Longitudinal acoustic mode in polymers: Influence of defects
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Normal mode calculations have been done on planar zigzag chains C, (n = 22 to 82), terminated
or connected by various fold structures and subjected to force and mass perturbations, to
determine how the longitudinal acoustic mode (LAM) is influenced by such defects. We find that
in general LAM-like displacements are distributed over a frequency range (depending on the stem
length), with a total intensity smaller than that for the unperturbed case. Only when the fold
comprises ~ 3% or less of the mass of the stem does it behave like a point mass perturbation.
These results show that the perturbed elastic rod model has limited validity and that caution is
necessary in attributing the shape of a LAM band entirely to a distribution of stem lengths.

PACS numbers: 43.20.Ks, 61.40.Km

INTRODUCTION

Since the first proposal® that a Raman-active longitudi-
nal acoustic mode (LAM) occurs in the spectra of planar
zigzag chains, two approaches have developed to under-
stand how this phenomenon is related to the properties of the
molecules. In the first, the molecular chain is considered to
be an elastic rod,! whose unperturbed frequency v,, = (m/
2L )(E /p)'’? is given in terms of the mode order m (an odd
integer), the rod length L, the elastic modulus E, and the
density p. This approach has been widely used: in the above
application to a homogeneous unperturbed rod,"* to a com-
posite amorphous-crystalline rod,’ in the approximation of a
homogeneous rod with small force perturbations at the
ends,* to composite rods with unrestricted mass and force
perturbations at the ends,’™® and as the basis for treating
coupled rods without'® and with'' damping in the connect-
ing amorphous regions. The elastic rod model has also been
used for analyzing LAM intensities in unperturbed rods,'*"?
thereby providing a basis for determining straight chain seg-
ment length distributions in polyethylene.'?

At the same time it has been recognized that the LAM
corresponds to a normal mode of the molecule, and should
therefore be better understood from the results of calcula-
tions of such vibrations. In this second approach, whether
based on a linear? or planar zigzag'* point mass model, fre-
quencies, and eigenvectors can be obtained for the LAM-like
modes, and from the eigenvectors the intensities can be cal-
culated.'®-'® Taken together, these properties should provide
greater insight into the factors determining the observed
LAM bands.

The goal of using the LAM to study the morphology of
polyethylene has been the hope that the technique would
provide direct information on the all-trans segment lengths
in the specimen. It is clear that, since polymers are molecules
that from a crystallographic point of view inherently have
defects, this goal will not be realized until we have a detailed
understanding of how such (conformational} defects influ-
ence the LAM. This must ultimately be obtained from nor-
mal mode analyses; indeed we will show that predictions of
the elastic rod model can be incorrect. Normal mode analy-
ses have been given for some internal conformational'® and
branch'” defects. We have initiated a more extensive study
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involving a broader range of defect structures.

We begin by considering the generalized predictions of
the elastic rod with force and mass perturbations. We then
examine the results of normal mode calculations on struc-
tures that implicitly and explicitly model these as well as
structural defects. The basic result that emerges is that the
LAM of the straight chain segment depends on how effec-
tively its vibrations are coupled to those of the defect. As we
will see, this varies with the length of the straight chain and
the nature of the defect.

PREDICTIONS OF ELASTIC ROD MODEL

It will be useful to examine whether the elastic rod mod-
el provides a satisfactory description of frequencies and in-
tensities even in the limit of small perturbations. We assume
arod of length L, cross-sectional area 4, elastic modulus E,
and density p, with point masses M at each end and force
perturbations at the ends represented by force constants /.
Any mode can be characterized by a wavevector k,, and
frequency w,, related by

=vk,,, (1)

where v, the wave velocity along the axial direction, is given
by

v=(E/p)'% (2)

For an unperturbed rod, k9, = ma/L, m =1,3,5....
The longitudinal displacement in a normal mode satis-
fies a wave equation that leads to the condition®

cot( ""; ) _ Mo’ ) ()

@

m

AEk

If the perturbations are small, we can expand around the
unperturbed value, i.e., cot(k,, L /2) = 0. This gives

m

kL 2_
d cot(———m )Akm - Mo —) f, (4)
dk, 2 AEk,,
from which
2
knl _ mm + S—Mao” (5)
2 2 AEk

Solving for k,,, and expanding the square root, with neglect
of higher order terms in fand M, gives
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where in the second form higher order terms in 2M /M (M
is the total mass of the rod) have been neglected. The fre-

quency v, = w,,/27is
v, = v?,,(l S S ) 7)
M, (mm)°’AE

where
= (m/2L}E /p)”z. (8)

There is abundant evidence for the frequency increase due to
small perturbing forces acting at the ends of n-paraffin
chains.*”® The frequency decrease due to the mass effect has
also been shown to occur in a cyclic paraffin and in perfluoro
n-alkanes.'® It is worth noting that if both effects are present
simultaneously they could cancel each other and give the
appearance of an absence of perturbations in the m =1
mode (but not in higher order modes).

The LAM intensity can be obtained by a treatment si-
milar to that previously given for an unperturbed rod.'* The
polarizability change a’ is related to the displacement in the
rod, u(x) = B sin(k,, x), through the internal strain:

L /2
a = f du —dx

- L/2 ® ax

L /2
= f a Bk, coslk, x)dx
—L/2

k L
= —2‘1:060 sin( Zm= ) (9)
2

where e, = Bk, is the strain amplitude at x =0 and a, is a
constant related to the unit polarizability of the rod. The
intensity is proportional to (a')%, and the mean square strain
amplitude (ej ) is obtained from the equipartition theorem.
Thus:

1
(U) = —ksT
L fO f [eo cos(k,,x)]dx

fo(eo

m

[k.L + sinlk,, L)1, (10)

where f; is an internal force constant. Substituting e, into the
expression for (a')? gives
8aikyT sin(k,, L /2)

)= —+ ke (kL + sin(k, L)] (1)

which in the absence of perturbations (i.e., k,, = k2 = mn/
L ) reduces to

8aiky,T [
fo o (mm)?

as obtained earlier."® If the perturbation is small, we can
expand (a')? around (a')?:

(@) = (12)
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n2
@P=wh+ (L) -k
and we find that
@ =1+ 4~ 2 ) (14

Thus, the perturbations influence the intensities in a manner
opposite to that of the frequencies.

