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I. INTRODUCTION

In random matrix theory, unitary ensembles ofN3N matrices$H% play a central role.15 Such
ensembles are described by a measureda with finite moments*Ruxuk da(x),`, k50,1,2,..., and
the associated distribution function for the eigenvalues$xi5xi(H)% of matricesH in the en-
sembles has the form

dPa,N~x!5
1

ZN
D~x!2 da~x!, ~1.1!

whereda(x)5P i 51
N da(xi), D(x)5PN> i . j >1(xi2xj ) is the Vandermonde determinant for th

xi ’s, and ZN5*¯*D(x)2 da(x) is the normalization constant. The special caseda(x)
5e2x2

dx is known as the Gaussian unitary ensemble~GUE!. For symmetric functionsf (x)
5 f (x1 ,...,xN) of the xi ’s,

^ f &a[
1

ZN
E ¯E f ~x!D~x!2 da~x! ~1.2!

denotes the average off with respect todPa,N .
Recently there has been considerable interest in the averages of products and ratios

characteristic polynomialsDN@m,H#5P i 51
N (m2xi(H)) of random matrices with respect to var

ous ensembles. Such averages are used, in particular, in making predictions about the mom
the Riemann-zeta function@see Refs. 12–14~circular ensembles! and 3 ~unitary ensembles!#.
Many other uses are described, for example, in Refs. 1, 12, and 17.

By ~1.2!, for unitary ensembles, such averages have the form

a!Electronic mail: jbaik@math.princeton.edu
b!Electronic mail: deift@cims.nyu.edu
c!Electronic mail: eugene.strahov@brunel.ac.uk
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K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5
1

ZN
E ¯E

)
j 51

K

)
i 51

N

~m j2xi !

)
j 51

M

)
j 51

N

~e j2xi !

D~x!2 da~x!. ~1.3!

In this article we consider certain explicit determinantal formulas for~1.3!—see ~2.6!, ~2.24!,
~2.36!, ~3.3!, and~3.12! below. Formula~2.6! is due to Brezin and Hikami3 ~see also Ref. 16, and
when all them j ’s are equal, see Ref. 10!, whereas~2.24!, ~2.36!, ~3.3!, and ~3.12! are due to
Fyodorov and Strahov.17,11 References 17 and 11 also contain a discussion of the history of t
formulas. The formulas~3.3! and ~3.12! are particularly useful in proving universality results f
the ratios~1.3! in the Dyson limit asN→` ~see Ref. 17!. For a discussion of other universalit
results, particularly the work of Brezin–Hikami and Fyodorov in special cases, we again ref
reader to Ref. 17. The asymptotic analysis in Ref. 17 is based on the reformulation of the or
nal polynomial problem as a Riemann–Hilbert problem by Fokas, Its, and Kitaev.9 The Riemann–
Hilbert problem is then analyzed asymptotically using the noncommutative steepest-d
method introduced by Deift and Zhou,5 and further developed with Venakides in Ref. 6 to allo
for fully nonlinear oscillations, and in Refs. 7 and 8.

Our goal in this article is to give new, streamlined proofs of~2.6!–~3.12!, using only the
properties of orthogonal polynomials and a minimum of combinatorics. Along the way we
also need an integral version of the classical Binet–Cauchy-formula due to C. Andre´ief dating
back to 1883~see Lemma 2.1 below!.

Let p j (z)5xj1¯ denote thejth monic orthogonal polynomial with respect to the meas
da,

E
R
p j~x!pk~x!da~x!5cjckd jk ; j ,k>0, ~1.4!

where the norming constantscj ’s are positive. The key observation in our approach is that
K51 andM50 in ~1.3!,

^DN@m,H#&a5pN~m! ~1.5!

~see Ref. 18!. In our words, the orthogonal polynomialpN(m) with respect toda is also precisely
the average polynomialP i 51

N (m2xi) with respect todPa,N . Formula~1.5! appears already in the
work of Heine in the 1880s~see Ref. 18!. Set

da@,,m#~ t ![

)
j 51

,

~m j2t !

)
j 51

m

~e j2t !

da~ t !, ,,m>0, ~1.6!

