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[. INTRODUCTION

In random matrix theory, unitary ensembleshok N matrices{H} play a central rolé® Such
ensembles are described by a meastrawith finite momentsf g|x|“da(x) <o, k=0,1,2,..., and
the associated distribution function for the eigenvalfes=x;(H)} of matricesH in the en-
sembles has the form

dP, n(X) = ZiNA(x)Zda(x), (1.0

whereda(x)=Hi’\':1da(Xi), A(X)=II\=i>j=1(X;—X;) is the Vandermonde determinant for the

xi’s, and Zy=/[---fA(x)?>da(x) is the normalization constant. The special cade(x)
—e ¥dx is known as the Gaussian unitary ensem@@JE). For symmetric functiond (x)
=f(Xq,....Xy) Of thex;'s,

1
<f>azaf f F(0A(X)2 da(x) (1.2

denotes the average bivith respect tadP, y .

Recently there has been considerable interest in the averages of products and ratios of the
characteristic ponnomiaI@N[,u,H]=Hi’\':1(,u—xi(H)) of random matrices with respect to vari-
ous ensembles. Such averages are used, in particular, in making predictions about the moments of
the Riemann-zeta functiofsee Refs. 12—14circular ensemblgsand 3 (unitary ensemblg$
Many other uses are described, for example, in Refs. 1, 12, and 17.

By (1.2), for unitary ensembles, such averages have the form
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In this article we consider certain explicit determinantal formulas (foB—see (2.6), (2.24),

(2.36), (3.3), and(3.12) below. Formula2.6) is due to Brezin and Hikari(see also Ref. 16, and
when all theu;'s are equal, see Ref. L0whereas(2.24), (2.36, (3.9, and(3.12 are due to
Fyodorov and StrahoV:'! References 17 and 11 also contain a discussion of the history of these
formulas. The formula$3.3) and(3.12) are particularly useful in proving universality results for

the ratios(1.3) in the Dyson limit asN—« (see Ref. 1Y For a discussion of other universality
results, particularly the work of Brezin—Hikami and Fyodorov in special cases, we again refer the
reader to Ref. 17. The asymptotic analysis in Ref. 17 is based on the reformulation of the orthogo-
nal polynomial problem as a Riemann—Hilbert problem by Fokas, Its, and KifBles.Riemann—
Hilbert problem is then analyzed asymptotically using the noncommutative steepest-descent
method introduced by Deift and Zhdwand further developed with Venakides in Ref. 6 to allow

for fully nonlinear oscillations, and in Refs. 7 and 8.

Our goal in this article is to give new, streamlined proofs(®f6)—(3.12), using only the
properties of orthogonal polynomials and a minimum of combinatorics. Along the way we will
also need an integral version of the classical Binet—Cauchy-formula due to Ciéfnda¢ing
back to 1883see Lemma 2.1 below

Let wj(z)zxj+~~ denote thgth monic orthogonal polynomial with respect to the measure
de,

fRWj(X)Wk(X)da(X):CjCk(Sjk; j,kZO, (14)

where the norming constants’s are positive. The key observation in our approach is that for
K=1 andM=0 in (1.3,

(D[, HD) o= 7n (1) (1.5

(see Ref. 18 In our words, the orthogonal polynomial () with respect ta« is also precisely

the average ponnomi:I[i’\'zl(,u—xi) with respect tadP, \. Formula(1.5) appears already in the

