound, a still less generous lower bound may
be deduced. Again, due to the fast decay rate of the
pressure gradient, the pressure ratio % or density
ratio ¢ must increase faster near the rigid boundary
and this rate must decrease as the reflected shock
is propagated inward. The reasonable criterion for
a lower bound is then given by a linear variation of
the pressure or density ratio with respect to the
shock radius R or y,, i.e., '

d*y/dys = 0, or d&'¢/dy; = 0. (29)

Since the strength of the reflected shock does not
approach that of a “strong” shock, the criterion
based on the pressure ratio 4 and density ratio ¢
differ only slightly. In this paper, the criterion
based on the density ratio § is presented. Therefore,
for the location of the integral curve of the lower
bound of the reflected shock, the criterion is

d¢/dy, = §o — 1 = const,
or (30)
¢ =144 (o — Dyo.

The above considerations of the lower bounds of the
reflected shock and other approximations are
shown in Fig. 2. ’

From Eq. (30) and the Rankine-Hugoniot rela-
tion, the flow velocity u;; behind the reflected shock
corresponding to this lower bound may be obtained.

un = U + [+ (o — Dyol(ur — U) (1)

Due to the dependence of u;; on U, the more
convenient expression for the determination of the
speed of the reflected shock is obtained from Eq. (9).
After slight rearrangement, this becomes

U = DR/Dt
203 d

= {(7 T OO F Go— Dyol = (v = 1)} - @2

For each value of y, and the corresponding time ¢,
the values of u; and a; as well as the entire integral
curve of the lower bound may be obtained by apply-
ing Eq. (32), the initial conditions at the point where
the reflection originates, and the results of the self-
similar solution for the blast wave ahead of the
reflected shock. The procedure is quite similar to
that outlined for the upper bound integral curve of
the reflected shock given in the previous section pro-
vided Eq. (32) is used in place of Eq. (10). The

corresponding values of %1, pr1, pur, @3y, 7, and ¢ may
be obtained from the Rankine-Hugoniot relations,
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Eqgs. (25), and the basic definitions of the pressure
and density ratios across the reflected shock.

The numerical results forn = 1 andy = 1.4 are
plotted in Figs. 5—7 where the results of the upper
bound of the same reflection were presented. The
values of the flow variables u;;, pi, pir behind the
lower bound of the reflected shock form upper bounds
of the actual values. The curve of { vs. y, is linear
due to the basic assumption of the lower bound.
The curve of 5 vs. y, is also very close to a straight
line indicating that the criteria for linear variation
of the pressure ratio and density ratio across the
reflected shock are almost equivalent. It is expected
that the same conclusion may be reached for the
cases of cylindrically and spherically symmetric
reflection of strong blast waves.

VI. TAYLOR SERIES EXPANSION OF THE
REFLECTED SHOCK

In the preceeding sections, methods of obtaining
the upper and lower bounds of the position R(t) of
the reflected shock were presented. As is shown in
this section, there exists a simple and effective
procedure for the determination of an analytical
expression of the position of the reflected shock by
means of a Taylor series expansion in powers of
elapsed time from the instant of reflection of the

form: B
0o+ () 0+ 5 ED - o
)om s

1 (DR

* 3 (Dﬁ

The procedure of finding the first derivative
(DR/Dt), is quite straightforward. To find the
second derivative (D*R/Dt*), of the reflected shock,
we use Eq. (14) with the lower sign to insure nega-
tive propagation speeds. Near the rigid boundary
where the reflection originates, the flow velocity
immediately behind the reflected shock must vanish,
ie., ure = 0. To calculate the second derivative
near the rigid boundary, however, it also is necessary
to determine the contribution due to the change of u;
along the reflected shock. If the contribution is left
within the expression of (D*R/Dt%), as a parameter,
it may be later adjusted such that the flow field
behind the reflected shock along the rigid wall will
vanish at any subsequent time.” Or, if the analytical
expression (in terms of the Taylor series expansion)
is needed to approximate the upper or lower bounds
of the reflected shock, then the assumption used for

(33)

71t is the authors’ intention to describe the exact expres-
sions of the characteristics of the blast wave and the deriv-
atives of uyy near the rigid boundary in a subsequent paper.
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the upper or lower bound may be used to determine
the value of the rate of change of w;; along the
reflected shock near the point of reflection.

To demonstrate the usefulness of the Taylor series
expansion technique, the assumption of the upper
bound is used in this discussion. Setting the values
of u;; and its rate of change along R(t) equal to zero®
in Eq. (14) and using the lower signs, we obtain

D*R 3 —+ (D 1\? 4
(Df ) =51 (Tutl)o - [(v 4; >“¥° + 4“%]

[5e) - (3]
[ 8 “\Di/, T\ Di/o )
It is now necessary to calculate the values of

u;, @}, and their time derivatives along the reflected
shock near the rigid boundary. At the rigid boundary,

(34)

we have R = R = r, and y = 1. Thus, from Egs.
(2) and (15), we obtain
A 4 K2*"E,
TR+ + D b
Pro = 8 K2'"E,
TR+ n+) (35)
¥ + 1
P10 =~ l Poy
2 8viv — 1) K."E,
Qro

?