@da@0,0#(t)[da(t)#, and letp j
@,,m#(t) denote thejth monic orthogonal polynomial with respect t

da@,,m#. With this notation we see immediately from~1.3! and ~1.5! that
^Qj 51

K DN@m j ,H#/Qj 51
M DN@e j ,H#&a is proportional topN

@K21,M #(mK). Using a classical determi
nantal formula of Christoffel~see Ref. 18! for pN

@,,0#(m) and a more recent formula of Uvarov19

for pN
@0,m#(m), we are then led~see Sec. II! to ~2.6!, ~2.24!, and~2.36! in a rather straightforward

way. Formula~3.3! appears to have a different character from~2.6!, ~2.24!, and~2.36!, and relies
on Lemma 2.1 mentioned above, which computes the integral of the product of two determi
formula ~3.12! follows ~see Sec. III! by combining~3.3! with ~2.6! and ~2.36!. In Ref. 17 the
authors present a variety of additional formulas for^Qj 51

K DN@m j ,H#/Qj 51
M DN@e j ,H#&a for cases

of K and M not covered by~2.6!–~3.12!: we leave it to the interested reader to verify that t
method of this article can also be used to derive these formulas in a straightforward mann

Remark 1.1:As is well known~see, e.g., Ref. 18!, each measureda gives rise to a tridiagona

operator
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J5J~da!5S a1 b1 0

b1 a2 b2

0 b2 a3 �

� �

D , bi.0, ~1.7!

with generalized eigenfunctions given by the orthonormal polynomials

pj~x!5cj
21p j~x!, j 50,1,..., ~1.8!

i.e.,

bj 21pj 21~x!1aj pj~x!1bj pj 11~x!5xpj~x!, j >1, ~1.9!

where b0[0. Conversely, modulo certain essential self-adjointness issues,da is the spectral
measure forJ in the cyclic subspace generated byJ and the vectore1(1,0,0,...)T ~see, e.g., Ref. 4!.
It follows that the transformation of measures

da→da@,,m# ~1.10!

leads to the transformation of operators

J~da!→J~da@,,m#!. ~1.11!

For appropriate choices ofm1 ,...,mm ande1 ,...,e, , such transformations correspond to removi
m points from the spectrum ofJ(da) and inserting, points: in the spectral theory literature, suc
transformations are known as Darboux transformations. The formulas in this article clearly
vide formulas for the generalized eigenfunctionspj

@,,m#(x) of the Darboux-transformed operato
J(da@,,m#), as well as the matrix entries,aj

@,,m# andbj
@,,m# , in terms of the corresponding objec

for J(da). Again we leave the details to the reader. Here the elementary formulas

bn
2~da!5

n11

n12

Zn~da!Zn12~da!

~Zn11~da!!2
, an~da!5

d

dtU
t50

log
Zn~da t!

Zn11~da t!
, ~1.12!

whereda t(x)5etxda(x), are useful.
Technical Remark 1.2:Formulas~2.6!–~3.12! clearly do not make sense for all values of t

parameters. Inall the calculations that follow, we will assume thatda has compact support,
support (da)5@2Q,Q#, say, and that them i ’s and e j ’s are distinct real numbers greater
than Q: under these assumptions,da@,,m#(t) becomes, in particular, a bona fide measure, etc.
analytic continuation one sees that the formulas remain true for complex values of$m i% and$e j%,
as long as they remain distinct. Furthermore, if them j ’s ande j ’s are distinct, and Im(ej)Þ0 for all
j, then we can letQ→` and so the formulas are true for measuresda with unbounded support
Finally, we can, for example, letm j→mk for some j Þk, which leads to formulas involving
derivatives of thep j ’s, etc.

II. FORMULAS OF CHRISTOFFEL–UVAROV TYPE

We use the notationsda, p j , da@,,m#, p j
@,,m# ,... of Sec. I. In addition, in all the calculation

that follow we assume thatda, $m j%, $ek% satisfy the conditions described in Technical Rema
1.2 above: the natural analytical continuation of the formulas obtained to complex values
parameters, and the limitQ→`, is left to the reader.