work of Heine in the 1880¢see Ref. 18 Set

4
H (pj—1)
=1
daltm(t)=— da(t), €,m=0, (1.6)
J_Hl(éj—t)

[dal®9(t)=da(t)], and leta;“™(t) denote thgth monic orthogonal polynomial with respect to
dal®™. With this notation we see immediately from(1.3) and (1.5 that
(Q 1D 1 HI/QM D[ € ,H]), is proportional tomrl (). Using a classical determi-
nantal formula of Christoffe(see Ref. 18for wkf'o](,u) and a more recent formula of Uvardv
for Tr[NO'm](,u), we are then ledsee Sec. )Ito (2.6), (2.24), and(2.36) in a rather straightforward
way. Formula(3.3) appears to have a different character fr(2r6), (2.24), and(2.36), and relies
on Lemma 2.1 mentioned above, which computes the integral of the product of two determinants:
formula (3.12 follows (see Sec. Il by combining (3.3 with (2.6) and (2.36. In Ref. 17 the
authors present a variety of additional formulas(fQ}(:lDN[,uj ,H]/QjleDN[ej ,H1]), for cases
of K andM not covered by(2.6)—(3.12: we leave it to the interested reader to verify that the
method of this article can also be used to derive these formulas in a straightforward manner.
Remark 1.1As is well known(see, e.g., Ref. 18each measuréa gives rise to a tridiagonal
operator
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a;, by O

I=dda)=| b, a5 - |

b;>0, 1.7

with generalized eigenfunctions given by the orthonormal polynomials

pi(x)=c; 'm(x), j=0.1,.., (1.9

bj_1pj—1(X)+a;pj(X)+b;pj1(X)=xp;(x), =1, (1.9

where bg=0. Conversely, modulo certain essential self-adjointness isslieds the spectral
measure fod in the cyclic subspace generatedbgnd the vectoe;(1,0,0,...Y (see, e.g., Ref.}4
It follows that the transformation of measures

da—dalt:m (1.10
leads to the transformation of operators
J(da)—J(daltm). (1.12)

For appropriate choices @f,,...,u, andeq,...,e,, such transformations correspond to removing

m points from the spectrum af{d«) and inserting points: in the spectral theory literature, such
transformations are known as Darboux transformations. The formulas in this article clearly pro-
vide formulas for the generalized eigenfunctiga}$™(x) of the Darboux-transformed operator
J(dal®™), as well as the matrix entrieal”™ andbl“™, in terms of the corresponding objects

for J(da). Again we leave the details to the reader. Here the elementary formulas

n+1Z,(da)Z, »(da) d Z,(day)

2z qda? | 0OTA 7y P

b(da)=

whereda,(x) =e™da(x), are useful.

Technical Remark 1.ZFormulas(2.6)—(3.12) clearly do not make sense for all values of the
parameters. lrall the calculations that follow, we will assume thatda has compact support,
support (da)=[—-Q,Q], say, and that the u;’s and ¢;'s are distinct real numbers greater
than Q: under these assumptiordig!“°™(t) becomes, in particular, a bona fide measure, etc. By
analytic continuation one sees that the formulas remain true for complex val{igs @nd{¢;},
as long as they remain distinct. Furthermore, if thés ande;’s are distinct, and Im)+0 for all
j, then we can leQ—« and so the formulas are true for measudeswith unbounded support.
Finally, we can, for example, lgt;— u for somej+#k, which leads to formulas involving
derivatives of ther;'s, etc.

IIl. FORMULAS OF CHRISTOFFEL-UVAROV TYPE

We use the notationse, ;, del®™, 7™ . of Sec. I. In addition, in all the calculations
that follow we assume thata, {u}, {€} satisfy the conditions described in Technical Remark
1.2 above: the natural analytical continuation of the formulas obtained to complex values of the
parameters, and the lim@—-oe, is left to the reader.

The following result of Christoffe([see Ref. 18plays a basic role in what follows.

Lemma 2.1: Consider the measura/@/(t)=1I1{_, (u;—t)da(t), where¢=1,2,... . Then the
nth monic orthogonal polynomiaHf'o](t) associated with the new measurel&°(t) can be
expressed as follows:
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Wn(Ml) 7Tn+e(M1)
Wn(Me) s e e)
1 ma(t) o A e(t)
[€.0](1) = n - : 2.1
O ) (o) [ () T e—a(pd) @
7Tn(,U«€) o T e—1(pme)
Proof: Set
71'n(#l) 77n+€(ﬂ1)
oy =| : (2.2
" ® 71'n(/—Lf) 7Tn+e(,U~e)
Wn(t) 7Tn+€(t)
We note thatgl!%(t) satisfies the conditior tigk*%(t)da(t)=0 for all j {0,...n—1}. Also

ay %(u;)=0,j=1,...¢, and s O(t)/[ (u1—t)---(u¢—t)] is @ polynomial of degree at mast