Is Eq. (14) consistent with observation? As has been
noted,'? the scattered intensity from a n-paraffin sample is
proportional not only to the scattering per molecule but also
to the molecular density in the sample p,. Thus, for LAM-1
(e, m=1)

M 27L Ley,
I{LAM)« (@'fp L(1+ 2. ﬁzAE) o

(15)

where py . is the density of the CH, groups in the sample
and Ly, is the length per CH, group along the chain. Since
Pcu, is essentially constant for all crystalline n-alkanes, it
was expected that the LAM intensities would be indepen-
dent of chain length [as can be seen from Eq. (15) for an
unperturbed chain]. Measurements on n-paraffins from
C;oHg, to CyoH 4, showed the intensities to be constant to
within about 3%. In fact, we already know that n-paraffins
exhibit end force perturbations in their frequencies,*”* and
we should therefore expect Eq. (15) to apply. This predicts an
intensity decrease of about 8% over the above range of chain
lengths for typical values of /.

It would thus seem that as far as intensities are con-
cerned the elastic rod may be a poor model for real mole-
cules. In fact, we will also see that, whereas the intensity
decrease for force perturbations is qualitatively correct in
terms of the results of normal mode calculations, the intensi-
ty increase predicted for mass perturbations is incorrect. The
essential problem is that in the elastic rod, despite the pertur-
bations, the longitudinal displacements are confined to a sin-
gle mode at one frequency (for a given m). In a real molecule,
on the other hand, the LAM-type motion can be distributed
among a number of normal modes, being mixed (depending
on the perturbations) with other coordinates. It is therefore
important to understand in greater detail how specific kinds
of departures from unperturbed straight chains influence the
LAM frequency and intensity. An approach has recently
been developed in terms of generalized properties of the
straight chains and attached structures.'® Our approach has
been to examine the behavior of specific structures through
complete normal mode calculations.

CALCULATIONS
Defect structures

A variety of nonplanar zigzag structures, most chosen
from the literature,?®-2* formed the basis for the model struc-
tures of defective planar zigzag systems that we calculated.
These nonregular defect conformations are listed in Table I;
the specific model structures will be given below.

Force perturbations were studied for some of the sys-
tems, and these were modeled by introducing an additional
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TABLEI. Nonregular conformations used to model defective planar zigzag
polymethylene systems.

Symbol Type Conformation® Reference
F, (110)fold 200", 248°, 77°, 86°, 206°, 82°, 235° 22
F, (110)fold g, ga1gats g 21
Fy (110)fold (grg'z), g18,185(18'18); 21
F.° (110)fold 112.8° 112.1°, 113.6°, 112.7°, 20
114.8°, 114.8°, 116.2°, 114.0°, 111.4°,
113.5% 184.5%, 176.7°, 74.9°, 174.8",
68.4°,91.6°, — 58.4°, —64.4°, 174.4,
171.3°, 180.4°
F, (110)fold ggrggt 23
£ {110)fold grg'(2g),8188¢ 24
D defect giggit
J (110jjog 166° 43°, 173°, 173°, 132°, 69°, 197° 22
K kink 279°, 245°, 285°, 148°, 201°, 189°, 130° 22

*Given in terms of dihedral angles (in degrees, or frans and gauche), except
for F, where the first group represents bond angles.

® F is the structure used for fold. Torsions of this conformation have been
used as terminal structure, as follows: F%—114.8, 114.8, 116.2, 114.0,

111.4, 113.5; 68.4, 91.6, — 58.4, — 64.4, 174.4, 171.3. FL—112.8, 112.1,
113.6, 112.7, 114.8, 114.8; 176.7, 74.9, 174.8, 68.4, 91.6, — 58.4.

pseudobond, attached to a mass of 10* amu, at the atom
where the force is acting. Since the large mass hardly moves
during the vibration, the molecule now vibrates mainly un-
der the influence of the interaction force constant exper-
ienced by the atom to which the pseudobond is attached.
Mass perturbations were modeled by increasing the masses
of particular atoms.

Frequencies

The normal modes of the complete structure were cal-
culated in the approximation of the CH, group being taken
as a point mass of 14.001 amu (a terminal CH; group being
15.001 amu). This is not expected to alter the validity of the
calculations: we are interested only in skeletal modes, for
which the force field was developed in a point mass approxi-
mation,'* and we are more interested in the general trends
rather than exact numerical results.

In addition to the force constants developed for a point
mass planar zigzag polymethylene chain,'* we added a force
constant for the CCC-CCC' gauche interaction, since such
conformations occur in our defect structures. This constant
was obtained by fitting the frequencies of skeletal modes cal-
culated for (¢g)_, ,(tgeg’).. , and (g),, structures in polyethyl-
ene,? and was determined to be — 0.05 mdyn A/rad. In
fact, the frequencies of the LAM-like modes are not sensitive
to this force constant, but are influenced more by the tor-
sional force constant. We fitted this force constant to the
above structures, and obtained a value of 0.045 mdyn A/
rad; this value was used for frans and gauche bonds.

Intensities

Intensities of the LAM-like modes can be calculated by
a dot product or bond polarizability method.'® In the former
a dot product is taken between the displacement vector
formed from the normalized atomic displacements in the
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TABLE II. Calculated properties of C, planar zigzag chains.”

n vLAM),  vrod), @ n(@') Bs

22 102.9 106.4 0.0743 1.635 294
24 94.4 97.2 0.0669 1.606 293
36 63.2 63.8 0.0454 1.634 2.97
46 49.6 49.7 0.0359 1.651 2.98
58 39.4 392 0.0282 1.636 299
74 309 30.6 0.0223 1.650 2.9
82 28.0 27.6 0.0201 1.648 2.98

2v{LAM), is the LAM-1 frequency, in cm~', obtained from the normal co-
ordinate calculation.

vrod), is the LAM-1 frequency in cm ~', obtained from Eq. (6), using
E =2.90x 10" dyn/cm® from Ref. 4.

(@")3 is the squared molecular polarizability derivative, calculated by the
bond polarizability method (Ref. 16).

S = v{LAM-3)/vY{LAM-1).

chain axis direction of the unperturbed LAM and the similar
vector for the mode in question; this method therefore yields
relative intensities. The bond polarizability method yields
absolute intensities. We have used both methods to calculate
the intensities of LAM-like modes. The dot product method
generally yields lower values than the bond polarizability
method, and does not have as strong a theoretical basis. We
therefore give here only the results of the bond polarizability
method.

