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Two approximate solutions, which become exact for Prandtl numbers 1 and 2, are given for laminar round
plumes for arbitrary Prandtl number o. The first of these gives a very accurate solution for laminar found
plumes in air, for which ¢ = 0.73, and the second provides a good solution for laminar round plumes in
water, for which o = 6.7. Two approximate solutions, which become exact for turbulent Prandtl numbers 1.1
and 2, respectively, are given for turbulent round plumes. The one which becomes exact at o = 1.1 is used to
give a highly accurate solution for ¢ = 1, which, for an eddy-viscosity coefficient 4 equal to 0.0156, provides a
remarkably good agreement with the experimental data of Beuther, Capp, and George, Jr.

I. INTRODUCTION

The problem of round laminar buoyant plumes was in
an unstratified environment studied as early as 1937
by Zel’dovich.! Independently, Yih*® developed the dif-
ferential equations for a similarity solution of the prob-
lem, and he gave two exact solutions for the differential
system consisting of those equations, the boundary con-
ditions, and an integral condition; one for Prandtl num-
ber 0=1, and one for 0=2. Later, other researchers,
unaware of Yih’s work also studied the problem, but
produced nothing new. Thus to this day, solutions for
round laminar buoyant plumes for other Prandtl num-
bers are still unavailable. Especially desirable are
the solutions for air, with ¢=0.73, and for water, with
0=6.17.

The problem of round turbulent buoyant plumes was
investigated by Schmidt!, and later Rouse, unaware of
Schmidt’s work, suggested the problem to this writer.
Rouse was the first to give, explicitly and completely,
the dimensionless parameters which, when experimen-
tally determined, would give the description of the phe-
nomenon. The Iowa measurements were recorded in
three papers,?*° and it was only in recent years that
other measurements with more elaborate and there-
fore, presumably, more accurate instruments were
made by George and his associates.® We shall later
take the most recent measurements of Beuther, Capp,
and George, Jr.” and compare them with our analytical
results.

The first analytical results for turbulent plumes were
given by Yih,® and these were shown to agree well with
the Towa measurements made nearly three decades ago.
However, Yih’s “exact” solutions for round turbulent
plumes are for (turbulent) Prandtl numbers 1.1 and 2,
and although the turbulent Prandtl number must be
around 1, there is no reason to expect it tobe 1.1, It
is desirable to have a solution for turbulent Prandtl
numbers in the neighborhood of 1, in order to provide
an analytical basis for comparison with the recent mea-
surements of Beuther, Capp, and George, Jr.”

In this paper, we shall present approximate solutions
for laminar round plumes for any Prandtl number.
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These are especially accurate when the Prandtl number
is near 1, as for air. We shall also present approxi-
mate solutions for turbulent round plumes for (turbu-
lent) Prandtl numbers around 1, and compare our an-
alytical results with the measurements of Beuther
etal

Furthermore, we shall give rigorous results for the
asymptotic behavior of the angle of spread of laminar
round plumes for large Prandtl numbers, and we shall
give a set of transformations that leave the differential
system (excepting the integral condition) invariant,
which are useful for any accurate numerical calculation
for a given Prandtl number, since one can ignore the
integral condition first, carry out the numerical cal-
culation, and then apply the set of transformations to
satisfy the integral conditions. All the results given in
this paper, excepting the existing results explicitly
cited, are new and not previously available.

We note here that plumes in stratified environments
were investigated by Morton, Taylor, and Turner® us-
ing the concept of entrainment.

Il. ROUND LAMINAR PLUMES

A brief account of the formulation of the problem is
necessary in order to facilitate the presentation of the
new results. We shall take the heat source as the ori-
gin, use x and » as vertical and radial coordinates, and
denote the velocity components in the directions of in-
creasing x and » by « and v, respectively. The gravi-
tational acceleration is denoted by g, and acts in the di-
rection of decreasing x. If Ap is the variation of the
density of the fluid as a result of temperature rise due
to the heat source, we can, for temperature rises
small compared with the absolute temperature of the
surrounding fluid, use A p instead of the temperature
rise AT as a dependent variable. For convenience, we
choose to use

Ay=gAp .
instead of AT. The density and viscosity of the ambient

fluid will be denoted by p and p, respectively, and the
kinematic viscosity u/p will be denoted by v, as usual.
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Since the pressure variation in the plume is assumed

to be small compared with the pressure (assumed hy-
drostatic) in the ambient fluid, we can use the thermal
diffusivity at constant pressure. We denote it by a, and
the Prandtl number v/« by 0.

