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CHAPTER I

INTRODUCTION

Two electric networks are said to be equivalent with respect to
a set of electrical characteristics if these characteristics of both net-
works are identical. This study treats the problem of finding passive
networks equivalent to a given passive network with respect to immittance
characteristics at selected terminal-pairs (ports), when both networks
are composed of passive, linear, time-invariant, bilateral, two-terminal,
electrical elements. We further restrict the study to connected networks
without self-loops. The ports permitted in this analysis are
(i) subsets of the terminal-pairs created by cutting
elements of a cotree associated with a specified
tree of the network, or
(i1) subsets of the terminal-pairs created by connecting
to the ends of the elements of a specified tree of
the network.
We shall show in Chapter II that more general port configurations can be
accommodated in this scheme by the introduction of "dummy" elements.
An equivalent network can differ from the associated given net-
work in regard to its
(1) electromagnetic structure, or number and type of
electrical elements,
(11) topological structure (in the sense of graph theory),
or pattern of connection of the elements, and
(i1i) port structure, or locations of accessible terminal-

pairs.






The problem of finding networks equivalent to a given one is im-
portant for both analysis and synthesis and has received considerable
attention in the literature. The first general approach was W. Cauer's
(Ref. 1) method of linear transformation of port currents and potentials,
here called "port coordinates." The immittance matrices relating the
new port coordinates are found, but the method does not realize struc-
tures (i), (ii), and (iii) individually, and yet these are required to
construct the network. G. Kron (Ref. 7T) discussed equivalent network
problems from the point of view of his "orthogonal" method of analysis,
and obtained Cauer's results as a special case. He also introduced the
concept of element current and voltage transformations or "element co-
ordinate" transformations. The immittance matrices relating the new ele-
ment coordinates can be considered to represent new electromagnetic
structures, so that this transformation permits direct specification of
the equivalent network's electromagnetic structure. Recently J. D.
Schoeffler (Ref.10) discussed element coordinate transformations leading
to equivalent networks whose topological and port structures are identi-
cal to those of the given network. E. A. Guillemin (Ref. 4) and other
workers in modern network theory have also discussed the equivalence
problem, generally from the point of view of Cauer's method.

This study pursues Kron's approach based on element coordinaté
transformations. The major result is the determination of necessary and
sufficient conditions on the matrices which represent the electromagnetic,
topological, and port structures of networks equivalent to a given net-
work., Additional conditions are imposed to make the new element and port
immittance matrices symmetric. This result advances the theory of equiv-

alent networks by permitting, for the first time, direct specification






of the matrices representing the electromagnetic, topological, or port
structures of equivalent networks, followed by formal solution for the
unspecified matrices. The major unsolved problem is to guarantee that these
formal solution matrices always correspond to realizable structures. We
show in Chapter V, however, that preliminary specification of realizable
topological and port structure matrices leaves some freedom for the de-
termination of electromagnetic structure matrices of equivalent networks.
This freedom makes it possible to find example problems in which com-
pletely realizable equivalent networks are obtained.

The method used in Chapter IV to obtain the conditions described
above is based on a new version of Kron's (Ref. 8) "orthogonal" method of
analysis. The significant feature of the method is that the matrices
representing topological and port structures are nonsingular. This
method is presented in Chapter II, while Chapter III is devoted to ele-
ment and port coordinate transformations. The necessary and sufficient
conditions on equivalent network structure matrices are derived in Chap-
ter IV. Chapter V contains examples showing the application of the con-
ditions to finding networks equivalent to a given one. Chapter VI con-
tains conclusions and a discussion of possible approaches to some un-

solved problems suggested by this study.






CHAPTER II

NETWORK ANALYSIS

The port immittance characteristics of a network composed of pas-
sive, linear, time-invariant, bilateral, two-terminal, electrical ele-
ments are determined by its

(1) electromagnetic structure,
(ii) +topological structure, and
(ii1) port-structure.

The electromagnetic structure can be represented by element im-
mittance matrices relating the currents through and potentials across
the elements, as described in Section 2.1. The topological structure
can be represented by a nonsingular "fundamental connection matrix," de-
scribed in Section 2.2, which is a modification of Kron's "connection
matrix." The port structure can be represented by row-column ordering
and partitioning of a "fundamental connection matrix," as described in
Section 2.3.

By network analysis we mean the determination of an immittance
matrix relating the currents into and potentials across a designated set
of ports from a knowledge of the electromagnetic, topological, and port
structures of a given network. The method presented in Sections 2.4 and
2.5 for finding port immittance matrices is a modified version of Kron's

"orthogonal' method of network analysis.






2.1. Representation of Electromagnetic Structures

The following terms are defined for a set of passive, linear,
time-invariant, bilateral, two-terminal electrical elements, henceforth
called "elements."

Element current coordinates. The element current coordinates are

the set of steady-state, frequency-dependent, signed, positive charge
currents flowing through a set of electrical elements. The positive cur-
rent directions are assigned arbitrarily. The element current coordinates
for a set of e elements can be represented by the

Element current matrix, Jél’ The element current matrix, Jél

an e X 1 matrix whose entries are the element current coordinates of a

, is

set of elements.

Throughout this study we shall indicate matrix row and column di-
mensions by means of subscripts, as above, and, when necessary to avoid
ambiguity, the matrix type by means of superscripts. These conventions
enable us to distinguish matrices identified by the same letter and pro-
vide a quick check of the dimensional validity of matrix expressions.
Often the letters used for subscripts and superscripts will also be used
as variables with numerical values. These numerical values should not be
substituted for the letter subscripts and superscripts since these are a
part of the matrix symbol. Thus, the symbol for the element current ma-

trix of a five element network (e = 5) is Jel’ and not J Although

51°
this usage may seem confusing at first it will prove to be very helpful
in keeping track of various matrices and the physical quantities they

represent.