PLANAR ZIGZAG CHAINS WITH FREE ENDS

In order to study the influence of defect structures on
the LAM, it is necessary to know the characteristics of the
unperturbed molecules. In our studies we varied the length
of the planar zigzag segment from 22 (C,,) to 82 (Cg,) methy-
lene units, and in Table II we present some of the calculated
properties of such all-trans chains. In Fig. 1 we show the
atomic displacements for C,, in LAM-1(102.9cm™ ') and in
two nearby transverse acoustic modes (TAM), which will be
relevant to the subsequent discussion.

As can be seen from Table II, there is excellent agree-
ment between v(LAM), and v(rod), for chains longer than

cee 113.6 1/CM

Blnr-a - o Ve Ve Ve Wa S0 V- A vy

ce2 102.9 1/CM

ce2 74.5 1/CM

FIG. 1 Atomic displacements in LAM (102.9 cm ') and two nearby TAM
modes of C,,.
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TABLE III. Calculated properties of F%~C,-F}. chains.®

n LAM) B B {rod) @)z I Ir nlr (@) 4v
22 82.3 0.80 0.67 0.0171 23 68 L1 68
24 74.6 0.79 0.68 0.0168 25 70 1.12 63
36 55.7 0.88 0.75 0.0121 27 75 1.23 37
46 46.7 0.94 0.80 0.0104 29 80 1.32 29
58 362 0.92 0.84 0.0130 46 81 1.32 20
74 29.0 0.94 0.86 0.0143 64 85 1.41 11
82 259 0.93 0.88 0.0105 52 86 1.42 7

*1{LAM) is the LAM-1 frequency, in cm ™!, of the most LAM-like mode.
B, = LAM)/v(LAM), (cf. Table II).

B {rod) = virod)/vrod),, where v{rod) is calculated on the basis that F. is a point mass (see Ref. 6).

(@)} is the squared polarizability derivative of the most LAM-like mode.
L po

I = @R /@R, in %.

I = @');/(@');, where (@)} represents the summed squared polarizability derivatives for all the LAM-like modes with intensities 1% of {LAM),.
T

4v is the frequency range for all the LAM-like modes with intensities > 1% of v{LAM),.

C,¢, provided we use the value of E after correction for force
perturbations in crystalline #-alkanes.* In this range of chain
length the frequency ratio of LAM-3 to LAM-1 is close to 3,
a characteristic of the unperturbed elastic rod. The square of
the mean molecular polarizability derivative should be pro-
portional to 1/#, as has been shown for simple linear chains,?
and this is seen to be true except for C,,, where the LAM-1is
mixed slightly with TAM-5.

It should be noted that the intensity scattered by a mole-
cule is given, quantum mechanically, by®$

(vo— ' @F 16)
v[1 —exp(—Av/kyT)] ’
where v,>v is the frequency of the incident radiation. For
small v the bracketed term is proportional to v, and if we
assume the relation betweenvand L for an unperturbed rod,
Eq. (6), we find that Eq. (14) reduces to I < L, the classical
result of Eq. (10).

T

PLANAR ZIGZAG CHAINS WITH TERMINAL
STRUCTURES

LAM as a function of chain length

We have examined two aspects of how the LAM of a
planar zigzag segment is affected by nonregular terminal
structures: the variation with chain length for a constant
terminal structure, and the variation with terminal structure
for a constant chain length. We first examine the former
case.

The systems chosen for study were F%—C,—F !, chains
in which n varies from 22 to 82 and F % and F}. are parts ofa
(110) fold structure (cf. Table I); some of the results are given
in Table III. The loss of planar symmetry and the coupling to
the terminal structures causes the LAM of the all-trans seg-
ment to no longer be as well defined as in the unperturbed
system. More than one mode in the vicinity of v{LAM), has
LAM-like longitudinal displacements. We illustrate in Fig. 2
the three most intense such modes for F%—C,,—F L, and the
resemblance of these vibrational patterns to those of C,,
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(Fig. 1) is obvious. The vibrational patterns of longer chains
show similar features; they can be found in Ref. 27. In Fig. 3
we show the calculated LAM spectra for the above mole-
cules for frequencies whose relative intensity is >1% of
v(LAM),. In Table I1I we list the frequency and intensity of
the most LAM-like mode, the total intensity of LAM-like
modes with relative intensity of 0.01/ [v(LAM),] or greater,
and the frequency range over which these modes occur.

A number of interesting observations emerge from the
above results. First, as expected, v(LAM) is lower than
v(LAM),, although not by as much as is predicted from the

aurbbytsd

N TJT*T\ \7;

97.5 1/CM

/BAL[ 7&\ Lfl . /4\ \/LZY\

89.1 1/CM

Nt s

82.3 1/CM

FIG. 2. Atomic displacements in three most intense LAM-like modes of
F2-C,-FL.
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FIG. 3. LAM spectra for F&-C,—F{. (a) n = 22; (b) n = 24; (c) n = 36; (d)
n =146, (e)n=58; (f) n = 74; (g) n = 82.

elastic rod model with the F& or F{. structure taken as a
point mass equivalent to 6 CH, groups [cf. the 8, and 8 (rod)
values in Table III]. This difference gets relatively smaller as
n increases, indicating that the terminal structure behaves
increasingly as a point mass. Second, not only is the intensity
of v(LAM), I, . significantly lower than that of v(LAM),
(with fluctuations that depend on details of coupling with
nearby modes), but /, is no longer inversely proportional to
n. In fact, even 7, (the sum of intensities of all LAM-like
modes with I, >0.017 [v(LAM),}), while increasing with »
does not show this proportionality until higher values of 2.
Third, although the number of LAM-like modes is relatively
constant with n (at about 6), these modes are found over a
frequency range Av that is large and decreases rapidly with
increasing n.

The last two points raise the possibility of defining a
value of n above which, for this terminal structure, the chain
would behave as a simple mass-perturbed elastic rod. In Fig.
4 we show Av and I as a function of n. By extrapolation,
Av =0 near n =100 and I, = 100% near n = 160. Of
course, both curves should give the same value of , and if we
had included modes with I, <0.017 [v{LAM),] it is clear
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FIG. 4. Frequency range (4v) and total intensity (/) as a function of n for
F*-C,-F.

that both curves would shift in a direction to do so. For
n = 160, the F¥ (or F}) structure represents 3.8% of the
mass of the trans stem; an elastic rod analysis® gives
B, = 0.93, the asymptotic value that we find for v(LAM) at n
values very far from where the terminal structure behaves
like a point mass.