Assuming the hydrostatic pressure of the atmosphere
to be essentially undisturbed by the flow caused by the
heat source and 3% /3x? to be negligible as compared
with » '3 (v 2u/37) /37, one can write the equation of
motion as

ou ou v 9 ( ou Ay
CLASTPYCAN AP PR M 4 1

Yox TV rar(yar) gyo ’ )
where y,= pg. The equation for heat diffusion (the en-
ergy equation), can be written

dAy Ay a 9 aAy)
—ty—L == [y =L 2
FY va'r rar(rar i (@)

if 3®Ay/2x® is neglected in comparison with » ™15 (r 9Ay/
ar)/dr. The equation of continuity is

i(ru)

+ —a—(rv) =0. . (3)
Equations (1)-(3) are to be solved with the boundary
conditions that; », v, and Ay vanish at ¥ =; « and v
vanish at x =0 except at the origin, and v, 3Ay/97, and
du/3v vanish at »=0. Equation (3) permits the use of
Stokes’ stream funection § so that

1 9y 13y
= - - == . 4
=y’ 7 ox @)
Multiplying (2) by 277 dr and integrating from zero to
infinity, using the boundary conditions that 34y /37 is
zero at ¥ =0and Ay =0 at infinity, we find that the fol-

lowing quantity is independent of x:
:—f 2mudsydr. (5)
0

Indeed, G is a measure of the strength of the heat

source. Then, with the substitutions

Ay=—(Gp/xu)éln), (6)
and

p=4vxfin), m
in which

n={(0*G/4u®) *r/x'?), ®)
Egs. (1) and (2) become

(a-ang(Z)=rmsns, ©)

and (after one integration and application of the bounda-
ry conditions)

f=-(1/40)(6"/6m. (10)

In obtaining (9), y,/g has been equated to the ambient
density p. The boundary conditions are now

9(00): 0 N
F0)=£'(0)=6'(0)=0, (11)
f(°°) =C )
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where C is any finite number. The integral condition
for the heat flux as expressed by (5) now assumes the
form

jo‘wf’ednzé. (12)

We note in passing that the definition of n by (8) shows
that the term v2%/3x® neglected in comparison with the
first term of the right-hand side of (1) is justified for
Gx®/uv®>>1, as can readily be shown.

A. Exact solutions for round laminar plumes

For Prandtl numbers 1 and 2, Yih?"® obtained exact
solutions of the differential system consisting of (9) to

(12). For o=1:
;%;2 (T’)def_—z—:z—m’ (13)
e a0
(gy/z“:z_f;:m’ (15)
For 0=2:
. ”
_E.’é‘z_”: 9(77):811[1 " (\/5_5/8\/_2_”)”2]4 , (18)
e gp
(Gﬁ) “ZZT:NZ%U n (;‘55/3\/2—,,),,2]2 , (19)
(p:ﬁ)m”:ﬁQ"?f): -W—g—f%];;;. (20)

B. New solutions

The new solutions we shall present here are not ex-
act, but they cover the entire range of Prandtl num-
bers. When the Prandtl number is near 1 or 2, for
which exact solutions exist, they give a high degree of
accuracy. But, the term neglected is a fixed small
portion of a term retained, while both are proportional
to Ao, which is the difference between the actual
Prandtl number o and 1, or 2, as the case may be. In
this sense, the relative error is of the same order of
magnitude for all Prandtl numbers, and the solutions
given here are reliable approximate solutions, which,
at the least, would assist in any accurate numerical
solution of the problem for any Prandtl number.