Element potential coordinates. The element potential coordinates

are the set of steady-state, frequency-dependent, signed potential-rises






across a set of elements. We choose to let the negative to positive
potential-rise be in the direction opposite to the assigned positive ele-
ment current direction. The element potential coordinates can be repre-
sented by the

Element potential matrix, vel‘

Vél, is an e x 1 matrix whose entries are the element potential coordi-

The element potential matrix,

nates of a set of elements.

Element impedance matrix, Z:e. The element impedance matrix,

Z:e’ is an e x e matrix whose entries are constants times the impedance
operators, s, 1, or s'l, which relates Jél and Vel by the equation,
e
Vo = ZeoJey - (2.1)

The constants which multiply s, 1, or 5! are the inductance, re-

sistance, and elastance parameters or element-values, respectively. Non-
zero off-diagonal entries indicate electromagnetic field coupling, which,
in general, exists only among inductive elements, although capacitive
element coupling is also possible (Ref. 3). The element impedance matrix
of a set of bilateral elements is symmetric; passivity requires that the
matrices of inductance, resistance, and elastance constants be positive-
semidefinite. The restriction to constant multipliers is a consequence
of element linearity and time-invariance,

Element admittance matrix, Yze‘ The element admittance matrix,

Y:e, is an e x e matrix whose entries are constants times the admittance
operators, s'l, 1, or s, which relates J_, and V_, by the equation,
J. = YV (2.2)
el ee el ° :

The constants which multiply s-l, 1, or s are the reciprocal in-

ductance, conductance, and capacitance parameters, or element-values,






respectively. The properties of Y:e are the same as those of Z:e in all

respects. Also, if (Y:e)-l exists it is, by (2.1) and (2.2), clearly

identical to Z& .
ee
We note that the element immittance matrices defined here relate

the element coordinates independently of any additional constraints which

may be required by the connection of the elements. That is, Z:

and Y°
e ee
represent the electromagnetic structure independently of the topological

structure.






2.2 Representation of Topological Structures

In order to represent its topological structure we can treat an
electric network as an oriented linear graph whose arcs replace the elec-
trical elements and whose vertices replace the nodes or connection points.
It is convenient to let the arc orientations be the assigned positive
current coordinate directions of the associated elements. We have stated
in Chapter I that we shall treat only connected networks without self-
loops, so that the corresponding oriented graphs are also connected and
without self-loops. Figure 2.1 is an example of an oriented linear graph

representing the topological structure of a Wheatstone Bridge network.

Fig. 2.1. Oriented linear graph (Wheatstone Bridge).

We shall assume that the reader is familiar with the concepts of
a tree and its cotree associated with a connected graph, or can easily

find discussions of them in the literature (Refs. 5 and 11). The following






terms are defined for the specific purposes of this study.
t-graph. A t-graph is an oriented linear graph with a distin-
guished (specified) tree.

b-path of a t-graph. A b-path of a t-graph is any arc of the

distinguished tree.

k-path of a t-graph. A k-path of a t-graph is any arc of the co-

tree corresponding to the distinguished tree, plus the unique set of tree
arcs which must be connected to join the terminal vertices of the defining
cotree arc.

A k-path is often called a "fundamental circuit" in treatments
of network topology (Ref.1l). The terms "branch" for arc of a tree, and
"1ink" for arc of a cotree are also standard nomenclature, and shall be
used here with the understanding that they always refer to the distin-
guished tree of a specific t-graph.

A connected t-graph with e arcs and v vertices has

b

v - 1 tree arcs, or branches, and

k = e - b cotree arcs, or links.

"

The terms "b-path," "k-path," and other terms involving letter
prefixes to be defined later are treated as the names of objects, so that
it is improper to substitute the numerical values of variables designated
by the same letters. Thus, if a t-graph has three branches (b = 3) its
tree arcs are still called "b-paths," not "3-paths."” This convention is
similar to that for matrix subscripts and superscripts.

We can now define a "fundamental connection matrix of a t-graph.”
This object will be used throughout the study to represent the topological

and port structures of networks.






10

Fundamental connection matrix of a t-graph, Cee' The fundamental
connection matrix of a t-graph, Cee’ is an e x e matrix whose entries,

¢ (in row i and column j), are given by the rule:

(0 if arc i is not a member of b- or k-path j;

1 if arc 1 is a member of b- or k- path j, and

if traversal of the path in the positive direction
c1J = < of arc j results in positive traversal of arc i;
-1 if arc 1 is a member of b- or k-path j and if
traversal of the path in the positive direction
_of arc j results in negative traversal of arc 1i.

It is always possible to arrange the rows and columns of Cee in such a
way that the first k rows correspond to the links (cotree arcs) and the
first k columns correspond to the k-paths defined by the links in the
same order. Likewise, the last b rows can be made to correspond to the
branches (tree arcs) and the last b columns to the b-paths defined by
the branches in the same order. Henceforth we shall assume that the rows
and columns of all fundamental connection matrices, Cee’ are arranged in
this way.

We emphasize that the terms "link" and "branch" must refer to a
specific t-graph. For example, in the above paragraph they refer to the
t-graph for which Cee is written. Also,we shall consider that the phrase
"of a t-graph" is implied whenever the terms "k-path," "b-path," and "fun-
damental connection matrix" are used.