R

where we have used the fact that f(1), g(1), A(1) = 1.
To find the time derivative of u; along R(t), we

apply the operator (8/8t + U 9/dr) to the first

expression in Eqgs. (15). Thus,

5),= G+ o3)

<Dt Rl Fries U - 2Uf(y)

A RQ_UW 0)
ks o], e

where the value of /(1) may be evaluated from
Egs. (4).

It is still necessary to find U, U, DU/Dt near the
rigid boundary before Eq. (36) can be evaluated. The
expressions for U, and (DU/Dt), may be obtained
by Eq. (2). They may be reduced to the following
forms:

U0=

2 (Kf,*"E,,)*
2+n PoTs

(DU) B o  Ki'E,

Dt/ @+ n)? prit
8 This assumption is less restrictive than that for the

complete integral curve of the upper bound where the de-

rivatives of w11 of any order are set equal to zero everywhere
along the reflected shock.

(37)
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To evaluate U, Fqgs. (10), and (35) may be
applied. Thus, we find that

- 4y =1 (KB
{“‘"@+mw+n< )

Combining Eqs. (36)-(38), the expression for
(Duy/Dt), is finally obtained.

(@Q _dn(y + 1) + 8By — D'(1) KiE,y
Dt /,

2+ 'ty + 17 puro
(39)
To find the time derivative of ¢} along the reflected
shock mnear the point of reflection, we apply the
operator (8/8¢ + U 9/9r) to the expression given in
Eq. (16). After combining the result with Egs. (37)
and (88), and considerable rearrangement, we find
that

(Bdl) -
Dt/,

+ 6y - 1 e ~ ran (S

(38)

poTo

16v(1 — v)
@+ n)y + 17

nly + 1)

K2+ﬂ E
I + 27;23) H (40)

where ¢’(1) and A'(1) may be caleulated from
Eqgs. (4).
Substituting the results given in Egs. (39) and
(40) into the expression given by Eq. (34), we obtain
vy — 1

5
D&/ @+ 0y + DGy — D
fly — Dldnly + 1) + 83y — D'(1)]

+&@w+n+@w~mun—wmsz€-

(41)

This type of analysis may be carried over for the
determination of the higher order derivatives of
R(@) at r = r, as well. To find (D°R/Dt%),, ete., it is
necessary to differentiate the general expression for
(D’R/D¢") along the reflected shock. In the resulting
expression, one encounters higher order derivatives
of u;; along B(t) near the point of reflection. These
are parameters which have to be determined by the
flow field condition, u., = 0.

To estimate the value of (D*R/Dt%), for the upper
bound expansion, we may neglect all the terms
pertaining to u;; in Eq. (14) before carrying out the
differentiation. In the process of the evaluation of
this expression, we need to find out the values of
(D*uy/Dt%)y, (D’a%/Dt%),, and (D°R/Dt*),. This
means that among other things, it is necessary to
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obtain from Eqs. (4), the expressions of /(1), " (1),
and h”/(1). This can be done in a rather straight-
forward manner,

With the derivatives, (DE/Dt),, (D*R/Dt%),, ete.,
caleulated in terms of the parameters (Du;y/Dt),,
(D*ur /D), ete., it is a simple matter to write
down the leading terms of the Taylor series expan-
sion given in Eq. (33). With the position B(?) of the
reflected shock given in an analytical form, the
flow variables behind the reflected shock may be
ealeulated. These form the given conditions along
the initial curve R(f). The flow field behind the
reflected shock now may be caleulated. The param-
eters, (Duy/Dt),, (D*u1;/Dt?),, ete., are determined
by the condition, u., = 0 along the rigid boundary.

If the upper, or lower bound, or any other assump-
tion is made pertaining to the derivatives of u;; near
the rigid boundary, the values (DE/Dt),, (D*R/Dt%),,
ete., may be estimated without the calculations of
the flow field behind the reflected shock. For the
Taylor series expansion of the upper bound of the
reflected shock, this becomes in dimensionless form,

R ¢ A VO
ernG Y

r—1
BT v+ 1By -1

(v — Dldnly + 1) + 83y — Df(1)]
+ 8ylnly + 1) 4+ By — 1)
(g’ — POINCE — 1 + 42)

where { = t/t,. Equation (40) is the integral of
Eq. (9) or (10) for the reflected shock while assum-
ing ur; = 0. As an approximation, this series may be
cutoff at the term (f — 1)°. Such an approximation
is parabolic in the y, — { plane. For the reflection
of a planar wave with y = 1.4, the parabolic approxi-
mation of the upper bound of the reflected shock is
presented in Fig. 3. The agreement with the upper
bound integral curve is quite good. Due to the
decrease of the curvature of the parabolic approxima-
tion away from the wall, the parabola begins to
deviate from the integral curve at large distances
away from the wall.

For other choices of the value of the rate of change
of the flow velocity u,;, other series expansions may
be obtained. The exact expression is the one which
meets the condition of u, = 0. It is expected that
such an expansion corresponds to the variation of
uy; somewhere between the limiting conditions set
by the upper and lower bounds.

() =1