First, we shall briefly describe the obvious approach,
which was the first that came to mind but which in the
end proved laborious and inferior to the vastly simpler
and reliable method finally used. Expanding f and 6 in
a power series of Ao and using f, and 6, to denote the
exact solution at o=1 or 2, as the case may be, we
have

f=fitaai+(aoPfH+...,
6=10,-A06,+(A0P6,+.... (21)

Then, substituting these expansions in (9) and (10) and
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collecting equal powers of Ao, we obtained a sequence
of simultaneous equations for (f,, 6,), (f;, 6,), etc. For
f1 and 6,, we found, after considerable effort and trials,
that the following expansions are appropriate:

fi=In A,,X'"'1>+ }:‘ B,(1-x"x1r,
-!..° ".1‘ (22)
6,=InX (Z C,,X'"“‘) +2, DX,
nxl n=l
where
X=1+47, (23)

A being a constant to be determined by the integral con-
dition (12) afterward. (In practice, we used A=1 for
the determination of the coefficients in the expansions,
and determined the actual A by a transformation to be
presented later in this paper.) But, the first several
coefficients obtained for each series are large com-
pared with the corresponding coefficient in the exact
solution, and both series converge very slowly., We
calculated up to 22 terms. Even then, the results ob-
tained by taking only terms of order Ac¢ are already
not satisfactory for A o=0.25, indicating that terms of
order (Ao)? or even (A0)® are necessary. This out-
come discouraged us from proceeding further with this
approach.

The final method adopted is simple, direct, and, if
one accepts the errors the order of magnitude of which
is known a priori, reliable,

1. Solution based on exact solution for ¢ =1
For any o, let
f=3/20)(1 -X7Y), (24)

where X is given by (23), in which A is to be deter-
mined later. Substituting (24) into (10) and integrating,
we have

0=CxX"3, (25)
Substituting (24) and (25) into (12), we find
C=0/37. (26)

To determine A, we substitute (24) and (25) into (9),
and obtain

(24/0%)[3 -20+3(0 -1)X "] A2X 3= CX 3, (27)

from which it is obvious that an exact solution exists
for 0 = 1. For any o, we write (27) as

(24 A%/02)[(3-20)+3(0-1)B]X*+R=CX"%,  (28)
where
R=(1242/0%)(c - 1)(X™* - 8X %) (29)

is the residual, and 8 is a constant to be determined so
as to make

|ax-o-x"|
as small as possible in the core of the plume.
The temperature distribution is given by (25).
The point of inflection of X ™% is at X=8/17, or An*=1/1.
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If we require that the relative (to X™*) error 8X -1 at
the origin be equal and of opposite sign to its value at
An*=2/7 (twice its value at the point of inflection of the
plume), we have

B=1=I. (30)

8

The difference between 8X ™* and X ™ is shown in Fig.
1.

Then, ignoring the residue R in (28), we have

C=[(9 +150)/0%]A%, (31)
which, in combination with (26), gives
A=o0lo/9(50 + 3) /2. (32)

Then (23)-(26), and (32) constitute the solution.

2. Solution based on exact solution for 0 =2

For o near 2 or greater than 2, a more accurate ap-
proximate solution can be obtained if it is based on the
exact solution for ¢=2,

With X defined by (23), we take

f=@/e1-Xx"1), (33)
Then, the solution of (10) is
6=Cx", (34)

Substituting (33) and (34) into (12), we obtain, whatever
the value of A may be in the definition (23) of X,

C=50/167. (35)

To find A as a function of o, we substitute (33)-(35)
into (9), and obtain

_§A2[4 (1 _3>X-3+(§ _6>X'] 39 x4 (30
o o o 167

Again, equating X °to 87'X*, where 8is now 10/11,
we obtain from (36)

___ 25¢°
1024720 +1) °

Then (23),
tion.

AP (37)

(33), (34), (35), and (37) constitute the solu-

08

06 \
o\
o2 \ x 27114

B N

X
04 08 12 {6 20 24 28
ﬂ'r)
FIG. 1. Approximation of X4 by 37X 73, B=8/7.
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C. Comparisons of approximate and exact solutions

In the approximate solutions just presented, the error
committed arises from, and only from, approximating
Xpby 7X%/8, or X by 1.1X™. If we call the ap-
proximate solution based on the exact solution for =1
the first approximate solution and that based on the ex-~
act solution for ¢=2 the second approximate solution,
then the first approximate solution is increasingly ac-
curate as o approaches 1 and is exact at o=1, and the
second approximate solution is increasingly accurate as
o approaches 2 and is exact at ¢=2.