The fundamental connection matrix defined here is a special case
of Kron's "connection matrix," which is similar, except that the "paths"
on which it is based need not be defined with respect to a tree of the
graph. This specialization yields a particularly simple representation.
The use of the word "fundamental" follows common practice for designating

topological structure matrices based on a tree (Ref. 11).
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We shall now consider some properties of fundamental connection
matrices. First, we show that under the row-column ordering described

above Cee has the form

U 0

kk kb
cee = ’
Cok  Ubb (2.3)
where Ukk and Uﬁb are unit matrices, Okb is a zero matrix, and Cbk is a

matrix of O's, 1's, and -1l's. The upper-left submatrix is a unit matrix
because each link is a positively oriented member of the k-path which it
defines, and is a member of no other k-path; the lower-right submatrix is
a unit matrix because each branch is a positively oriented member of the
b-path which it defines, and is a member of no other b-path; the upper-
right submatrix is a zero matrix because no link is a member of a b-path;
the lower-left submatrix entries are O, 1, or -1 depending on the pres-
ence and orientation of each branch in the k-paths. Since all submatri-
ces except Cbk would be the same for any e arc, v vertex t-graph, the
connection information in Cee is carried, essentially, by Cbk'

The most significant property of Cee for this study is that it
is nonsingular. The nonsingularity can be established immediately by
noting that Cee is triangular with nonzero diagonal entries, so that the
determinant, being the product of the diagonal entries, must be nonzero.

Furthermore, the inverse matrix is simply

ol Uk %

“ o W (@.4)

Equation (2.4) can be checked by multiplying both sides by Cee using the

usual rule for multiplying partitioned matrices (Ref. 12).
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It is possible to interpret this inverse matrix in terms of the
associated t-graph by defining the following terms.

b-copath of a t-graph. A b-copath of a t-graph is any branch

plus the unique set of links which must be cut to separate the terminal
vertices of the branch.

k-copath of a t-graph. A k-copath of a t-graph is any link.

A b-copath is also called a fundamental cut-set in treatments of
network topology (Ref. 11).

The entries of C;i give the membership and orientation of each
arc (indexed by the columns) in the b- and k-copaths (indexed by the rows).
Positive orientation means that the member arc points in the same direction,

with respect to the terminal vertices of the arc which defines the b- or

1

k-copath, as the defining arc itself. The upper left submatrix of C;e

is a unit matrix because each link is a positively oriented member of the
k-copath which it defines, and is a member of no other k-copath; the lower
right submatrix is a unit matrix because each branch is a positively ori-
ented member of the b-copath which it defines, and is a member of no other
b-copath; the upper right submatrix is a zero matrix because no branch

is a member of a k-copath; the lower left submatrix entries are 0, 1, or
-1 depending on the membership and orientation of the links in the b-

copaths. The lower left submatrix is equal to -C., because every branch

bk
which was a positively oriented member of a k-path must define a b-copath
which includes the k-path defining link in the negative sense. This fact
can be seen from Fig. 2.2 which shows a branch (b) and a 1link (k) with
intervening arcs represented by the dotted lines. If branch b is a pos-

itively oriented member of the k-path defined by link k, then link k is

a negatively oriented member of the b-copath defined by branch b.
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Fig. 2.2. Relation between branch orientation in
k-path and link orientation in b-copath.

To provide an example of a fundamental connection matrix we shall
let the oriented graph of Fig. 2.1 be a t-graph by distinguishing (speci-

fying) the tree composed of arcs 4, 5, and 6. The fundamental connection
matrix of this t-graph is

E 0]

ee
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All entries but those of the lower left 3 x 3 submatrix would be the same
for any six arc, four vertex t-graph; the columns of this submatrix are
obtained by noting the membership and orientation of the branches (arcs 4,

5, and 6) in the k-paths (defined by ares 1, 2, and 3).
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2.3 Representation of Port Structures

We shall now define various port structures, or sets of terminal-
pairs, and show how they can be represented by means of row-column ordering
and partitioning of a fundamental connection matrix. In the sections fol-
lowing this one we shall define the current and voltage coordinates associ-
ated with these ports and derive the immittance matrices which relate them.

k-ports of a t-graph. The k-ports of a t-graph are the terminal-

pairs created by cutting the links.

b-ports of a t-graph. The b-ports of a t-graph are the terminal-

pairs created by connecting to the terminal vertices of the branches.

e-ports of a t-graph. The e-ports of a t-graph are its combined

k- and b-ports.

We shall generally drop the phrase, "of a t-graph," when referring
to these objects, with the understanding that it is always implied. We
also require that numerical values not be substituted for the letter pre-
fixes. We shall refer to the physical ports of an electric network as
k-, b-, and e-ports, the implication being that the elements involved
correspond to a specific t-graph associated with the network.

We note that each network element is uniquely associated with an
e-port of the network. (The prefix, "e," means "element," not "voltage.")

The special subsets of the e-ports of interest for equivaleﬁce
studies are defined below.

n-ports of a t-graph. The n-ports of a t-graph are the members of

a designated subset of the k-ports.

p-ports of a t-graph. The p-ports of a t-graph are the members

of a designated subset of the b-ports.

It is also convenient to have special terms for the remaining sub-

sets of the e-ports.
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m-ports of a t-graph. The m-ports of a t-graph are the members

of the subset of the k-ports complementary to the set of n-ports.

g-ports of a t-graph. The g-ports of a t-graph are the members

of the subset of the b-ports complementary to the set of p-ports.
The usage described above for the terms k-, b-, and e-ports also
applies for the n-, p-, m-, and g-ports.

This scheme of port classification is indicated schematically in

e ~PORTS

Fig. 2.3.

b-PORTS

Fig. 2.3. Classification of e-ports.

We can now consider the problem of representing these port struc-
tures by means of row-column ordering and partitioning of a fundamental
connection matrix, Cee' We have seen that each network element has asso-

ciated with it a k- or b-path and a k- or b-port. The ports are further

subdivided into n-, m-, p-, and g-ports. This association permits us to
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designate port locations in terms of Cee’ even though its entries do not
refer to the ports directly. We choose the following row-column ordering
of Cee to represent port structures:

(1) the first n rows correspond to the elements which define
the n-ports, and the first n columns correspond to the associated k-paths
in the same order;

(ii) the next m rows correspond to the elements which define the
m-ports, and the next m colums correspond to the associated k-paths in
the same order;

(11i) the next q rows correspond to the elements which define the
g-ports, and the next q columns correspond to the associated b-paths in
the same order;

(iv) the last p rows correspond to the elements which define the
p-ports, and the last p columns correspond to the associated b-paths in
the same order.