The effect of the terminal structure on the LAM of the
trans segment depends on how the vibrations of the former
couple with those of the latter. An examination of the vibra-
tional patterns of the modes represented in Fig. 3 shows that
the units of F* or F}. near the joint tend to vibrate longitudi-
nally with the trans segment unless a sharp turn, i.e., a
gauche bond, intervenes. Even so, the gauche bond does not
decouple the rest of F* and F L. from the trans segment, it
just interrupts the continuity of the LAM motion. In the
lower frequency LAM-like modes, units of F¥% or F| near
the joint move in the same direction as end units of the trans
segment; in the higher frequency LAM-like modes the corre-
sponding displacements are in opposite directions. The rela-
tive vibrational amplitudes in the F% or F{. and C, compo-
nents are not significantly different; thus, the noncrystalline
region does not seem to contain as disproportionate a frac-
tion of the vibrational energy as may be indicated by the
composite rod model.'®!! It should be noted that the con-
nection between F X (or F\.) and the trans segment leads to a
modification in the modes of the isolated F % (or F L) struc-
ture. Therefore, the recent suggestion'’ that a terminal
structure can be considered as a point mass as long as its
lowest normal mode frequency is higher than v(LAM), of
the trans segment cannot be exactly correct. For example,
this would be the case for structures longer than
F*_C,,—F L, but as we have seen, 4v and I considerations
show that we are still far from being able to take the terminal
structure as a point mass (although, interestingly, 3, has
reached the value that it has for n = 160 with the end struc-
tures taken as point masses). The discrepancy may be due to
the neglect of transverse displacements in the rod.’®
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TABLE IV. Calculated properties of A-C,,~B chains.”

A B ALAM) B I Ir Av B,
F; Fy 275 0.89 55 75 10 327
Fy/2 Fy/2 279 0.90 73 79 5 3.23
tsg gts 284 0.92 59 88 13 3.23
F2 Fl 29.0 0.94 64 85 1 2.86
F; F, 312 1.01 37 84 21 2.97
D’ D 314 1.02 50 88 18 292

®A = F%and B = F. are taken from Table III. The prime indicates a reverse order to the dihedral angles F,,/2 represents half of the F, structure, viz., gtg'1gt.

Other symbols are defined in Table III.

We therefore find that terminal nonregular structures
cause the trans segment to vibrate in a few LAM-like modes
with reduced intensities. These modes cover a large frequen-
cy range and are expected to give rise to an asymmetric band
envelope. The range decreases, and the intensities increase,
with increasing frans length, and when the terminal struc-
ture contains less than about 4% of the mass of the trans
segment the specific vibrational coupling becomes negligible
and the former structure can be taken as a point mass.

LAM as a function of terminal structure

We now examine how the LAM of the frans segment is
influenced by the details of the terminal structure. For this
purpose we have calculated the modes of A-C,,—B, where A
and B are different end structures of 6 CH, groups (except
F,, which has 12). We present the characteristics of these
molecules in Table I'V and give their LAM spectra in Fig. 5.

Although all of the terminal structures (except F,) con-
tain 6 CH, groups, v{LAM) is quite different. We have arbi-
trarily ordered the entries in Table IV in sequence of increas-
ing v(LAM), but in fact there seems to be a reason for this:
while in all cases the terminal bond of the trans segment is
gauche, the “extension” of the terminal structures generally
decreases from Fj, to D. It seems as if the LAM mode can be
carried more easily into an extended terminal structure than
into a collapsed one. However, this is not the only determin-
ing feature, and the specific structure certainly plays a role.
In fact, v(LAM) for F, and D are even higher than v(LAM-1)
for C,,. (Note that the relationships of Table IV hold even if
intensity-weighted LAM bands from Fig. 5 are used.) We
also see that v(LAM-3) is affected differently than v(LAM-
1), as is expected for perturbed systems, whether for small
[cf. Eq. (7)] or large® perturbations. The intensities of the
most LAM-like mode J, seem to vary widely and in no regu-
lar fashion, although the total intensity I tends to increase
as “extension” decreases. Note that this is the opposite of
what is predicted for the elastic rod with small perturbations
[Egs. (7) and (14)].

The fact that the results for Fy/2 are very similar to
those for Fj, led us to inquire whether further truncation of
the terminal structure had any effect. Calculations in which
the above structures were truncated to 3 CH, groups gave
LAM spectra with many similarities to those in Fig. 5, with
v(LAM) being slightly closer to v(LAM),. It seems as if
v(LAM) is most sensitive to the structure of the first few
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groups beyond the ¢rans stem, and hardly at all sensitive to
the structure beyond about 6 groups.

Finally, since the length dependence of 4v and I, given
in Fig. 4 pertained only to F ¥ and F . terminal structures, it
is clear that our estimate of the decoupled limit needs recon-
sideration. If we assume that relations of the form given in
Fig. 4 are still valid for the other terminal structures, then
the data of Table IV lead to the rough conclusion that
4v =0and I = 100% at about n = 190. This implies that
the chain behaves like a mass-perturbed elastic rod only for
terminal structures whose mass is about 3% or less of that of
the rrans segment. For shorter chains we expect the frequen-
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FIG. 5. LAM spectra for A-C,,-B. (a) A = t5g, B=gt;; () A=D",B=D

(" indicates reverse order to the dihedral angles); (c) A = F], B=F,; (d)
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TABLE V. Calculated properties of C,-F,-C, and C,,—F,—C,,—F,~C,, structures.

Structure v (LAM) B, 1, {A) 1, (B) 1, (C) I, Av
C,,-F,-C,, 95.5 0.92 9 37
97.2 0.94 10 22
101.1 0.98 18 8
102.4 0.99 28 ces 82 40
Cs~F,-Cys 60.6 0.92 35 10
61.7 0.94 15 1
63.3 0.96 3 29
64.3 0.98 1 19
65.4 1.00 25 15 86 27
Co—F1—Cye 46.8 0.94 2 47
48.0 0.97 30 4
50.1 1.01 31 28 89 15
C,-F-C,—F\~C,, 95.6 0.92 2 17 20
96.2 0.93 3 19 36
98.5 0.95 29 5 e
103.8 1.00 o ces 29 80 an

"v'(LAM) are the LAM-1 frequencies, in cm ' of those LAM-like modes with average intensity per stem > 10% of that of v{LAM),,.

The designations 7, (A) and I, (B) refer to the upper and lower stems in Fig. 6, and to the upper and middle [/, (C) being the lower] stems in Fig. 7. (See Note

added in proof.)
1, = I, /number of stems.