Now observe that
J ¢

which means thagt’%(t) divided by the product 4;—t)---(u,—1t) is proportional to thenth
monic orthogonal polynomiatri’%(t) associated with the new measute!¢(t). Now gi‘%
X(t) cannot vanish for any=u,,1>Q, wes1&{m1,.....uc}. Indeed, ifqh % (u,. 1) =0, then
there exist{a;}{_,, not all zero, such thap(t)=3!_,a;m,.(t) vanishes af{u;}{ L. Thus
T)(t)zp(t)/Hfjll(Mi—t) is a polynomial of ordex<n, and as aboveép(t) is orthogonal tot/,
0<j<n, with respect to the measudn!‘*19(t). ThusP(t)=0 and hencexo=:--=a,=0,
which is a contradiction. Replacingby ¢—1, we conclude that

L %)

(it (g0 =0, 0<j<n. 23

mo(p1) 0 Taee-1(me)
: #0. (2.4)
mo(pe) 0 Tare—1(me)

Taking the limitt—o and noting that the coefficient of the highest degreerkffo](t) should be
equal to 1, we find the coefficient of proportionality and establish forni2u3. O
Representatior(2.1) for the monic orthogonal polynomials associated with the measure
dat®%(t) immediately leads to the following result:
Corollary 2.2: The product of monic orthogonal polynomidl$_omy % (u;. 1) defined with
respect to the different measureg!é®(t)=(u;—t)---(u;—t)da(t) is given by the formula

mn( (1) Tnye( 1)

Aw | :
ol amesn) — mosemers)

4
j[IO a0y q)= (2.5

whereA(u) =ITgy =i j=1(mi—uj).

We observe that Corollary 2.2 gives the identity for the average of products of random
characteristic polynomials obtained first by Brezin and Hikami.

Theorem 2.3:Let Dy[ u,H] be the characteristic polynomial of the Hermitian matrix H. The
following identity is valid:
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mn(pr) o TneL-1(ma)

L
1 .
<j1:[1 DN[ijH]>a:m : , (2.6

() o Tnee—1(mL)

where the average is defined by (1.2).
Proof: To prove formula2.6) we use the representation for the monic orthogonal polynomials
in the casd.=1 given in(1.5),

1 N
(=5 [ [ T (= x0a%00da0). 27
Let Z % be defined by

z[N”]:f f A%(x)dal®%(x), €=1.2,..., (2.9

wheredal ©%(x) =TI'_ ,dal“%(x;). With this notation, we have

[L,0] [L0] —[L-1,0 (1,0
H Dl H] T (2.9
NLAj Zy ZH.—l,O] ZH_—z,O] Zn :

Equation(2.7) implies that7k'~%u,) can be represented as the rafig"®/z{ "%, where
()= my(w), andZ0%=Z,,. Thus we obtain

L —
<JH1 Dl 4 ,H]> =TT 7% 40). (2.10
The above equation together with Corollary 2.2 proves forni2lg). O

Remark 2.4:Notice [see Eqs(2.7) and(2.10] that the average of products of characteristic
polynomials can be rewritten as a product of averages. Namely,

L L
<J.U1 DN[Mi!H]> :J,Hl (DnLaj HI) gli-10, (2.11)

where(--+) 1i-1,0 means the average defined by E§.2) but with respect to the new measure
dali~19%x), andda(x)=dal®%(x).

The formula of Christoffel[Eq. (2. 1)] enables us to construct the orthogonal polynomials
associated with the measutte!*%(t) = H —1(uj—t)de(t) in terms of the orthogonal polynomi-
als associated with the measure(t). Now we derive a formula due to Uvarb\expressing the
monic orthogonal polynomlaISzr[O”‘](t) associated with the measuma!®M(t)= H ~1(€j
—t) " !da(t), again in terms of the monic orthogonal polynomiatg(t) associated W|th the
measured «(t).