In Fig. 2, the first approximate solution evaluated at
0=2 is compared with the exact solution for ¢=2, and
the second approximate solution evaluated at 0=1 is
compared with the exact solution for ¢=1., 1t is seen
that as o is increased from 1, the first approximate
solution overestimates the temperature and underesti-
mates the velocity, and that as o decreases from 2, the
second approximate solutionunderestimates the tem-
perature and (except for a small region near the axis of
symmetry) overestimates the velocity. Or, to put it
loosely, the approximate solutions overestimate the
temperature and underestimate the velocity as the
Prandtl number ¢ increases from the ¢ on which they
are based, and the opposite is true when o decreases.

But, the striking feature of Fig. 2 is that the ap-
proximate solutions give rather good predictions for
both the velocity and the temperature, and that the tem-
perature predictions are especially accurate. The ra-
ther good approximations obtained when ¢ varies from
1 to 2 are all the more remarkable when one notes that
at =0 (or X=1) the R in (28), which is neglected, is,
for 0=2, 18% of the entire left-hand side of (28), and
yet in Fig. 2 the maximum discrepancy between the
exact and approximate solutions for o= 2 is only about
"% for n<1.5, and that the absolute value of the error
is never more than 7% of the maximum value for
velocity or for temperature (at the axis of symmetry).
When ¢ varies from 2 to 1 and {36) is used, the left-
hand side of (36) varies, at n=0 (or X=1), by fully 28%
when X “? is replaced by 1.1X ™, and yet the agreement
between the exact solution and the approximate solu-
tions for 0=1 is even better, both for the velocity and
the temperature distributions, than the agreement be-~

tween the exact and approximate solutions for o=2.

These comparisons of approximate and exact solutions
at o=1 and ¢=2 indicate that there is good agreement
between the approximate solutions even when the
Prandtl number is doubled or halved, especially for the
temperature distribution (Fig. 2). This agreement is
due largely to the fact that the temperature equation
(10) is integrated exactly, once one accepts (24), and
that the integral conditions are exactly satisfied by (26).
The only approximation is the neglect of R in (28}, and
we can give an estimate of the error in the results in-
troduced by the neglect for the important case of o
=0,73.

For 0=0.73 and at n=0, at which R is a maximum,
the ratio of R to the entire left-hand side of (28) is
0.133. Thus, the maximum error in A computed from
(31), where C is given by (26), is 6.4%, and the error
in A2 is 3.2%, at most. The actual error is probably
smaller, since R changes sign at A'/2y=0,374, and
since R can be regarded as a vertical momentum
source, so that from the physical point of view the ef-
fects due to negative values of R and those due to its
positive values are mutually compensating to a certain
extent. The constant A'/2 determines the angle of
spread of the plume, and is the only constant to be de-
termined by the approximate solution. That it can be
in error by 3.2% at most for c=0.73 is certainly re-
assuring, in spite of the arbitrariness of the approxi-
mation of X by 7X /8. For o nearer 1 than 0.73,
the results are even more accurate.

D. Approximate solutions for air and for water

Since the Prandtl number of air is 0.73, which is
near 1, a good approximate solution for air is the first
approximate solution, which is shown in Fig. 3 together
with the exact results for c=1, for comparison. From
our discussion of the results shown in Fig. 2, the true
velocity curve for o= 0.73 should lie somewhat below
the velocity curve shown in Fig. 3 for 6=0.73, and
the true temperature curve should be somewhat above
the temperature curve shown in Fig. 3 for 0=0.73.