Other symbols are defined in Table II1.

cy to spread and the intensity to decrease, both of these de-
pending on chain length and on the details of the terminal
structures.

PLANAR ZIGZAG CHAINS CONNECTED BY FOLDS
LAM as a function of chain length and stem number

In order to obtain insights into the effects of folds on the
LAM vibrations of parallel trans stems, we have calculated
the normal modes of C,-F,-C, structures, where F, is a
tight (110) fold consisting of 4 CH, groups.?” The calculated
results are given in Table V, which also includes the results
for C,,-F,—C,,—F,~C,,. Atomic displacements for the most
intense LAM-like modes of C,,—F,—-C,, and C,,—F-C,,—
F—-C,, are given in Figs. 6 and 7, respectively. The complete
LAM spectra of these molecules are given in Fig. 8.

The LAM spectra show the same trend that we ob-
served in the previous section: the envelope of LAM-like
modes is broader, less intense, and more asymmetric for
short stems and becomes narrower and more intense as n
increases. Over the range studied, 4v and I 4 are good linear
functions of n, and an extrapolation gives 4v = 0 for n = 61
and 1 ;- = 100% for n = 85. If we assign 2 CH,, groups to the
ends of each stem, this again suggests that the stems will
behave as mass-perturbed elastic rods for a terminal mass of
about 3% or less of the stem mass.

The atomic displacements in the LAM-like modes
show that the stems need not all vibrate in LAM or in phase.
However, the mode with the stems vibrating in phase has the
lowest frequency of the most intense group, and involves fold
atom displacements that are in phase with the stem ends (as if
they were moving as inertial masses).”” Although this in-
phase mode may have significant intensity, it is still a small
fraction of the total. It is interesting that for the three-stem
system 4+ is not altered even though there are more LAM-
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FIG. 6. Atomic displacements in most intense LAM-like modes of C,,—F,—
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FIG. 7. Atomic displacements in most intense LAM-like modes of C,,-F,~
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like modes and the central stem vibrates with relatively
smaller amplitudes than the outer stems, particularly with
respect to out-of-plane components. It remains to be seen
whether this characteristic is maintained as the number of
stems increases.

LAM as a function of fold structure

Although both tight and loose folds have been proposed
for lamellar crystals, the actual fold structures have yet to be
determined experimentally. Expected structures have been
suggested on the basis of energy calculations?®?%?* or crys-
tal morphology.?> Most of these are tight folds, but loose
folds have also been suggested.”** We have examined the
effect of fold structure on the LAM by calculating the nor-
mal modes of C;s—F-C,5, where F=F, F, ,Fp,and F}, (Fj
is related to Fy by shortening the two arms but maintaining
the turn-back geometry of the latter; cf. Tables I and VI).
While F, is a tight fold consisting of 4 CH, groups, F, ,Fg,
and Fj are loose folds with 11, 23, and 15 CH, groups,
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respectively. The calculated results for these structures are
given in Table VI, and the LAM spectra are shown in Fig. 9.

There do not seem to be any general regularities in the
LAM spectra as a function of fold length. The only obvious
feature is that, whereas F, and F, give rise to a closely
grouped set of relatively intense LAM-like modes, Fy and

TABLE VI. Calculated properties of C;s~F~C;; structures.*

F  v(LAM) B I(A)  I.(B) Iy Av
F, 60.6 0.92 35 10

61.7 0.94 15 1

63.3 0.96 3 29

64.2 0.98 1 19

65.4 1.00 25 15 86 27
F, 60.1 0.93 69 3

61.7 0.94 4 19

62.9 0.96 2 23

64.8 0.99 2 20 89 20
Fy 67.5 1.03 17 19

70.6 1.07 21 6 83 38
F3 53.9 0.82 . 18

69.5 1.06 26 2

75.6 1.15 7 12 81 35

*I, (A), I, (B), and I ;. are the same as in Table V.
Fy is g1g'1geg 1g.1g'tg.
Other symbols are defined in Tables III and V.
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F produce a widely spaced set of low intensity modes.
Some of the latter are at frequencies significantly higher than
v(LAM),, which seems surprising until one examines the
atomic displacements®’: in these modes fold atoms near the
joint to the trans segments are generally moving in a direc-
tion opposite to that of the end atoms of the stem, thus in
effect creating strong end forces on the stem and leading to a
frequency rise [cf. Eq. (7)]. It should be noted that when the
size of the fold is comparable (as in the case of the long folds)
with the size of the trans stem, the normal modes of the
whole molecule are no longer dominated by the trans se-
quence; the fold contributes its own characteristics to the
normal modes. This explains why the atoms in the center
region of a long fold do not “follow” the motions of those at
the end of the trans segment, whereas the atoms in a tight
fold tend to be “driven” by the motions at the end of the trans
segment. Another way of saying this may be to note that for
the Fy structure the fold, considered as a mass, comprises
about 33% of the mass of a trans stems; if the 3% “‘rule” that
we discussed above were to apply, we would require that

= 383 for the system to act like a mass-perturbed elastic
rod.

The unusual appearance of two groups of LAM-like
modes seen for the Fy and F j structures arises not only from
coupling of LAM with different out-of-plane bend modes,
but is probably also a consequence of the length of the fold.
This characteristic undoubtedly diminishes as the trans stem
length increases, but at present we do not know where this
occurs. The dangers in such a case in attributing the LAM
intensity distribution to a trans stem length distribution'?
are obvious.

PLANAR ZIGZAG CHAINS CONNECTED BY JOGS AND
KINKS

The defects considered so far occur at the ends of trans
stems, and would be associated with surface structures in
polymer crystals. We consider now defects that could occur
within a crystal, and two common ones are so-called jogs and
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TABLE VII. Calculated properties of C,,~J-C,, and C,~K-C,, structur-
es.”

Structure v'(LAM) B I 15 Av
Cu—I-Cy4 C,,~85.7 0.91 13
87.7 0.93 5
93.4 0.99 14 40 24
C,—45.1 091 22
475 0.96 8
50.2 1.01 49 87 5
C—K—Cy C,,-86.5 0.92 7
87.3 0.92 17 40 39
C,—48.0 0.97 38
52.3 1.05 16
52.7 1.06 19 85 16

*I, and I, are related to quantities for unperturbed C,, and C,,. Other
symbols are defined in Tables Il and V.

kinks. A jog consists of a transverse dislocation of the chain
axis, usually accompanied by a rotation of the plane of the
zigzag. A kink involves no change in these quantities. The
jog and kink conformations that we used are given in Table I,
and the calculated results are presented in Table VII and Fig.
10 for C,—J-C,, and C~K-C,, structures.