Lemma 2.5: Suppose<m=n. The monic orthogonal polynomia’osLO'm](t) associated with
the measure d!®™(t) can be expressed as ratios of determinants
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hn—m(él) o+ hp(e)
Pn-m(em) = hn(em)

loml(t) = h:nm(:(lt)) h:rl((te)l) (2.12
Pn-m(€m) == hn-1(€m)

Here the R(¢;)’s are the Cauchy transformations of the monic orthogonal polynomig(s).

1 m(t)da(t)
hk(ej)—ﬁJ’T. (213)
Proof: Set
hn—m(e1) - hp(ey)
oOm(1) = :
O h em - holem)|” (214

Tonom(t) - (1)

Now gi>™(t) is proportional to theth monic orthogonal polynomiati®™(t) with respect to the
measured«!%™(t). Indeed, first observe that

q[O ml ¢

da(t) 0, j=1,.m. (2.15

Also, for O<k<n,

m

tk By

?zl(fe_t) (=1 €t

+p(t) (2.16

for suitable constant§B,} and for some polynomigb(t) of degree<n—m. But for O<k<n,

[0, m]

J g™ (t)dal®m(t) = — 2 B J o da(t)+ J p(HA>™(tda(t).  (2.17

The terms in the sum are zero .15 and the final integral is zero by the constructi@il4) of
al2™(t) and the fact that deg(t)<n—m. Thusgl®™(t) is proportional tomt>™(t). An argu-
ment similar to the proof in Lemma 2.1, that

Ta(py) o 7Tn+€*1(ll'l’1)
: #0, (2.18
mo(pe) 0 Tage—1(me)

shows that the denominator i2.12 does not vanish. Letting— in (2.14), and matching
leading terms, we prove Lemma 2.5. O

Remark 2.6in Ref. 19, Uvarov obtains formulas ferl’™(t) of type (2.12 also in the case
m>n. These formulas can be used to obtain analog®4) and (2.36) below in the casév
>N.
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Remark 2.7As noted in Refs. 11 and 17, the Cauchy transformatigis) of the m,’s occur
explicitly, together with ther,’s, in the solution of the Fokas—Its—Kitaev Riemann—Hilbert prob-
lem for orthogonal polynomial3.

Lemma 2.5 implies the following analog of the Christoffel formula for the Cauchy transforms
of monic orthogonal polynomials.

Corollary 2.8: Let H>™(€) be the Cauchy transform of the monic polynomigd™(t). with
respect to the measuread®™(t),

1 w2
h{(o,m](e): ﬁf ?da[o’m](t). (2.19

Let alsoO=m=n. Then ﬁ?'m](e) has a representation similar to that for the monic orthogonal
polynomials7t‘%(t) [Eq. (2.1)],

oonlen) - e
et e

hg‘o'm](f):(e—efn;--l-)g:—el) hnh_nmg;(j hf_”ffe)l) 229
o em) 1)

Proof: The above representation follows from form@tal2 and from the fact that

m+1

1 1 1

(t—€my1) - (t—€p) a =1 t_Ej K#j Gj_ek.

(2.21

Indeed we find from formulé2.12) thathl®™(¢) is the ratio of the determinants. The elements of
the last row of the determinant in the numerator are the integrals

1 k() da(t)
—f , 0ks=m.
2@ ) (t—e)(t—€y) - (t—€q)
Using identity(2.21) and noting that the only term
1 1 -
t—e(e—€y)(e—¢€) (222
of the sum(2.21) contributes to the determinan®.20 follows. O

Equation(2.20 immediately implies the following analogy @¢2.5) for the h{(o'm]'s.
Corollary 2.9: LetO=m=n. Then the product of the Cauchy transforms of monic orthogonal
polynomials with respect to the measuras'd1(t), 0<j<m, can be written as a determinant

m hn—m(€1) hn(ep)
A (-1)m(m+1)/2 .

(0] )= — :

J_]JO i (€541) A0 : . (2.23

ho-m(€ms1) - hp(emsn)

Now we derive the identity for the average of the product of inverse random characteristic
polynomials.