This ordering does not conflict with that already established
based on the k- and b-paths. Cee can now be partitioned into submatrices
corresponding to the various sets of ports. Henceforth, we shall assume
that all fundamental connection matrices, Cee’ are arranged according to
rules (i)-(iv) above.

Although the port structures described here may seem somewhat lim-
ited, they can treat a great many cases of interest; furthermore, it 1is
possible to represent more general configurations by introducing "dummy”
elements whose immittance values are equal to zero. For example, suppose
we wish to represent a port created by connecting to the terminal vertices
of two different elements, rather than a single one. We can introduce a

zero admittance element, connected between the vertices, make it a branch
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of the distinguished tree of a t-graph, and thereby treat the given ter-
minal-pair as a b-port. This procedure can be continued for other vertex
terminal-pairs as long as the dumy elements can be made part of a tree.
If they cannot be made part of a tree, the dummy elements must form a
closed loop, & situation which is inconsistent with the usual concept of
a port (the port potentials could not take on arbitrary values without
violating the Kirchhoff potential law).

Similarly, the terminal-pairs created by cutting elements, not
all of which belong to a cotree, can be treated by introducing dummy zero
impedance elements in series with the non-cotree elements, and then cutting
the dummy elements to create k-ports. Zero impedance elements can also
be connected across branches and then cut to convert b-ports into k-ports.
A procedure of this sort will be used in the first example of Chapter V.

Undoubtedly other variations can be found. It seems likely that
all legitimate port structures (those which do not lead to a violation
of one of the Kirchhoff laws for arbitrary values of the port currents or
voltages) can be represented by the introduction of dummy elements, al-
though this conjecture has not been proved.

It is important to point out that the introduction of zero im-
mittance elements creates singular element immittance matrices, so that
special care must be taken to avoid manipulations requiring the exisience
of an inverse. This does not necessarily imply, however, that the asso-
ciated k- or b-port immittance matrices are singular, as we shall see in

Section 2.1L.
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2.4 e-Port Immittance Matrices

This section will be devoted to finding the immittance matrices
relating the currents and potentials, or "port coordinates,” of the e-
ports defined above. We shall find that these equations constitute a
complete set of independent Kirchhoff current and voltage law equations
for the network.

We begin by defining the current and potential coordinates asso-
ciated with the various port sets defined above. In the following,

"( )-port" may be read as "e-, k-, b-, n-, m-, p-, or q-port."

( )-port current coordinates. The ( )-port current coordinates

are the steady-state, frequency-dependent, signed, positive-charge cur-
rents flowing into the ( )-ports. We choose the port current direction
in such a way that a positive port current tends to produce a positive
current in the element which defines the ( )-port. The ( )-port cur-
rents can be represented by the

The ( )-port current matrix,

( )-port current matrix, I( ik
I( )17 is an ( ) x 1 matrix whose entries are the ( )-port current co-
ordinates of a set of ports.

( )-port potential coordinates. The ( )-port potential coordinates

are the steady-state, frequency-dependent, signed potential-rises across
the ( )-ports. We choose the negative to positive port potential-riée
polarity direction to be the positive port current direction. The ( )-
port potential coordinates can be represented by the

( )-port potential matrix, E( - The ( )-port potential matrix,

E( )17 is an ( ) x 1 matrix whose entries are the ( )-port potential co-

ordinates of a set of ports.

We are now ready to present the network analysis method used in

this study to find the immittance matrices relating the e-port coordinates.






20

The essence of network analysis is to combine the information about the
electromagnetic, topological, and port structures in such a way that an
immittance matrix relating the port coordinates is determined. The var-
ious analysis methods differ only in the means by which this task is
accomplished., The topological and port structures impose conditions on
the element coordinates in addition to those arising from the electro-
magnetic structure. These conditions are the Kirchhoff current and po-
tential law constraints. We shall now write a set of independent
Kirchhoff law equations in terms of the element and e-port coordinates,
making use of the properties of the fundamental connection matrix, Cee’
and its inverse, C;i. We require that the element coordinate matrices,
Jél and Vel’ and the element immittance matrices, Z:e and Y:e’ be arranged

to correspond to the element order used for indexing the rows of Cee'

The Kirchhoff current law constraints can be written

-1
Iel = CeeJél ’ (2.5)
or, in partitioned form,
— e
i [ % % [T
Tor ok Yool Jo1 (2.6)

This equation states that the k-port currents, I 1) are identical to the

k
currents in the links which were cut to create the k-ports, and that the
b-port currents, Ibl’ are equal to algebraic sums of the unique, signed
element currents flowing between the terminal pairs created by connecting
to the branches. The correctness of the signs can be verified by re-
calling that positive port currents tend to produce positive currents in

the port-defining elements, and that the positive b-copath link currents

are in a direction opposite to the currents in the branches which define
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the b-copaths. Equation (2.6) includes the maximal independent set of
Kirchhoff current law equations for b fundamental cut-sets.

The Kirchhoff potential law can be written
t
)

E., = (C

el ee vel ’ (2.7)

where ( )t is used to denote the transpose of the matrix inside the

parentheses. In partitioned form we have

— t ™
B Y Coi) | Vi
Ep1 Ok %o J V1 (2.8)

This equation states that the k-port potentials, Ekl’ are equal to the
algebraic sums of the unique, signed element-potentials around the paths
between the terminal-pairs created by cutting the links, and that the
b-port potentials, Ebl’ are identical to the potentials across the branches
which define the b-ports. The correctness of the signs can be verified
by recalling that the directions of negative to positive port potentials
are opposite to the directions of negative to positive potentials of the
port-defining elements, and that the negative to positive k-path branch
potentials are in a direction opposite to the negative to positive port
potential direction. Equation (2.8) includes the maximal independent
set of Kirchhoff potential law equations for k fundamental circuits.