Our calculations confirm the results of previous stud-
ies,'® viz., that a local internal defect completely disrupts the
LAM vibration of the full molecule. The molecule now vi-
brates with two sets of LAM modes, each localized in one of
the trans stems.”’

In addition, we find that the effect of the asymmetry of
the defect on the LAM modes of the two stems is signifi-
cant.?” In the case of C,,—K-C,, the LAM vibration in the
C,, segment penetrates well into the kink, while the LAM in
C,, terminates at the end of the C,, segment. This is prob-
ably because the structure of the kink changes the direction
of the C,, segment smoothly but that of the C,s segment
abruptly. This undoubtedly accounts for 5, values greater
than 1 for the C,, segment. In the case of C,~J-C,, the
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FIG. 10. LAM spectra for (a) Cy—J—C,4 and (b) C;~K~C,,.
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directional changes are not as abrupt, and the specific effects
on the LAM modes due to the defect are more obvious. In
particular, since the LAM vibration involves in-plane bond
stretching and angle bending, which are at higher frequen-
cies than the out-of-plane primarily torsional motions,
whenever the mode is primarily a LAM of the C,q segment
the C,, segment vibrates only with out-of-plane motions,
whereas modes that are primarily a LAM of the C,, segment
usually exhibit small longitudinal displacements in the C,,
segment. Thus, although each group of LAM modes is effec-
tively confined to one of the trans segments, this does not
mean that either segment vibrates as an independent chain.

FORCE PERTURBATIONS

At the beginning of the paper we raised the question of
whether the perturbed elastic rod model provided reliable
answers for the effects of force and mass perturbations on the
LAM mode. We now try to answer these questions on the
basis of normal mode calculations.

We first calculated the effect of end forces on C,,, and

the frequencies and relative intensities of v(LAM) as a func-
tion of force constant are given in Fig. 11. As for the unper-
turbed molecule, there is only a single LAM mode; no fre-
quency spreading occurs as a result of the force perturbation.
The frequency increases with f, and follows the approximate
relation, Eq. (7), until f=0.1 mdyn/A, i.e., 2/L /m4E<O0.1.
Beyond this value it falls below that predicted from Eq. (7),
as expected from the complete treatment.’ The intensity
variation also follows Eq. (14) until f=0.1 mdyn/A, after
which the intensity falls faster than predicted by Eq. (14). It
is not clear whether this is a general trend, because a normal
mode calculation of C;; gave a different result: for
f=0.0488 mdyn/A (2fL /7m*4E =0.135) we found that
v=47.1cm™’, compared to 44.7 cm ' predicted by Eq. (7),
but the intensity ratio was 0.92, compared to 0.87 predicted
by Eq. (14). If indeed for longer chains the intensity does not
drop as rapidly as predicted by Eq. (14}, this could account
for the more nearly constant LAM intensity as a function of
chain length found for n-paraffins,'?

TABLE VIII Calculated properties of F%-C,—F!. with end forces.*
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FIG. 11. Frequency and relative intensity of LAM of C,, as a function of
end force constants.

We turn next to the effects of forces on defect struc-
tures. As an initial study we calculated the normal modes of
F%-C,-F}. when forces represented by f = 0.0488 mdyn/ A
act on the end structures. The results are given in Table VIII
and the spectra are shown in Fig. 12. Atomic displacements
for F%~C,,~F [ are given in Fig. 13. In the presence of inter-
actions the frequencies of some LAM-like modes shift to
higher values whereas others remain nearly the same. Inten-
sity distributions also change. Thus, for F¥-C,,~F}. the fre-
quency of the most LAM-like mode at 82.3 cm ™' (Table III
and Fig. 2) shifts to 84.0 cm~' when parallel forces act on
atoms 4 and 31, and to 83.4 cm ~ ! when forces act on atoms 4
and 32, but the frequency of the 89.1 cm ™' mode (Fig. 2)
hardly changes. The intensity change, from 23% to 30%—
31%, can be understood by comparing the atomic displace-
ments in Figs. 2 and 13: as a result of the end forces the atoms
have a larger longitudinal component to their displace-
ments. In general, the extent of response to the forces de-
pends on how large a longitudinal component existed at the
atoms to which the forces are applied. In the above example

Structure Forces v(LAM) B, I, Iy Av
F&-Cy-F§ 4,31 P 84.0 0.81 31

89.1 0.86 18 65 65
F&-C,,-FL 4,32 83.4 0.81 30

89.2 0.86 21 68 65
FeCyF} 4,68 | 37.6 0.95 28

38.1 0.97 37 84 19
FE-C,-F( 4,84 || 28.8 0.93 21

302 0.98 31

324 1.05 25 83 11
Fe¢—C,-FL 4,84; 1 27.8 0.89 29

28.6 0.93 36 85 17

“Symbols are defined in Tables Il and V.

®Forces on atoms 4 and 31 (counting from the right end of the molecule in Fig. 2), and parallel to the all-trans axis.
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(cf. Fig. 2), there is a much larger longitudinal motion of
atom 31 than atom 32 in the 82.3 cm ~ ! mode, and therefore
the frequency is shifted more in the former case than the
latter. For the 89.1 cm ™' mode the displacements of atoms
31 and 32 are about equal and small; so this mode is hardly
affected.

The situation for F&-Cs—F [ is more complex. The
most LAM-like mode at 36.2 cm ™' (I, = 46) shifts to 38.1
cm ™! (I, = 37) and changes character significantly,?’ while
the 37.7 cm ™' mode retains most of its character, undergo-
ing almost no frequency change (36.6 cm '), but its intensity
changes from 12% to 28%. For F%-C,,~F{, the original
strong mode at 29.0 cm ™' (I, = 64) and much weaker mode
at 27.7 em~' (I, = 5} are replaced by three less intense
modes at 28.8 (I, =21), 30.2 (I, =31), and 32.4 cm™'
{I, = 25). In these three F%2-C,-F’. cases one effect of the
longitudinal forces has been to increase the total intensity in
the group of relatively strong LAM-like modes. This is again
a result of an increase in the longitudinal displacement com-
ponents under the action of the forces, a mechanism, inci-
dentally, that is not available to an elastic rod.