The following result of Christoffel~see Ref. 18! plays a basic role in what follows.
Lemma 2.1: Consider the measure da@,,0#(t)5P j 51

, (m j2t)da(t), where,51,2,... .Then the
nth monic orthogonal polynomialpn

@,,0#(t) associated with the new measure da@,,0#(t) can be
expressed as follows:



pn
@,,0#~ t !5

1

t2m ¯ t2m

Upn~m1! ¯ pn1,~m1!

]

pn~m,! ¯ pn1,~m,!

pn~ t ! ¯ pn1,~ t !

U
p m ¯ p m

. ~2.1!

ure
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~ 1! ~ ,! U n~ 1! n1,21~ 1!

]

pn~m,! ¯ pn1,21~m,!
U

Proof: Set

qn
@,,0#~ t !5Upn~m1! ¯ pn1,~m1!

]

pn~m,! ¯ pn1,~m,!

pn~ t ! ¯ pn1,~ t !

U . ~2.2!

We note thatqn
@,,0#(t) satisfies the condition* t jqn

@,,0#(t)da(t)50 for all j P$0,...,n21%. Also
qn

@,,0#(m j )50, j 51,...,,, and soqn
@,,0#(t)/@(m12t)¯(m,2t)# is a polynomial of degree at mostn.

Now observe that

E t jF qn
@,,0#~ t !

~m12t !¯~m,2t !Gda@,,0#~ t !50, 0< j ,n, ~2.3!

which means thatqn
@,,0#(t) divided by the product (m12t)¯(m,2t) is proportional to thenth

monic orthogonal polynomialpn
@,,0#(t) associated with the new measureda@,,0#(t). Now qn

@,,0#

3(t) cannot vanish for anyt5m,11.Q, m,11¹$m1 ,...,m,%. Indeed, ifqn
@,,0#(m,11)50, then

there exist$a i% i 50
, , not all zero, such thatp(t)[( i 50

, a ipn1 i(t) vanishes at$m i% i 51
,11. Thus

p̃(t)[p(t)/P i 51
,11(m i2t) is a polynomial of order,n, and as above,p̃(t) is orthogonal tot j ,

0< j ,n, with respect to the measureda@,11,0#(t). Thus p̃(t)[0 and hencea05¯5a,50,
which is a contradiction. Replacing, by ,21, we conclude that

Upn~m1! ¯ pn1,21~m1!

]

pn~m,! ¯ pn1,21~m,!
UÞ0. ~2.4!

Taking the limit t→` and noting that the coefficient of the highest degree ofpn
@,,0#(t) should be

equal to 1, we find the coefficient of proportionality and establish formula~2.1!. h

Representation~2.1! for the monic orthogonal polynomials associated with the meas
da@,,0#(t) immediately leads to the following result:

Corollary 2.2: The product of monic orthogonal polynomialsP j 50
, pn

@ j ,0#(m j 11) defined with
respect to the different measures da@ j ,0#(t)[(m j2t)¯(m12t)da(t) is given by the formula

)
j 50

,

pn
@ j ,0#~m j 11!5

1

D~m!U pn~m1! ¯ pn1,~m1!

]

pn~m,11! ¯ pn1,~m,11!
U , ~2.5!

whereD(m)5P,11> i . j >1(m i2m j ).
We observe that Corollary 2.2 gives the identity for the average of products of ran

characteristic polynomials obtained first by Brezin and Hikami.3

Theorem 2.3:Let DN@m,H# be the characteristic polynomial of the Hermitian matrix H. T
following identity is valid:
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K )
j 51

L

DN@m j ,H#L
a

5
1

D~m!UpN~m1! ¯ pN1L21~m1!

]

pN~mL! ¯ pN1L21~mL!
U , ~2.6!

where the average is defined by (1.2).
Proof: To prove formula~2.6! we use the representation for the monic orthogonal polynom

in the caseL51 given in ~1.5!,

pN~m!5
1

ZN
E ¯E )

i 51

N

~m2xi !D
2~x!da~x!. ~2.7!

Let ZN
@,,0# be defined by

ZN
@,,0#5E ¯E D2~x!da@,,0#~x!, ,51,2,..., ~2.8!

whereda@,,0#(x)5P i 51
N da@,,0#(xi). With this notation, we have

K )
j 51

L

DN@m j ,H#L
a

5
ZN

@L,0#

ZN
5

ZN
@L,0#

ZN
@L21,0#

ZN
@L21,0#

ZN
@L22,0#

¯

ZN
@1,0#

ZN
. ~2.9!