If we multiply both sides of (2.5) by Coe» We Obtain

Jél = Ceelel ‘

Substitution of this form of the Kirchhoff current law equation in the

element impedance equation, (2.1), gives the element potentials, Vé in

l’

terms of the port currents, Iel:
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e
vél = ZeeCeeIel : (2.9)

We now combine (2.9 ) with the Kirchhoff potential law equation, (2.7),

to obtain
t,e
Eel B (cee) ZeeceeIee : (2.10)
The matrix
f t e
Zee ™ (Cee) ZeeCee (2.11)

relates the e-port coordinate matrices, Iel and Eel’ and so represents

the impedance matrix sought in the analysis. We shall call Zze the

e-port impedance matrix.

We note that once the matrix representations of the three structures have
been established the analysis procedure is quite straightforward. Also,
Equation (2.11) represents a complete set of independent Kirchhoff cur-
rent and voltage law constraints.

In partitioned form the e-port impedance matrix, Zze, is

o {Ukk (Cbk)t:, r;k ZinUkk Oka
= % Uso J 1%k Zoo %k Uow

Tzfck + (Cyy )tngcbk [z, + (Cbk)tzibi—
t
o (o) Ty + 2y .
[Zp) + ZgCog] Zob (2.12)

The upper left k x k submatrix, 7., ,relates the k-port coordinates. If

f
kk’
all the k-ports have been created by the introduction of dummy zero im-
pedance elements we have

e

Zye = Op - (2.13)
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Clearly, (2.13) does not imply that Zik is singular; except for very
special values of Cbk’ Zgb, ng, and Zib it is a nonsingular matrix func-
tion of s whose entries have isolated poles and zeros. This property of
Zik will be used in the following section to determine the n-port imped-
ance matrix of a passive network.

The e-port admittance matrix can be found by first solving the

potential law equation, (2.7), for vV, as

vél = [(Cee)t]-lEel *

This result can be combined with the element admittance equation, (2.2),

to obtain the element currents in terms of the port potentials:

t.-
I, = Y:e[(cee) ] ]Eel ) (2.14)

Application of the current law equation, (2.5), now gives

- ta=
Iel = [Cee] lY:e[(Cee) ] lEel ’ (2.15)
so that
- t,-1
o, = e )™hel(c,,)"] (2.16)

is the desired

e-port admittance matrix.

By arguments parallel to those used to show that Zik is generally

nonsingular it is possible to show that the submatrix Yib

erally a nonsingular matrix function of s whose entries have isolated poles

of Yie is gen-

and zeros.

These analysis procedures leading to port immittance matrices can
be represented by means of the coordinate relation diagrams shown in Fig.
2.4, The vertices of these diagrams represent the various sets of co-

ordinates and the lines represent the matrices which relate them. From
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Vel (Cee)! Eel Ve, [(Cee)t]_I Ee
. ‘? -
e f
Zee | | Zee Yge 1 1 Yge
Jei Cee Iel Jei [Cee]™ I,
(a) Impedance Diagram (b) Admittance Diagram

Fig. 2.4. Coordinate relation diagrams.

a slightly different point of view, the vertices represent the linear
vector spaces of currents and voltages which, in turn, are represented

with respect to the sets of basis vectors,

1 0’ 0’
0 1 0
0 0 0
- 0 0 - 0
I, = , 1‘2 = y e y 1, 0= ,
0, 2. A,
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and
1’ o "0
0 1 0
0 0 0
_ 0 _ 0 _ 0
vl = * ’ v2 = L] , °c ’ ve = ] ,
0 0 1
| S—— — | SE—)

by means of the coordinate current and potential matrices. Similarly,
the lines can represent the linear transformations, between the spaces,
which are represented by the structure matrices, Z:e, Y:e, and Cee‘ The
diagram indicates, schematically, why the e-port immittance matrices are
triple products of these structure matrices. For example, the trans-
formation from the space of port current coordinates to that of port po-
tential coordinates in Diagram (a) can be traced from I, toJ,, to vel’

and then to E ..
el
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2.5 n- and p-Port Immittance Matrices of Passive Networks

In Chapters III and IV we shall determine the necessary and suffi-
cient conditions on the structure matrices of networks which make the
represented networks equivalent to a given network at special subsets of
the e-ports. These special sets of e-ports were defined in Section 2.3
as the n-ports and p-ports. As stated in Chapter I we also require that
all networks be passive. Since the electrical elements are passive, the
network passivity condition actually refers to the remaining e-ports, and
requires that they exchange zero power, instantaneously, with the network.
This condition can hold if and only if the remaining e-port current or
potential coordinates are zero at all instants of time. It is necessary,
however, that the passivity conditions also preserve the electromagnetic
and topological structures of the network; otherwise we are defining a
new passive network, rather than making the given one passive. The pas-
sivity conditions which do preserve the network structures are:

(i) that the remaining k-port voltage coordinates be

identically equal to zero, and,

(i1) that the remaining b-port current coordinates be

identically equal to zero.
These conditions correspond, physically, to short-circuiting the remaining
k-ports and open-circuiting the remaining b-ports. The effect of thése
operations is to obtain zero power exchange, instantaneously, and yet
preserve the k-paths defined by the links, and the b-paths defined by
the branches. It is clear that the opposite procedure of open-circuiting
the remaining links and short-circuiting the remaining branches would
effectively remove these elements from the network.