An interesting question concerns the effects of forces
applied at the ends but perpendicular to the axis of the trans
stem. As might be expected, there is no effect on trans C,,.
But, as shown in Table VIII and Fig. 12 for F %-C,,~F L, this
is no longer true for a molecule with defects. The original
spectrum of F%-C,,—F}, (Fig. 3} is perturbed by the lateral
interactions (Fig. 12), and in a way different from that due to
the longitudinal interactions. It is interesting that, whereas
longitudinal interactions lead to an upshift in the intensity-
weighted mean of the group of relatively strong LAM-like
modes, from 28.9 to 30.7 cm ™! for F%-C,,~F[., lateral in-
teractions in this case lead to a small downshift, from 28.9 to
28.5 cm™ . If this is generally true, then it has important
implications with respect to the effects on the LAM of the
stems of lateral interactions between folds at the surfaces of
polyethylene single crystals.

We have also calculated the effects of a longitudinal
force acting on either of two central atoms in the fold of a
C,,~Fc-C,, structure.”” The frequency pattern (with
Av =60 cm™’; cf. 40 cm ' for C,,—F,-C,,, Table V) is not
as significantly altered by the end force as was the case for
the F%-C,—F L structures, but similar frequency shifts oc-
cur as a function of the longitudinal displacement of the
atom to which the force is applied.

In all of the above calculations the pseudo bond was
attached to a mass of 10* amu. When this mass was reduced
to 138 amu (that of a decalin molecule), the effect on the
LAM-like modes of F2-C,,—F}. was to produce only a mi-
nor redistribution of intensities. Thus, an adsorbed molecule
on the surface of a polymer crystal should manifest itself
primarily through its interaction forces with surface struc-
tures.

To summarize, normal mode calculations show that
force perturbations can have complex effects that depend on
the unperturbed motion of the atom on which the force acts.
In general, the frequencies of LAM-like modes are raised by
the action of longitudinal end forces: for C, chains this in-
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crease follows Eq. (7) for small f and departs from this rela-
tion as predicted’ for large f; for chains with end structures
the frequency increase probably does not follow these rela-
tions until the stem is long enough for the terminal structure
to behave like a point mass. Even in the latter case the details
are likely to be determined by the specific atom motions in
the end structure as well as by the distribution of forces; a
simple dependence on L [Eq. (7) and Ref. 5] may not be valid.
The intensities of LAM-like modes seem to behave in an
even more complex fashion under the influence of force per-
turbations. For C, chains the intensity decreases with fand
L, but apparently not as rapidly as predicted by Eq. (14). For
chains with terminal structures the total intensity of the
group of relatively strong LAM-like modes is increased by
the application of longitudinal forces. The observed frequen-
cy and intensity of a LAM band for a trans chain with end
defects is thus seen to represent a balance between a number
of factors.

MASS PERTURBATIONS

The elastic rod model predicts that a small point mass
added to the end of the rod will cause the frequency to de-
crease [Eq. (7)] and the intensity to increase [Eq. (14)]. We
have examined this prediction by normal mode calculations
on C,, with masses of 5-65 amu added to one or both ends,
and the results are shown in Fig. 14. The frequencies are
found to decrease linearly up to ~ 35 amu, following Eq. (7)
for small masses; beyond ~ 35 amu Eq. (7) would overesti-
mate the mass effect. The intensities are also found to de-
crease with mass, opposite to the prediction of Eq. (14). The
calculations indicate, however, that this is accompanied by
an increase in intensity of some non-LAM modes near the
LAM frequencies. Although it is claimed'® that the sum of
these intensities is conserved, it seems that the isotope inten-
sity sum rule®® (21,/v} = 21//v;? where the prime indicates
the isotopic species) would require that, since frequencies are
lowered by increasing masses, the intensity sum should also
decrease.

The effects of mass perturbations were next tested on
F-C,,—F, and F*-C,,—-F} structures. The results are
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TABLE IX. Calculated properties of F~C, —F structures with added mas-
ses.”

Structure v(LAM) B, 1, I Av
F=C,,-F, 80.1 078 13

944 092 45

962 093 12 82 38
M F\-C,,~F,M}® 943 092 48 77 38
M FE-Co-FEM® 288 093 47

307 0.99 18 85 13
BrF¢-C,—F(Br’ 273 094 10

286  0.99 47 79 20
BrF¢-C,,~F{Br* 233 080 9

253 087 24

255  0.88 13

278 0.96 10 68 15
BrFE-C,,~F{Brf 23.6 081 13

24.7 0.85 14
25.4 0.88 16
26.0 0.90 18 67 14

*Symbols are defined in Tables III and V.

® M, = 310 amu, and is added to the end atoms.
“M = 1036 amu, and is added to the end atoms.
4Br = 80 amu, and is located on atoms 3 and 84.
°Br is located on atoms 5 and 82.

Br is located on atoms 6 and 81.

shown in Table IX, the spectra are given in Figs. 15 and 16,
respectively, and the atomic displacements for the F;~C,,—
F, structure are illustrated in Fig. 17. We, of course, recog-
nize that these calculations only approximate the case, such
as addition of Br to folds of polyethylene single crystals, in
which the additional mass resides in a separate atom, but
since the C-Br stretching frequency is so much higher than
the LAM frequency, we believe that the former will be mini-
mally excited at the latter and the pure mass effect will pre-
dominate.

In general, the frequency decrease due to the added
mass is not as large as is predicted by the elastic rod model.
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FIG. 15. LAM spectra of (a) F,-C,,—F, and (b) M,F,~C,,—F\M,, M, = 310
amu.
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Thus, for F,—-C,,—F), the frequency drops by only 1.9 cm™
for end masses of 310 amu, although the elastic rod model
predicts® a decrease of a few tens of cm ™. It seems that the
crucial factor is how close the increased mass is to the end of
the trans stem. For example, as Fig. 17 indicates, putting
masses of 310 amu at the ends of a F,—C,,~F, structure in-
hibits the motion of the end atom in the 96.2 cm ™' mode
(which was large in the unperturbed systemy), but it does not
change substantially the motions of the end atoms of the C,,
stem. This is seen even more clearly on examining the atomic
displacements in the F%-C,~F[ structure’’: when Br

& /fl\l\\l/‘\—;
YA S N \\Tj/tg

F1-C22-F1  s4.y 1/CM

ﬁ// L

MF1-C22-FIM 94.3 1/CM

FIG. 17. Atomic displacements in most intense LAM-like modes of F,—
C,,-F, and M\ F\~-C,,~F\M, M, = 310 amu.