Equation~2.7! implies thatpn
@,21,0#(m,) can be represented as the ratioZN

@,,0#/ZN
@,21,0# , where

pN
@0,0#(m)[pN(m), andZN

@0,0#[ZN . Thus we obtain

K )
j 51

L

DN@m j ,H#L
a

5 )
j 50

L21

pN
@ j ,0#~m j 11!. ~2.10!

The above equation together with Corollary 2.2 proves formula~2.6!. h

Remark 2.4:Notice @see Eqs.~2.7! and ~2.10!# that the average of products of characteris
polynomials can be rewritten as a product of averages. Namely,

K )
j 51

L

DN@m j ,H#L
a

5)
j 51

L

^DN@m j ,H#&a@ j 21,0#, ~2.11!

where^¯&a@ j 21,0# means the average defined by Eq.~1.2! but with respect to the new measu
da@ j 21,0#(x), andda(x)[da@0,0#(x).

The formula of Christoffel@Eq. ~2.1!# enables us to construct the orthogonal polynomi
associated with the measureda@,,0#(t)5P j 51

, (m j2t)da(t) in terms of the orthogonal polynomi
als associated with the measureda(t). Now we derive a formula due to Uvarov19 expressing the
monic orthogonal polynomialspn

@0,m#(t) associated with the measureda@0,m#(t)5P j 51
m (e j

2t)21da(t), again in terms of the monic orthogonal polynomialspn(t) associated with the
measureda(t).

Lemma 2.5: Suppose0<m<n. The monic orthogonal polynomialspn
@0,m#(t) associated with

the measure da@0,m#(t) can be expressed as ratios of determinants.



pn
@0,m#~ t !5

U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

pn2m~ t ! ¯ pn~ t !

U
h e ¯ h e

. ~2.12!
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U n2m~ 1! n21~ 1!

]

hn2m~em! ¯ hn21~em!
U

Here the hk(e j )’s are the Cauchy transformations of the monic orthogonal polynomialspk(t).

hk~e j !5
1

2p i E pk~ t !da~ t !

t2e j
. ~2.13!

Proof: Set

qn
@0,m#~ t !5U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

pn2m~ t ! ¯ pn~ t !

U . ~2.14!

Now qn
@0,m#(t) is proportional to thenth monic orthogonal polynomialpn

@0,m#(t) with respect to the
measureda@0,m#(t). Indeed, first observe that

E qn
@0,m#~ t !

t2e j
da~ t !50, j 51,...,m. ~2.15!

Also, for 0<k,n,

tk

P,51
m ~e,2t !

5 (
,51

m
b,

e,2t
1p~ t ! ~2.16!

for suitable constants$b,% and for some polynomialp(t) of degree,n2m. But for 0<k,n,

E tkqn
@0,m#~ t !da@0,m#~ t !52 (

,51

m

b,E qn
@0,m#~ t !

t2e,
da~ t !1E p~ t !qn

@0,m#~ t !da~ t !. ~2.17!

The terms in the sum are zero by~2.15! and the final integral is zero by the construction~2.14! of
qn

@0,m#(t) and the fact that degp(t),n2m. Thusqn
@0,m#(t) is proportional topn

@0,m#(t). An argu-
ment similar to the proof in Lemma 2.1, that

Upn~m1! ¯ pn1,21~m1!

]

pn~m,! ¯ pn1,21~m,!
UÞ0, ~2.18!

shows that the denominator in~2.12! does not vanish. Lettingt→` in ~2.14!, and matching
leading terms, we prove Lemma 2.5. h

Remark 2.6:In Ref. 19, Uvarov obtains formulas forpn
@0,m#(t) of type ~2.12! also in the case

m.n. These formulas can be used to obtain analogs of~2.24! and ~2.36! below in the caseM
.N.
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Remark 2.7:As noted in Refs. 11 and 17, the Cauchy transformationshk(e) of thepk’s occur
explicitly, together with thepk’s, in the solution of the Fokas–Its–Kitaev Riemann–Hilbert pro
lem for orthogonal polynomials.9

Lemma 2.5 implies the following analog of the Christoffel formula for the Cauchy transfo
of monic orthogonal polynomials.