But these corrections, especially for the temperature
curve, are small because o is quite near 1. We re-
frain from making further refinements and consider the

—
Exact Solution | Exact Salution
——~— Approximate Solutian L ——~= Approximate Solution
] ! 1 > |
0.5 — X 0.20
\
04 - i\ 16
N2 N2 0- uxdy FIG. 2, Comparison of approximate and
E-) u A l “" : “6p  exact solutions for laminar round plumes
03 ',’ 4 et TN 0.12 for 0=1 and 6=2. The abscissa is 7.
/‘ // B \\
Vs // i \\\ L \\
02 o1 ¥y | N 008
// V4 . R\
0.4 ,/'/, Lo=2 | 004
1~ ! N )
,/ 5 ~
ot~ | o 0
5 4 3 ! 0 i 2 3 4 5
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FIG. 3. Velocity and temperature (rep-

Q-4
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F ' Gp resented by Ay) distributions in laminar
— 0.2 round plumes for ¢ =1 and o=0.73 (for
o =o.73/ | f (Exact) air).
02 éIV f \' 008
g=1 ’ 0=073
0.1l : 004
I
B) 4 3 2 1 o] 1 2 3 5
n Y

results given in Fig. 3 as sufficiently accurate.

For water ¢=6.7, the left-hand side of (36) varies
by 20% when X "® is replaced by 1.1X ™ in our approxi-
mate solution. Judging by the corresponding percent-
age (28%) when the same is done for =1, and the
rather good agreement shown in Fig. 2 between the ex-
act and approximate solutions for ¢=1, we venture to
assert with some confidence that the second approxi-
mate solution (the one that becomes exact for 0=2) can
be used for 6=6.7. Upon using (33)-(35), and (37), as
well as (6) and (7), we obtain Fig. 4 for 0=6.7, From
our discussion in Sec. IIC, we can expect the true
velocity curve for 0=6.7 to be somewhat above the one
shown, and the true temperature curve to be somewhat
below the one shown. In the core of the plume, we do
not expect a relative error of more than a few percent.

There being no exact solution for ¢ greater than 2,
we are obliged to give an error estimate for the ap-
proximate solution given by (33)-(35), and (37), when
it is applied to water, of which o=6.17.

We note again that, once (33) is accepted, (34) is an
exact solution of (10) and the integral condition (12) is

exactly satisfied by (35). These facts contribute to the
accuracy of the approximate solution mentioned here.
The only approximation is made when we substitute X ™
for X3/1.1 in (36). The ratio of the residue

R= _%Az (1 _g)(X-B_B-lx-4)
o (o

to the entire left-hand side of (36) is, for 0=6.7 and at
the axis of symmetry, where R is largest, equal to
-0.196. The error introduced in the determination of
A? is then 24.5% at most, giving an error in A'/2,
which determined the spread angle, of 5.5% at most.
The velocity « is proportional to A, and the error in 4
is 11.6% at most. For a more than threefold increase
in ¢ (from 2-6.7), an approximate solution with these
maximum errors (the actual errors must be less due to
the compensative effects of positive and negative values
of R) is certainly useful in giving a good estimate of the
velocity and temperature fields.

E. Behavior of the solution for large o

For large values of o we can make the transforma-
tions

072

0.64

0.56

1
T

FIG. 4. Velocity and temperature (rep-

l

|
J(—— 048
T

|

|

ve 0.3 T \ ! 0.40 uxlQy presented by Avy) distributions in lam-
(%> ¢ i | - Gp inar round plumes for 0 =2 and 0 =6.7
04 | ‘ véam | % 0.32 (for water).
A |
o=2 i
(exact) i |
0.2 x / {\\ 1 { 0.t6
o.t 4 . ' o=2 0.08
o=67 r \ {exact)
/ ' \
. — 1 1 A
5 4 3 2 1 o} { 2 3 4 5
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f=of, 8=0/0, n=0'%.
Then, Eqs. (9), {10), and (12) become

G\t R 18 .

(5) =18, 3=-1 %,
®an A 1

f fdﬂ—ﬁ,

where the primes indicate differentiation with respect
to7n. Since f and 8 depend only on 7, we can say that

at any value of x if 7 is reduced by the factor o'/2, the
function f is reduced by the factor ¢ and 6 is increased
by the factor 0. The rate of widening of the plume is,
in this sense, inversely proportional to /%, All this
is in agreement with (32) or (37), if we recall the de-

finition (23) of X and the role of A in X.