Theorem 2.10:Supposd <M =N and lety,= — 277i/c§, where g, is the normality constant
defined by Eq. (1.4). Then we have the following formula:
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N-1
M '—11\11\4 i hn-m(er) - hyoa(er)
[1 Dy H]) =(—pMm-b2i 2| . (224
j=1 A(e)
“ hy-m(em) -+ hy_1(em)

Proof: WhenM =1, we use the identity2.21) together with(2.7) and the relatiorisee, e.g.,
Ref. 18

Yn_1= —2iN (2.25
Zy
to obtain
(DN eH) o= n-1hy-1(e). (2.26
We rewrite the average in E€R.24) as follows:
M [OM] —-[OM—1] [0,0]
ZN ZN—l ZN—M
IT D-l[e-,H]> = - : (2.27
< T e g
where
z[NO’W:f f A%(x)dal®M](x), (2.28

ZH)'O]EZN anddal®%(x)=da(x). The following relation can be observed from E¢®.26) and

(2.25:

_Zkoym'g [om-1]
WK .
zlom-1] =—2mi(N=K)hy"k “i(€m). (2.29
Inserting this relation i2.27) we find
M M
<,—11 Pl ’H]> =11 v R Hew— ). (2.30
Our result(2.24 immediately follows from the above equation and form#a&3. O

We now repeat the above considerations for the case

(=) (e—t)

S Ul ey o ey

da(t). (2.3

The first result is a Christoffel-type formula for the meas(@e1), which is due to Uvarov’
Lemma 2.11: Supposg<ms=n. Then the monic orthogonal polynomiatg‘™(t)’s with
respect to the measuread'™(t) have the following representation:
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hp-m(e) === hpye(€r)
ho—m(€m) =+ Nogpe(em)
Tonom(i) = Toee(pg)
77'n—m(:u*{’) 7Tn+€(/l'€)
1 Tn_m(t) T e(t)
[€,m] ¢\ —
M O ) ) Mool Pyeed (232
hp—m(€m) - hpgpe(em)
Tnom(t1)  Tnpe(pg)
Toom(ie) = Toye(pee)

Proof: As in the previous cases we defin'm](t) to be the determinant in the numerator of
(2.32. Observe that

oy ™ (pg) =" =ay ™(p)=0 (2:33
and that
q%mkwdau) an ™(da(t)
(2.39
em—t
The next steps are the same as in the proofs of Lemma 2.1 and Lemma 2.5. O
Corollary 2.12:
hn-m(€) - hyik-1(€r)
hn-m(em) = hyik-1(€em)
mn-m(M1) o Tnek-1(B1)
« 1 |= '(,u ) oow (mk)
N—M K N+K-1 K
D[z, H = . 2.3
<1L L) ]>dw] A | Pyowm(en o My 239
hn-m(em) -+ hn(em)

Proof: Identity (2.35 follows from Egs.(2.10 and(2.32 once we note that E¢2.32 can be
rewritten in a similar manner as E®.5). O

Finally we generalize Theorems 2.3 and 2.10 and obtain a formula for the average of ratios of
characteristic polynomials.

Theorem 2.13:Suppos@®<M=<N. Then the average of ratios of characteristic polynomials
of NX N Hermitian matrices H is given by the following formula:



3666 J. Math. Phys., Vol. 44, No. 8, August 2003 Baik, Deift, and Strahov

hn-m(er) o hyik-1(€r)
K N-1 ;
[I Dnfpj HI| (=MD T o,
I _ I=N-M hn-m(em) =+ hnik-1(em)
M A(p)A(e) mnem(pe) o Tnek-a(pd) |
[ Dulej HI ;
j=1 N
mn-m(k) o Tnek-1(k)
(2.36
Proof: Let al®%=q, ZI®%=7 . Then we have
K
jl:[l Dnluj . H] ZH(,M] ZH(,M] ZR,O’M]
M - 7100l - ZIOM] -[00] ’ (2.37
N N N
11 Dnlej,H]
=1 .
ie.,
K
I Dulp H] « y
j=1 )
VE— :<H DN[M,-,H]> <H Dy [ej,H]> : (2.39
=1 aomy\1=1 N
H Dnlej,H]
=1 N
We use Corollary 2.12 and Theorem 2.10 to obtain forn2186). 0