Corollary 2.8: Let hk
@0,m#(e) be the Cauchy transform of the monic polynomialpk

@0,m#(t). with
respect to the measure da@0,m#(t),

hk
@0,m#~e !5

1

2p i E pk
@0,m#~ t !

t2e
da@0,m#~ t !. ~2.19!

Let also0<m<n. Then hn
@0,m#(e) has a representation similar to that for the monic orthogon

polynomialspn
@,,0#(t) [Eq. (2.1)],

hn
@0,m#~e !5

~21!m

~e2em!¯~e2e1!

U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

hn2m~e! ¯ hn~e!

U
U hn2m~e1! ¯ hn21~e1!

]

hn2m~em! ¯ hn21~em!
U . ~2.20!

Proof: The above representation follows from formula~2.12! and from the fact that

1

~ t2em11!¯~ t2e1!
5 (

j 51

m11
1

t2e j
)
kÞ j

1

e j2ek
. ~2.21!

Indeed we find from formula~2.12! thathn
@0,m#(e) is the ratio of the determinants. The elements

the last row of the determinant in the numerator are the integrals

1

2p i E pn2k~ t !da~ t !

~ t2e!~ t2em!¯~ t2e1!
, 0<k<m.

Using identity~2.21! and noting that the only term

1

t2e

1

~e2em!¯~e2e1!
~2.22!

of the sum~2.21! contributes to the determinant,~2.20! follows. h

Equation~2.20! immediately implies the following analogy of~2.5! for the hk
@0,m#’s.

Corollary 2.9: Let0<m<n. Then the product of the Cauchy transforms of monic orthogo
polynomials with respect to the measures da@0,j #(t), 0< j <m, can be written as a determinant,

)
j 50

m

hn2m1 j
@0,j # ~e j 11!5

~21!m~m11!/2

D~e! U hn2m~e1! ¯ hn~e1!

]

hn2m~em11! ¯ hn~em11!
U . ~2.23!

Now we derive the identity for the average of the product of inverse random characte
polynomials.

Theorem 2.10:Suppose1<M<N and letgn522p i /cn
2, where cn is the normality constant

defined by Eq. (1.4). Then we have the following formula:
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K )
j 51

M

DN
21@e j ,H#L

a

5~21!M ~M21!/2

)
j 5N2M

N21

g j

D~e! U hN2M~e1! ¯ hN21~e1!

]

hN2M~eM ! ¯ hN21~eM !
U . ~2.24!

Proof: WhenM51, we use the identity~2.21! together with~2.7! and the relation~see, e.g.,
Ref. 18!

gn21522p in
Zn21

Zn
~2.25!

to obtain

^DN
21@e,H#&a5gN21hN21~e!. ~2.26!

We rewrite the average in Eq.~2.24! as follows:

K )
j 51

M

DN
21@e j ,H#L

a

5
ZN

@0,M #

ZN21
@0,M21#

ZN21
@0,M21#

ZN22
@0,M22#

¯

ZN2M
@0,0#

ZN
@0,0#

, ~2.27!

where

ZN
@0,M #5E ¯E D2~x!da@0,M #~x!, ~2.28!

ZN
@0,0#[ZN andda@0,0#(x)5da(x). The following relation can be observed from Eqs.~2.26! and

~2.25!:

ZN2K
@0,m#

ZN2K21
@0,m21#

522p i ~N2K !hN2K21
@0,m21#~em!. ~2.29!

Inserting this relation in~2.27! we find

K )
j 51

M

DN
21@e j ,H#L

a

5)
j 51

M

gN2 jhN2 j
@0,M2 j #~eM2 j 11!. ~2.30!

Our result~2.24! immediately follows from the above equation and formula~2.23!. h

We now repeat the above considerations for the case

da@,,m#~ t !5
~m12t !¯~m,2t !

~e12t !¯~em2t !
da~ t !. ~2.31!

The first result is a Christoffel-type formula for the measure~2.31!, which is due to Uvarov.19

Lemma 2.11: Suppose0<m<n. Then the monic orthogonal polynomialspn
@,,m#(t)’s with

respect to the measure da,,m] (t) have the following representation:



pn
@,,m#~ t !5

1

~ t2m,!¯~ t2m1!