F. A transformation indispensable for numerical
calculations

If a numerical solution of the differential system
consisting of (9)-(12) is attempted, one quickly sees
that (12), being an integral condition the satisfaction of
which can only be tested after the computation, would
give rise to great difficulties, It would be nice if a
solution satisfying (9)-(11) can be made to satisfy (12)
by some transformation. Such a transformation will be
given.

Suppose that a solution (f, ) satisfies (9)~(11), but
gives

- 1
4 — %
_/O‘ fé)dn_sna .
Then, let
f=r@), 6=a%m), n=oam.

These substitutions leave (9) to (11) invariant in form,
but give

where f'=df/dn. Thus, f(#) and 8(f)) are the solutions
of the differential system. With this transformation
available, we can impose the following conditions at
n=0:

F0)=0=¢'(0), 6(0)=1, f*"(0)=a.

The constant a is chosen to satisfy the conditions at
n=w, and different values of it must be tried before
one is found for which the conditions at infinity are
satisfied. Then, the transformation just given is ap-
plied to get f() and 8(n), which satisfy the integral
condition (12) as well as (9)—(11).

This transformation is also useful in any numerical
solution of the differential system governing turbulent
round plumes. But, as will be seen, we shall have a
very good analytical solution of that system for the tur-
bulent plume for which the (turbulent) Prandtl number
is near 1, and thus shall have no need for a numerical
solution at all.
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11l. THE ROUND TURBULENT PLUME

We shall retain the use of the coordinates and the
velocity components as hitherto in this paper, but we
shall use an eddy viscosity € which is supposed to be
only a function of x and not of ». The form of the eddy
viscosity can be found by a dimensional analysis to be

e=1(GX2/p)/3 F(r/x),

where X is a dimensionless coefficient. (The Reynolds
stress calculated from this expression for €, with x
=0.016 obtained from the mean velocity profile, has
been compared with the Reynolds-stress measure-
ments of Beuther ef al.; and excellent agreement has
been found.) In ignoring the transverse variation of e,
which we cannot determine analytically in any case, we
are simply dropping F(»/x) and assuming®

€=x(Gx?/p)/3. (38)

Then, understanding « and v to be the time-mean
velocity components at any point in space, the equation
of motion and the diffusion equation are, respectively,

€ 3 Ay
uu,+vu,:;a—r(m,)-gx, (39)
d a7 € 0 d
LAyt ay=—2(rZL ay). 40
uax 4 var 14 cr'rar(rar Y) (40)

The equation of continuity is (3) and (4) can again be
used, as well as the boundary conditions stated just af-
ter (3).

We note that, since the flow is turbulent, strictly
speaking G is now given by

G:—21rf rludy +u'Ay')dr, (41)
0

where the primed quantities denote turbulent fluctua-
tions. We assume the contribution of the turbulent part
to be a definite fraction of G defined by (41), which in-
deed it is, and continue to use the nominal G defined by
(5) to represent the strength of the source. This prac-
tice has the advantage not only of simplicity of exposi-
tion, but is convenient when the analytical results to be
given in this paper are compared with available experi-
mental results, which have all been given in terms of
the G defined by (5).

Then, the appropriate forms for ¢ and Ay, arrived
at by a dimensional analysis, are

b= 3x(Gx/p)*'3f(n) . (42)

~Ay=322(pG/x%)%6(n) , (43)
where

n=r/x. (44)
The velocity components are then given by

u=3\G/px)* %" /m , (45)

v=X(G/px I *3f ~5f/n), (46)

and the equations of motion and of diffusion assume the
following dimensionless forms®

A =-5A(f"/n) =f2/n=f"+n6, (47)
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-50(f8)' = (n6")", (48)
where ¢ denotes the turbulent Prandtl number. The
boundary conditions remain (11), and the integral con-
dition (5) becomes

181m3f flodn=1. (49)
j¢]

A. Exact solutions for the round turbulent plume

The differential system consisting of (47) to (49) was
solved exactly by Yih® for ¢=1.1 and 0=2, The results
are

F=B[1-(1+An?)"1], (50)

6=C/(1+An2)", (51)
in which, for 0=1.1,

B=12/11, m=3, C=(1536/121)4%. (52)
From (49) we obtain

C=11/54n, A%\®=1331/829447. (53)

Thus, only A needs to be determined experimentally.