The appropriate passivity conditions for determining the n-port

impedance characteristics are:






27

Eml = Oml ’ (2'17)

L, = O, - (2.18)

and

Substitution of these conditions into the appropriately partitioned form

of the e-port impedance matrix yields

Ta | % % %] Tm
%m * |Zm Zm | Im -
By d ) o (219)
The second row of this equation can be expanded as
o, = ZinInl A S (2.20)

As indicated in Section 2.4 submatrix Zik is nonsingular except for very
special choices of electromagnetic and topological structure matrices.
For this reason we can generally assume that submatrix Z;m of Zik is a
nonsingular matrix function of s whose entries have isolated poles and
zeros. If this condition holds it is possible to solve (2.20) for Iml as

£ .-1°f
Iml = -[zmm] zmnInl . (2.21)

If we now expand the first row of (2.19) to obtain

f f

2. I .+2 1 (2.22)

B = Zpplm nm ml ’

and substitute the solution for I ., (2.21), we get
f £ £ q-
E, = (2, -2,z ] lzmn)Inl . (2.23)

Thus, the impedance matrix relating the n-port current and potential co-
ordinates of a passive network is

c f f f ,-1°
2o = 2" znm{zmm] lzmn . (2.24)
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c
We shall call Znn the

n-port impedance matrix of a passive network.

The proper passivity conditions for determination of the p-port

admittance characteristics of a passive network are,

Eyp = O o (2.25)

Iql o(11 . (2.26)

and

[

A development parallel to the above, but beginning with the e-port admit-

tance matrix, yields, 1if YZQ is nonsingular,

£ £ -1
Ion = (Y:p B qu[qu] Jqu)Epl ’ (2.27)
80 that
(o] f -1,f
Yoo = Ypp " Yiq[ygq] ]qu (2.28)
is the

p-port admittance matrix of a passive network.

This completes the presentation of basic material on network
analysis. In Chapter III we shall discuss linear transformations of port
coordinates which preserve the n-port impedance or p-port admittance char-
acteristics of passive networks, and shall also present the linear ele-
ment coordinate transformation used to obtain new element immittance

matrices.






CHAPTER III

COORDINATE TRANSFORMATIONS

In Chapter IT we obtained the immittance matrices relating vari-
ous port coordinates of passive networks from a knowledge of the. network
(1) electromagnetic structure, represented by an
element immittance matrix, Z:e or Y:e,
(11) topological structure, represented by a funda-
mental connection matrix, Cee’ and
(111) port structure, represented by the row-column
ordering and partitioning of a fundamental con-
nection matrix, Cee'
This study treats the problem of finding networks whose structures
(1), (11), or (111i) are different from those of a given network, but whose
passive n- or p-port immittance characteristics are the same. This chap-
ter presents two types of transformations, one from the original network's
e-port coordinates to a new set of e-port coordinates, and one from the
original network's element coordinates to a new set of element coordinates.
The e-port transformations presented here are based on Cauer's method of
linear transformation as extended by Kron. The demonstration that known
conditions on the matrices of transformation are both necessary and suf-
ficient for n- or p-port passive network equivalence with symmetric e-port
matrices is a new result. The element coordinate transformations are sim-
ilar to those introduced by Kron. Unlike the e-port coordinate trans-
formations, these transformations cannot have equivalence properties be-
cause they operate before the introduction of topological and port struc-
ture information. Instead, they lead directly to new element immittance

matrices which can represent new electromagnetic structures.

29
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Both of these classes of transformations relate equal numbers of
port or element coordinates. In order to permit equivalent networks to
have a larger number of elements and e-ports than the given network, a
method for adjoining additional elements is presented. This method makes
it possible to continue using the transformations defined here for such
problems. Similar methods have been used by Cauer, Kron, and others.

The introduction of new elements by the method of adjoinment is distinct
from the use of "dummy" zero irmittance elements described in Chapter II

for representing general port structures.
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3.1 e-Port Coordinate Transformations

We begin by defining an

e-port coordinate transformation. An e-port coordinate trans-

formation is a linear transformation between equal numbers of e-port

current and potential coordinates. It is represented by the equations,

(1) Iel = MeeIel ’ (3.1)
and _
Eel = NeeEel ’ (3.2)
or
T = 1
(1) I, = M I, (3.3)
and
= " w
By = NeePer - (3.1)
where f;l’ ﬁ;l are the new e-port current and potential matrices and Mee’
Nee’ Mée’ Née are real, constant matrices of transformation. Representa-

tion (1) can be used to determine the e-port impedance matrix relating
the new e-port coordinates. In terms of the original coordinates we have

f
Eel = ZeeIel ’ (3.5)

so that substitution of (3.1) and (3.2) yields

f

Eel = NeezeeMeeIel : (3.6)
Thus, ‘
=f f
Zoe ™= NoeleeMee (3.7)

is the e-port impedance matrix relating the new e-port coordinates. Zie

can also be considered as the e-port impedance matrix of a new network
with as yet undetermined electromagnetic, topological, and port structures.
The admittance equation relating the original coordinates is

Y. E ., (3.8)

Iel = ‘ee'e
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so that substitution of (3.3) and (3.4) yields

T

- _ . , =
Iel - MeeYeeNeeEel ’ (3.9)
and
o = |f|
Yee MeeYeeNee (3’10)

is the e-port admittance matrix relating the new e-port coordinates, or
the e-port admittance matrix of a new network.