masses are added to atoms 3 and 84 the vibrations of the
trans stem are hardly affected (and the spectra are hardly
changed; cf. Figs. 3 and 16), but when the masses are added
to atoms 5 and 82 or 6 and 84 the vibrations of the trans
stems (and the spectra; cf. Fig. 16) are significantly modified.
It is as if 2 mass placed on an atom near the end of the trans
stem has a strong effect on “clamping” the LAM-like vibra-
tion that, as we have seen, penetrates beyond the end of the
stem and into the terminal structure. We note that the LAM
spectra of F%-C,,~F}. with Br atoms near the ends of the
stem have 3, values near 0.9, which is the value predicted by
the elastic rod model for Br masses added to the ends ofa C,
chain.®

We have made similar calculations for structures with
folds, viz., C,,~F,—~C,, and C,,~F,~C,,~F-C,,,”” of which
the results for the latter are given in Table X, the spectra in
Fig. 18, and atomic displacements for one case in Fig. 19.
Effects similar to those discussed above can be seen in this
system. A comparison of Figs. 7 and 19 shows that addition
of masses to atoms 25 and 50 has produced little change in

TABLE X. Calculated properties of C,,~F,—C,,—F,—C,, structures with added Br masses.

Masses v(LAM) B, I,(A) I.(B) 1,(C) I Av
25, 50° 948 0.92 20 9
97.0 0.94 25 3 8
98.6 0.96 9 19
103.5 1.01 . 33 76 43
24, 50 93.4 0.91 21 .. 2
93.8 091 5 7} 2
98.5 0.96 26 - e
103.4 1.01 s 36 73 48
25, 51 95.1 0.92 15 32
98.1 0.95 32 1 e
102.2 0.99 e . 78 80 23

#Symbols are defined in Tables 11l and V.
® Atoms whose masses have been increased by 80 amu.
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the displacements in the 103.8 cm ™' mode but has had larger
effects on the other three modes (cf. also Tables V and X).
The overall spectra (Figs. 8 and 18) are not too dissimilar.
Addition of mass to atom 24, closer to the end of the trans
stem, produces larger effects.

Mass perturbations, therefore, can have the effect of
reducing the LAM frequency as well as intensity, the latter
being contrary to the predictions of the elastic rod model
[Eq. (14)]. Bands in general will be broadened, as happens
whenever defects are introduced into the system. Effects are
enhanced when masses are added within 2 CH,, units of the
ends of the trans stem.

CONCLUSIONS

Our normal mode analyses of planar zigzag stems of
varying length terminated or connected by various fold
structures show that the perturbed elastic rod model has a
limited validity. This arises from the fact that in the elastic
rod model the LAM occurs as a single mode comprised en-
tirely of longitudinal displacements, whereas in the real mol-
ecule the coupling with the nonregular structures causes the
LAM-like displacements to be distributed among modes
covering a range of frequencies and having transverse displa-
cements as well. Only when the terminal structures comprise
less than ~ 3% of the mass of the stem can they be consid-
ered as point masses and the stem frequency treated in terms
of the perturbed rod theory.® In any case, the presence of
point masses leads to decreases in the LAM intensity where-
as the elastic rod predicts the opposite.

The force field we have used reproduces very well the
observed LAM frequencies and intensities of C, planar zig-
zag chains for n>36. These calculations serve to define the

5539 J. Appl. Phys., Vol. 54, No. 10, October 1983

103.5 1/CM

98.6 1/CM
1
‘?f T 1
AR /
7 T ‘
97.0 1/CM
7 ] \

C22-F1-C22~-F1-C2 9u.B 1/CM

FIG. 19. Atomic displacements in the most intense LAM-like modes of
C,,—F,Br-C,,~F,Br-C,, with Br masses on atoms 25 and 50.

parameters of unperturbed chains. When fold structures are
added to such stems, the LAM frequency of the perturbed
stem can be higher or lower than the unperturbed, depend-
ing on the conformation of the fold. The coupling of the stem
vibration to the fold is not interrupted by an intervening
gauche bond, except that bonds beyond the first three after
the joint have relatively little effect on the LAM. In any case,
the frequency range over which LAM-like modes are found
increases significantly, and the total intensity of the major
bands decreases, as compared to the unperturbed LAM.
Only when these structures contain ~ 3% or less of the total
mass of the stem does the frequency range collapse to a single
line (determined by the mass perturbation) and the intensity
become equivalent to that for the unperturbed stem. Jogs
and kinks within a planar zigzag chain lead to essential de-
coupling of LAM modes in the two segments, although these
still cannot be considered to vibrate independently.

When the above kinds of structures are subject to per-
turbations such as end forces or masses the LAM frequency
is raised or lowered, respectively. The specific change is sen-
sitive to the original motion of the atom on which the force
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acts or to which the mass is attached, being of course mini-
mal if that motion in the normal mode is small. In either case
the LAM intensity always drops in the presence of the per-
turbations.

In general, the LAM-1 frequency alone is not sufficient
to provide information on the end structures and the pertur-
bations, since cancellation of different effects can occur. The
half width of the LAM band does not necessarily represent
the distribution of stem lengths; it is also determined by the
end structures and the length of the stem. The intensity of
the LAM is the parameter that is most sensitive to the per-
turbations. Therefore, only an analysis of all three of these
quantities can reliably determine the thickness of the crystal-
line core.

Note added in proof. The intensities associated with planar
zigzag chain connected by folds, such as are given in Tables
V and VI, were calculated on the assumption that the vibra-
tions in each stem are independent. While such decoupling
may be appropriate in a folded chain polymer crystal, it is
not strictly true for our model system. For these cases, I,
= [241}/%X)]?, where the signs of / ;’*(X ) are given by the
relative phases of the vibrations in the stems. Thus for C,,-
F,-C,,, as can be seen from Fig. 6, the relative signs are
95.5: +,97.2: —, 101,1: — . Similarly, the signs for the oth-
er structures are (in the order of increasing frequencies) C,5—
F-Ciys:4,—,—,+,—;CeFCis: +, +, —; Cp-F -
CorFi-Coi+ +,+ —, —; G FaCiast +,+, =, —;
Cys-Fy—Cis: +, —; C35-F3-Css: —, + . The I, distribu-
tions vary somewhat from those given in Figs. 8 and 9, with
relatively higher intensity concentrated in the lowest (in-
phase) frequency, but the general conclusion given in the text
are essentially unchanged.
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