Remark 2.140bserve that formulag2.6) and (2.24) do not follow immediately as special
cases 0f2.36): some further algebraic manipulation is required. Similarly, the process of adding
and removing zeros is clearly reciprocal. More precisely, giggn..,e,, we can construct the
polynomials 7t0)(t;dal®‘1) associated with the measud!%¢)(t)=(II{_,(¢—1t) " Y)dt by
(2.12: We can then construetl" % (t;d(a!%)40 with u;=¢;, insertingwL>“)(t;dal%)) for
ma(t) on the right-hand side of2.1). We should find thatrk!%(t;d( %)) = 7 (t;de).
However, again, this relation is not immediately clear, and requires further algebraic manipulation.

Ill. FORMULAS OF TWO-POINT FUNCTION TYPE

The following integral version of the Binet—Cauchy formula is due to Aredyeand plays a
basic role in our calculations.

Lemma 3.1: Le{X,du) be a measure space and supposed L2(X,du) for 1<i,j<k.
Then

ff det(fi(X)))1<i j<k delgi(Xj))1<i j<k dm(Xq) - -dp(X)
x Jx

=K de“ fi(X)gj(X)d,u,(X)> . (3.1
X 1<i,j<k

Proof: Setcj; = [ xfi(X)g;(x)du(x). Then

Jf det(fi(xj))1<i j<k deUgi (X)) 1<i j<k dpe(Xq) - -dp(Xy)
X Jx

= Esk Sgr((T)Sgr(T)Ca(l)f(l)‘“C(r(k)T(k):E sgr(o) >, SN 7°0)Cy(1) roa (1) **Co(k)ro(k)
g T

o,T€E

:EIT: (SQV(U))ZZ SON 7)C1r(1) " *Cir(iy = K! Y Cjj) 1< j<k (3.2
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as desired. In3.2) we used sgnfo)=(sgn7)(sgno) and the fact that,(1)rq(1) **Co(k) (k)
:ClT(l)' ”CkT(k) for all o. O
Theorem 3.2:Let K=1. Then the following identity is valid:

K
TT Dalnj HID HT) = det Wy yohg o)1t .
j=1 NLAj NLj AN)A(w) ILN+KUA M) ) 1<ij<K s .
where
Wi o k(XY)= 7TN+K(X)77N+Kl(y))(:;TN+K(y)77N+K1(y) (3.4
and
N+K—1
2
e @9
NKTT ok .
(Cnrk-1)

where ¢ is again the norming constant far, given in (1.4).
Proof: Let pj(x)=cj’17-rj(x), j=0, denote the orthonormal polynomials with respectiéo
From (1.2) we obtain

. 1
Jl:[l DN[)\j !H]DN[,U«j aH]>a:mf j A(XN)A(X, p)da(X). (3.6)

Adding columns, we see that the Vandermonde determifiéxi\) has the form

mo(X1)  mi(Xy) o wnik-1(Xp)
mo(Xn)  mi(Xn) o Tnek—1(XN) @7
mo(Ny)  mi(N1) o wngk-1(Np)
mo(Ak)  mi(Ak) 0 Tnek—1(Ak)

and similarly forA(x,u). Herem;(t) = wj[o'o](t). The determinani (x,\) can be evaluated by a
Lagrange expansion of the form

mi, (A1) e m (W) || (X)) e g (X)

0si <ip<-—<ipk=N+K-1 .

mi,(A) e m (N || () e Ty (XN
(3.9

where oi, = F1 is an appropriate signature afdjq,...,jn):0<j:<jo,<--"<jy=N+K

—1} is the complement ofi,,...,ix} in {0,1,...N+K—1}. Multiplying (3.8) by a similar expan-

sion for A(x,u), and inserting in3.6), we obtain a sum of terms of the form

’/'TJl(Xl) ’IT]K(X]_) Wji(xl) W]’L‘(Xl)

f J : ; da(x), (3.9

le(XN) 7TjK(XN) Wji(XN) 7Tj,’\l(XN)
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which is equal by Lemma 3.1 tbi! det(f;(x) 7 (X)da(X))1<i k=n=N! det(b‘j_rjkcjzl)lgi,ng. From
| I