For 0=2,
B=%, m=4, C=(256/25)A%, (54)
and use of (49) gives
Cx3=25/72x1, A%\%=625/184327, (55)

For comparison of experimental results, we note that
<__>”3 __8AB__ 3
“\G T+ AP T g

B. Approximate solutions for the round turbulent
plume

(56)

We can build approximate solutions upon the exact
solutions for turbulent plumes in the same way as for
laminar plumes. Expansions like (21) and (22), but
without the logarithm terms, can be used, in principle,
but converge very slowly and are, therefore, very
cumbersome in practice. Instead, we approximate X ™
by 8X =2 or X by B™'X™, as the case may be, where
B=1/8 or 3 =10/11, respectively. With this approxi-

mation, we obtain two approximate solutions.

1. The first approximate solution—based on the
exact solution for 6=1.1, With a method strictly sim-
ilar to that used in Sec. IIB, we obtain the approximate
solution

6 S50

= - X1 = —— -3 =1+ 2
. 50(1 XN, ¢ 2771)\3X , X=1+4n%,

57
5 o3 (57)

T27Tm’ 2,16+ 120 ’

A2

where 7 is defined by (44). This solution is exact for
o=1.1.

2. The second approximate solution—based on the
exact solution foy c=2. With the same definition for
X, and by a method similar to that employed in Sec.
1IB, we also have the approximate solution

8 250 42 5250

_ 490 _ 040"
50 T 144m°3 X7 73728m3 °

feeo (=X, 8 (68)

This solution is exact for oc=2.

C. Comparison of approximate and exact solutions

In Fig. 5, the first approximate solution evaluated at
0=2 is compared with the exact solution for o=2, and
the second approximate solution evaluated at 0=1.1 is
compared with the exact solution for o=1.1. Again,
although the change in ¢ is nearly double {or one-half)
that for which the approximate solution is exact, it still
gives satisfactory results. This gives us confidence
that for o equal to 1 or near 1, as it should be for tur-
bulent flows, the first approximate solution will give
very accurate results,

We can, indeed, give an estimate of the error intro-
duced by the approximation of X ™ by 7/8X3. We note
first that the solution (57) satisfies (48) and {(49) exact-
ly, and that the approximation only affects (47). This
approximation introduces a residue on the left-hand
side of (47), after division by n, and for o=1 the ratio
of the maximum value of this residue (at the axis of
symmeiry) to the value of the left-hand of (47) can be
shown to be —0.051. The error in A? determined by

1T 7 T 17 1 1 |
| —— Exact Solution \ — Exact Solution 12
-~ Approximate Solution ——- Approximate Solution
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b L 2 110
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f' 20 623 FIG. 5. Comparison of approximate and
AA w7 A exact solutions for turbulent round
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error in A2, which determines the spread angle of

the plume is only 1.3% at most. The error in the ver-
tical velocity is 2,7% at most. These maximum errors
are certainly within the range of errors of any experi-
mental data.

D. The proposed solution for round turbulent plumes

Taking solution (57) and fitting it to the data of Beuth-
er, Capp, and George Jr.”, we found that the best fit
gives 0=1, A=0.0156, A=33. [In our comparison
with the experimental data, we have taken into account
the statement written on the reprint of their paper,
which they kindly sent to us, that their F, (correspond-
ing to our G) is 20% too high.] The comparison between
the analytical curves for velocity and temperature dis-
tributions with their experimental data is shown in Fig.
6. The dotted curves are for 0=1.1 and the same val-
ues of x and A, It seems that the curves for o0=1 give
a slightly better fit than those for o=1.1, but that both
the solid curves and the dotted ones fit the experimental
data very well. We propose, then, that (57) with the
above-mentioned values for x and A and with 0=1 be
adopted as the solution for the problem of the round tur-
bulent plume.
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