U hn2m~e1! ¯ hn1,~e1!

]

hn2m~em! ¯ hn1,~em!

pn2m~m1! ¯ pn1,~m1!

]

pn2m~m,! ¯ pn1,~m,!

pn2m~ t ! ¯ pn1,~ t !

U
U hn2m~e1! ¯ hn1,~e1!

]

hn2m~em! ¯ hn1,~em!

pn2m~m1! ¯ pn1,~m1!

]

U . ~2.32!

of
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pn2m~m,! ¯ pn1,~m,!

Proof: As in the previous cases we defineqn
@,,m#(t) to be the determinant in the numerator

~2.32!. Observe that

qn
@,,m#~m1!5¯5qn

@,,m#~m,!50 ~2.33!

and that

E qn
@,,m#~ t !da~ t !

e12t
5¯5E qn

@,,m#~ t !da~ t !

em2t
50. ~2.34!

The next steps are the same as in the proofs of Lemma 2.1 and Lemma 2.5. h

Corollary 2.12:

K )
j 51

K

DN@m j ,H#L
a@0,M #

5
1

D~m!

U hN2M~e1! ¯ hN1K21~e1!

]

hN2M~eM ! ¯ hN1K21~eM !

pN2M~m1! ¯ pN1K21~m1!

]

pN2M~mK! ¯ pN1K21~mK!

U
U hN2M~e1! ¯ hN~e1!

]

hN2M~eM ! ¯ hN~eM !
U . ~2.35!

Proof: Identity ~2.35! follows from Eqs.~2.10! and~2.32! once we note that Eq.~2.32! can be
rewritten in a similar manner as Eq.~2.5!. h

Finally we generalize Theorems 2.3 and 2.10 and obtain a formula for the average of ra
characteristic polynomials.

Theorem 2.13:Suppose0<M<N. Then the average of ratios of characteristic polynomia
of N3N Hermitian matrices H is given by the following formula:



K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5

~21!M ~M21!/2 )
j 5N2M

N21

g j

D~m!D~e! U hN2M~e1! ¯ hN1K21~e1!

]

hN2M~eM ! ¯ hN1K21~eM !

pN2M~m1! ¯ pN1K21~m1!

]

U .

l
ding

lation.
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pN2M~mK! ¯ pN1K21~mK!
~2.36!

Proof: Let a@0,0#[a, Zn
@0,0#[Zn . Then we have

K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5
ZN

@K,M #

ZN
@0,0#

5
ZN

@K,M #

ZN
@0,M #

ZN
@0,M #

ZN
@0,0#

, ~2.37!

i.e.,

K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5K )
j 51

K

DN@m j ,H#L
a@0,M #

K )
j 51

M

DN
21@e j ,H#L

a

. ~2.38!

We use Corollary 2.12 and Theorem 2.10 to obtain formula~2.36!. h

Remark 2.14:Observe that formulas~2.6! and ~2.24! do not follow immediately as specia
cases of~2.36!: some further algebraic manipulation is required. Similarly, the process of ad
and removing zeros is clearly reciprocal. More precisely, givene1 ,...,e, , we can construct the
polynomials pn

@0,,#(t;da@0,,#) associated with the measureda@0,,#(t)5(P i 51
, (e i2t)21)dt by

~2.12!: We can then constructpn
@,,0#(t;d(a@0,,#) @,,0#) with m i5e i , insertingpn

@0,,#(t;da@0,,#) for
pn(t) on the right-hand side of~2.1!. We should find thatpn

@,,0#(t;d(a@0,,#) @,,0#)5pn(t;da).
However, again, this relation is not immediately clear, and requires further algebraic manipu

III. FORMULAS OF TWO-POINT FUNCTION TYPE

The following integral version of the Binet–Cauchy formula is due to Andre´ief,2 and plays a
basic role in our calculations.

Lemma 3.1: Let(X,dm) be a measure space and suppose fi , gjPL2(X,dm) for 1< i , j <k.
Then

E
X
¯E

X
det~ f i~xj !!1< i , j <k det~gi~xj !!1< i , j <k dm~x1!¯dm~xk!