Associated with these new e-port immittance matrices are n- and
p-port passive network immittance matrices. We now seek the conditions on
transformation matrices M , N , M' , and N' which keep these immittance

ee’ "ee’ "ee ee
characteristics invariant under e-port coordinate transformations. The

passivity conditions established in Chapter II for treating n-port im-

pedance characteristics are

Eq, = Oy > (2.17)
and

g = % - (2.18)
The corresponding conditions for the new e-port coordinates are

En = Op » (3.11)
and _

T, = 0, - (3.12)

We shall use these conditions to determine the required forms of matrices
M, and N for passivity. When conditions (2.18) and (3.12) are substi-

tuted in the partitioned form of (3.1) we have

| — [~ |

Inl Mnn Mnm Mnb Tﬁl

Tm = (M Mm Mw| Im -

Op1 Mo Mm M| %o (3.13)
| I L [ I S |






33

In order that the equation obtained from the third row of (3.13) be true

for genersl values of the unconstrained current matrices, fhl and i&l’

A% 1s oecessary el sufflclent Tnatv

Mon = obn ’ (3.14)
and
Moo= O - (3.15)

Similarly, under conditions (2.17) and (3.11), the partitioned form of

(3.2) becomes

— — T —
Enl Nnn Nnm Nnb Enl

onﬁ. = Nnnx NHMI ‘Nmm ()ml h

Ebl Nﬁn Nﬁm Nb?J Ebl (3.16)
| | L | S

The equation obtained from the second row of (3.16) can be satisfied for

general values of the unconstrained potential matrices,Enl and Ebl,if
end only if

Nmn = Omn; (3'17)
and

Nmb = Omb . (3.18)

Conditions (3.14), (3.15), (3.17), and (3.18) are necessary and

sufficient for passivity of the original and final networks. We must now

find conditions which also preserve the impedance matrix relating the

associated n-port coordinates. In terms of the coordinates themselves

equivalence means that

¢ 1 (3.19)

E = Znn nl ’

nl

and
- Zc_..

Enl = nn;nl ’ (3.20)

where Z;n is the n-port impedance of the original passive network as de-

termined by Eq.(2.24). That is, the original n-port impedance matrix
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must relate both sets of n-port coordinates. Expansion of the first row

of (3.13) gives

I, =M T, +M T., (3.21)
so that the first equivalence condition, (3.19),can be written
c = c =
Fa ~ ZnnMnn nl * ZnnMnmIml ’ (3.22)
Expansion of the first row of (3.16) gives
i = Monf1 * NP (3.23)
which, after substitution of (3.22) becomes
E. =N 2°M T +8 2°M T +N (3.24)
nl nn nn nn nl nn nn nm ml nb bl ‘

In order that the second equivalence condition equation, (3.20), be true

(o4 —
for general Znn’ Iml’ and E. . it is necessary that

bl
Mnn = Unn ’ (3'25)
Ny = U s (3.26)
an = Onm: (3-27)
and
No = Op - (3.28)

The combined passivity and equivalence conditions obtained here may be
sumarized by incorporating them in the partitioned forms of matrices

M and N .
ee ee

r .
Unn Onm Mnb
e © an Mmm Mmb ,
Con Oy My (3.29)






35

and,

P h
Uhn Nnm Onb

N = 0 N O .
ee mn mm mb

Yon  Nom Moy (3.30)

It now remains to determine whether or not any additional conditions are
required. This can be done by writing the new e-port impedance matrix,
and then determining the associated n-port impedance matrix of a passive

network. In partitioned form Eq. (3.7) is

1

- r_ - 1
U N 0] Zf Zf Zf-1 U 0 M
nn nm nb nn nm nb nn nm nb
=f f £ f
Zee - Omn Nmm Omb Zmn me Zmb an Mmm MMb
f f f
_Fﬁn Nﬁm Nﬁb_ _?bn me Zb _pbn Obm Mbbj
o f £ £ £ —f |
[znn +N_Z M (zmu +N 7 )Mm Z
f f
+ Nnmzmn + anan
f f f =f
Nmm(zmn + mean NﬁlmzmmMmm Zmb
=f f =f
] Zon Zom 2y (3.31)

The entries in the third row and column have not been written in expanded
form since they do not participate in the determination of the associated
n-port impedance matrix of a passive network. Using the method given in

Section 2.5 of Chapter II we find that this new n-port matrix, chn, is

7 = 2f +n 2fMm +n 2f 4 af
nn nn nm mm mn nm mn nm mn
£ £ £ L (of £
- (2 +nN ZP M [N 2P M ] (22 +2- M ) . (3.32)

In order that iﬁn be defined it is necessary that the matrices Nmm and Mmm
be nonsingular. (We have already argued, in Section 2.4 of Chapter II,

that Zim is generally nonsingular.) These conditions, along with thase
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expressed by Eqs. (3.29) and (3.30) are also sufficient for n-port im-

pedance equivalence, as we can see by expanding (3.32) to get

=C £ f f f
Znn = Znn + Nanmman + Nnmzmn + anan
£ f q-1 £ £
- (znm[z | Nnm) (- +2 Mo
£ £, £ \-1f
=2z -2 (2 ) Lt (3.33)

The right hand side of this equation is identical to the n-port impedance
matrix,zgn,of the original network as determined from Eq. (2.24). This
result establishes that Eqs. (3.29) and (3.20), along with the require-
ments that Nmm and Mﬁm be nonsingular, are both necessary and sufficient
for n-port impedance equivalence of passive networks.

An additional condition can be imposed to make the new e-port

matrix, Z:e, symmetric. This condition is

= )t . (3.34)

ee ee

It is evident that (3.34) does not conflict with the conditions expressed
by (3.29) and (3.30).

The necessary and sufficient conditions that an e-port coordinate
transformation represented by Eqs. (3.3) and (3.4) produce a new symmetric
e-port admittance matrix,whose assoclated p-port passive network admit-
tance matrix is identical to that of the original network,can be obtained
by arguments similar to those used above for n-port impedance equivalence.