this we see that

K
Jl]l D[N HID ), H]

i (N1) i (A1)
NI iy 1 (% 1
~ZNAOVA(R) o=i <---<ZSN+K—1 Uizl """ Ik
b ™ () i (Ak)
N 71'il(/vtl) WiK(Ml)
x [ c? :
k=1
Wil(MK) WiK(MK)
NITINFK=2c2
q=N q
= d i )\ =i k= d i =i k=
ZNA(X:)\)A(XuM)O<i1<~~~<2ik<N+K—l e(plj( k))l\J,k\K e(plj(lu’k))l\j,k\K
N|HN+K 103 i E . -
ZNA(X )\)A(X ) 0<i<N+K-1 Pi)Pi (i) 1<i ksK, (3.10

where the last line follows by applying Lemma 3.1 to the discrete me@lau#eEN*K 15, . But,
by the Christoffel-Darboux formula,

TNk (M) T k-1 (0) = Tk (i) T k—1( )
_ Pi(N))Pi( i) = N
O=i=N+K-1 i Mk

. (311

which then implieg(3.3) asZy=N!TI}_c? (see, e.g., Ref. 18 O
Theorem 3.3: Supposel<K=<N. Then the following identity is valid:

K
N[MI 1H] _ K A(Ew“)
<H [e],H]> =(—1)KK l)lzyN—lmde(WH,N(file))lsi,jsK: (3.12

where

h _ —hy_
WH,N(x,y)= n(e)my l(Mj_MN 1(e) () (3.13

and again h(e)=(1/27i) [ 7 (t)da(t)/(t—¢€) is the Cauchy transform ofr (t) and yy_1=
—27ilC_,. Observe first that by linearity
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hy-m(€) - hyy-1(er)

hn-m(em) - hyii-1(em) _J‘ da(N\)

mN-m(p1) o Tne—1(p) - . Y

. (2m)MjH1 (\j—€)

mnom(me) o -2 (s

mn-m(N) o e —1(Ng)
y mn-mAm) o TN L-1(Aw) (314

mnom(pn) o Tnee—1(ge)
mnom(m) o e -a(me)

Inserting(2.36 on the left-hand side, and usiiig.5) to reexpress the integrand on the right-hand
side, we obtain the following result, which is of independent interest. The result expresses aver-
ages of ratios of characteristic polynomials in terms of averages of products of such polynomials.

Proposition 3.4; Letl<M=<N. Then
N—1

L
[T Dnfi HI| (M™M= D2 Ty,
j=1 j=N-M da(N)
" e A
HlDN[eJ-,H] (27Ti)MH1 (\j—¢)
i= N =
M L
><<_ 1DN_M[M,H]H1 DN_M[M,-,H]> : (3.15
i= i= N
Proof of Theorem 3.2For M=L=K=<N, by (3.15 and(3.3),
K
D[ i H
awace | L OalkiHl

N—-1 K
(—nKE=v2 TT | T] Dyl H]
j=N—-K =1

a

da(\) A
= W CNfK,KiE[l Hl (pi—=NpdetW, n(Ni 1)) 1< <k -
aMT] (=) :
=1 (3.16
But
1 [ da()) () -1 () = T 1) ()
2_77i )\j_ej |1;[]_ (MI_)\j) )\j—,LLk

(Mi_)\j)) (N T 2 (i) = e 1 (V) ()

1 ,LL]__GJ'

K
iﬂz (Mi_M‘)) (NN -1 () = -1 () () (3.17)

i#k
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as [ da(\j)A [ my_1(N) =S da(A )N my(Nj)=0 for 0<€<K—-2<N-1. Continuing in this
way, the integral reduces ﬂaiK:j_(,U,i—Ej)WH'N(q M) - Thus we find

K
[T Dl wi H]
A(u)A(e) -1 Aep)
N—1 K :A(G)A(,u) det W, Ny k(Ni s si)) 1<i k=k
(—pKE=2 T o | ] Dol H]
j=N-K j=1 N
(3.18
and(3.12 follows. O
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