5k! detS E
X

f i~x!gj~x!dm~x! D
1< i , j <k

. ~3.1!

Proof: Setci j 5*Xf i(x)gj (x)dm(x). Then

E
X
¯E

X
det~ f i~xj !!1< i , j <k det~gi~xj !!1< i , j <k dm~x1!¯dm~xk!

5 (
s,tPSk

sgn~s!sgn~t!cs~1!t~1!¯cs~k!t~k!5(
s

sgn~s!(
t

sgn~t+s!cs~1!t+s~1!¯cs~k!t+s~k!

5(
s

~sgn~s!!2(
t

sgn~t!c1t~1!¯ckt~k!5k! det~ci j !1< i , j <k ~3.2!
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as desired. In~3.2! we used sgn(t+s)5(sgnt)(sgns) and the fact thatcs(1)t+s(1)¯cs(k)t+s(k)

5c1t(1)¯ckt(k) for all s. h

Theorem 3.2:Let K>1. Then the following identity is valid:

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
CN,K

D~l!D~m!
det~WI ,N1K~l i ,m j !!1< i , j <K , ~3.3!

where

WI ,N1K~x,y!5
pN1K~x!pN1K21~y!2pN1K~y!pN1K21~y!

x2y
~3.4!

and

CN,K5

)
,5N

N1K21

c,
2

~cN1K21!2K
~3.5!

where c, is again the norming constant forp, given in (1.4).
Proof: Let pj (x)5cj

21p j (x), j >0, denote the orthonormal polynomials with respect toda.
From ~1.2! we obtain

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
1

ZND~l!D~m!
E ¯E D~x,l!D~x,m!da~x!. ~3.6!

Adding columns, we see that the Vandermonde determinantD(x,l) has the form

U p0~x1! p1~x1! ¯ pN1K21~x1!

]

p0~xN! p1~xN! ¯ pN1K21~xN!

p0~l1! p1~l1! ¯ pN1K21~l1!

]

p0~lK! p1~lK! ¯ pN1K21~lK!

U ~3.7!

and similarly forD(x,m). Herep j (t)5p j
@0,0#(t). The determinantD(x,l) can be evaluated by a

Lagrange expansion of the form

(
0< i 1, i 2,¯, i k<N1K21

s i 1 ,...,i KUp i 1
~l1! ¯ p i K

~l1!

]

p i 1
~lK! ¯ p i K

~lK!
UUp j 1

~x1! ¯ p j N
~x1!

]

p j 1
~xN! ¯ p j N

~xN!
U ,

~3.8!

where s i 1 ,...,i K
561 is an appropriate signature and$( j 1 ,...,j N):0< j 1, j 2,¯, j N<N1K

21% is the complement of$ i 1 ,...,i K% in $0,1,...,N1K21%. Multiplying ~3.8! by a similar expan-
sion for D(x,m), and inserting in~3.6!, we obtain a sum of terms of the form

E ¯E Up j 1
~x1! ¯ p j K

~x1!

]

p j 1
~xN! ¯ p j K

~xN!
UUp j

18
~x1!

¯
p j

N8
~x1!

]

p j
18
~xN!

¯
p j

N8
~xN!
Uda~x!, ~3.9!
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which is equal by Lemma 3.1 toN! det(*pj
i8
(x)pjk

(x)da(x))1<i,k<N5N! det(dj
i8jk

cjk
2 )1<i,k<N . From

this we see that

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
N!

ZND~l!D~m! (
0< i 1,¯, i k<N1K21

s i 1 ,...,i K
2 Up i 1

~l1! ¯ p i K
~l1!

]

p i 1
~lK! ¯ p i K

~lK!
U

3)
k51

N

cj k

2Up i 1
~m1! ¯ p i K

~m1!

]

p i 1
~mK! ¯ p i K

~mK!
U

5
N!Pq5N

N1K21cq
2

ZND~x,l!D~x,m! (
0< i 1,¯, i k<N1K21

det~pi j
~lk!!1< j ,k<K det~pi j

~mk!!1< j ,k<K

5
N!Pq5N

N1K21cq
2

ZND~x,l!D~x,m!
detS (

0< i<N1K21
pi~l j !pi~mk! D

1< j ,k<K

, ~3.10!

where the last line follows by applying Lemma 3.1 to the discrete measuredm5( i 50
N1K21d i . But,

by the Christoffel–Darboux formula,

(
0< i<N1K21

pi~l j !pi~mk!5
pN1K~l j !pN1K21~mk!2pN1K~mk!pN1K21~l j !

l j2mk
, ~3.11!

which then implies~3.3! asZN5N!P,50
N21c,

2 ~see, e.g., Ref. 18!. h

Theorem 3.3:Suppose1<K<N. Then the following identity is valid:

K )
j 51

K
DN@m i ,H#

DN@e j ,H# L
a

5~21!K~K21!/2gN21
K D~e,m!

D2~e!D2~m!
det~WH,N~e i ,m j !!1< i , j <K , ~3.12!

where

WH,N~x,y!5
hN~e!pN21~m!2hN21~e!pN~m!

e2m
~3.13!

and again hk(e)5(1/2p i )*pk(t)da(t)/(t2e) is the Cauchy transform ofpk(t) and gN215
22p i /CN21

2 . Observe first that by linearity



U hN2M~e1! ¯ hN1L21~e1!

]

hN2M~eM ! ¯ hN1L21~eM !

pN2M~m1! ¯ pN1L21~m1!

]

U5E ¯E da~l!

~2p i !M)
M

~l j2e j !

nd
aver-

mials.
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pN2M~m1! ¯ pN1L21~mL!

j 51

3U pN2M~l1! ¯ pN1L21~l1!

]

pN2M~lM ! ¯ pN1L21~lM !

pN2M~m1! ¯ pN1L21~m1!

]

pN2M~m1! ¯ pN1L21~mL!

U . ~3.14!

Inserting~2.36! on the left-hand side, and using~2.5! to reexpress the integrand on the right-ha
side, we obtain the following result, which is of independent interest. The result expresses
ages of ratios of characteristic polynomials in terms of averages of products of such polyno

Proposition 3.4: Let1<M<N. Then

K )
j 51

L

DN@m i ,H#

)
j 51

M

DN@e j ,H#
L

a

5

~21!M ~M21!/2 )
j 5N2M

N21

g j

D~m!D~e!
E ¯E da~l!

~2p i !M)
j 51

M

~l j2e j !

D~l,m!

3K )
j 51

M

DN2M@l j ,H#)
j 51

L

DN2M@m j ,H#L
a

. ~3.15!

Proof of Theorem 3.2:For M5L5K<N, by ~3.15! and ~3.3!,

D~m!D~e!

~21!K~K21!/2 )
j 5N2K

N21

g j
K )

j 51

K

DN@m i ,H#

)
j 51

K

DN@e j ,H#
L

a

5E ¯E da~l!

~2p i !M)
j 51

M

~l j2e j !

CN2K,K)
i 51

K

)
j 51

K

~m i2l j !det~WI ,N~l i ,m j !!1< i , j <K .

~3.16!

But

1

2p i E da~l j !

l j2e j
)
i 51

K

~m i2l j !
pN~l j !pN21~mk!2pN21~l j !pN~mk!

l j2mk

5
1

2p i E da~l j !S 12
m12e j

l j2e j
D S )

i 52
iÞk

K

~m i2l j !D ~pN~l j !pN21~mk!2pN21~l j !pN~mk!!

52
1

2p i E da~l j !
m12e j

l j2e j S )
i 52
iÞk

K

~m i2l j !D ~pN~l j !pN21~mk!2pN21~l j !pN~mk!! ~3.17!
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as * da(l j )l j
,pN21(l j )5* da(l j )l j

,pN(l j )50 for 0<,<K22,N21. Continuing in this
way, the integral reduces toP i 51

K (m i2e j )WH,N(e i ,mk). Thus we find

D~m!D~e!

~21!K~K21!/2 )
j 5N2K

N21

g j

K )
j 51

K

DN@m i ,H#

)
j 51

K

DN@e j ,H#
L

a

5
D~e,m!

D~e!D~m!
det~WI ,N1K~l i ,mk!!1< i ,k<K

~3.18!

and ~3.12! follows. h
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