The conditions can be summarized by

K U lﬂ
Mae Mg Mip
' = 1
Mee O Maa  %ap|
S | X
%k Mpa PP (3.35)






37

M&q is nonsingular, (3.36)

and &

N, = (Mée) (3.37)






38

3.2 Element Coordinate Transformations

We define an

Element coordinate transformation. An element coordinate trans-

formation is a linear transformation between equal numbers of element

current and potential coordinates. It can be represented by the matrix

equations
(1) I, = K. 3 (3.38)
and _
Vo o= LV o (3.39)
or
(11) j;l = KeeJe1 (3.k0)
and _
Vel = LeeVel , (3.41)

where 3;1, V;l are the new element current and potential coordinate ma-

trices, and K , L , K' , L' are real, constant matrices. The element
ee’ "ee’ "ee’ Tee

impedance matrix relating the new coordinates can be determined from rep-

resentation (1). The original element impedance equation is

e

Vo, = 2o o (2.1)
so that substitution of (3.38) and (3.39) yields
= e
Ve1 = LeeZeefeeder - (3.42)
T,
=e e
Zee - LeezeeKee (3.43)

is the impedance matrix relating the new element coordinates. Z:e can

also be considered as the representation of a new electromagnetic struc-
ture. In this way an element coordinate transformation permits us to con-
trol the element values of the new network independently of its topolog-

ical and port structures. By contrast, an e-port coordinate transformation
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produces the e-port immittance matrix of a new network for which all
three structures are changed. In order to make the new element imped-
ance matrix, Z:e, symmetric we can require that

t
)

L = (K
ee ee

. (301")4)
Physically, this condition establishes that all transformed elements be
bilateral. The new element impedance matrix now becomes

5e
Z
ee

¥z k. (3.45)

= (K
ee ee ee

The corresponding transformed admittance matrix under the symme-

try condition,

t
! = '
Lee (Kee) ?
is
7 - x ve (v )b
Yee KeeYee(Kee) ' (3.46)

It should be emphasized that element coordinate transformations
do not have equivalence properties since they operate before the intro-
duction of topological and port structure information. Chapter IV will
exploit this fact to establish independent control over the electromag-
netic, topological, and port structures of equivalent networks.

The two classes of transformation defined in this chapter can be
represented diagrammatically by extending Fig. 2.4 to include the new
e-port and element coordinates and the associated transformetion matrices
as shown in Fig. 3.1. The center rectangle of each diagram corresponds
to the original coordinate relation diagram. The extensions to the right
represent e-port coordinate transformations, and those to the left ele-

ment coordinate transformations.






Y 1
Ve Lee Vel (Cee) Eel Nee Eer
-e e -~ f
Zee VZee b Zee i Zee
Je' Kee Jel Cee Iel Mee IEi
(a) Impedance Diagram
i ! ! ! =
Vel Lee Ve ﬂcee)] Eel Nee Ee
! ve 1 v ! v v
ee ee ee ee
- > >~ -
—_ | -1 | -
Jei Kee Jei [Cee] Lel Mee Ie

(v) Admittance Diagram

Fig. 3.1.

Transformed-coordinate relation diagrams.
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3.3 The Number of Element and Port Coordinates

The transformation types defined above relate equal numbers of
coordinates to one another. In equivalence studies, however, it is often
desirable to permit the new network to have more elements and e-ports
than the original one because of the greater freedom inherent in large
networks. This goal can be achieved within the framework of the trans-
formations already defined by adjoining new elements and corresponding
e-paths and e-ports to the original network in such a way that the asso-
ciated n-port immittance matrix is unchanged. In particular, k' cotree
elements and associated k-paths and k-ports, and b' tree elements and
associated b-paths and b-ports can be added by adjoining the arbitrary

passive impedance matrices, Zi'k' and Z: to the original element im-

lbl

pedance matrix as follows:

[ e e

Zek  %k' A Ok
' e

e Ok Zk'kr % Ok
e

Zoe Ok Zop Opbr
O Qe Oy Zpry (3.47)

The new elements are not electromagnetically coupled to the original ones
(as indicated by the zero off-diagonal matrices). We now impose the ad-
ditional condition that the new elements be unconnected to those of the
original network. This can be done by extending the definition of a fun-
demental connection matrix to accommodate elements "connected" in the
"pseudo k- and b-paths" which they define. The "pseudo fundamental con-

nection matrix" representing this mode of "connection" can be written






L2

Vg O O Oy |
c - Ok Uorer Okp Ogrpe .
° Cox %k Yob  Oppr
% %t % Borwy] (3.48)

The diagonal matrices, Uk

new elements in the "pseudo k- and b- paths" which they define.

1t 80d Uy, express the "connection" of the

The e-port impedance matrix associated with these matrices is

Zli:k Oyger Zlfcb Ot
N 01;'1( Zhrs 01;*1: O 1 _
° Zok %k Py Oppe
e
%k %t %n Zpro] (3.49)

The impedance n-port matrix associated with Zze may be obtained by parti-

tioning Zﬁk according to the n-ports and m-ports, and then using the method
of Section 2.5, Chapter II,to obtain
f 178
Z 0 ., Z
c f f mn mk mn
A = 2 -[z_.0.,]
nn nn nn nk 0 e 0
k'm Zk'kﬂ k'n
f f ., £ -1 f .
= Zmn " an(me) Zon (3.50)

The right hand side of (3.50) is identical to the n-port impedance matrix
of the network before the adjoinment of new elements as found from Eq.
(2.24). 1In effect, we have simply made additional elements available for
later incorporation into the equivalent network. A similar adjoinment
can be defined for admittance equivalence problems.

The method of adjoinment described here permits us to treat
equivalence problems in terms of networks with the same numbers of elements.

In the future the term "fundamental connection matrix" will stand for the
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appropriate "pseudo fundemental connection matrix" when augmentation is
required.

The method of adjoinment described here is distinct from, and
in addition to, the introduction of "dummy" elements to represent general
port configurations. Here, the new elements are general immittances, not
zero-valued ones.

We are now ready to derive the necessary and sufficient condi-

tions on structure matrices for n- and p-port immittance equivalence.






CHAPTER IV

EQUIVALENCE CONDITIONS

The goal of this study is to determine the necessary and sufficient
conditions on matrices representing the electromagnetic, topological, and
port structures of n- and p-port networks equivalent to a given network.
The representations of electromagnetic, topological, and port structures
presented in Chapter II, along with the element and e-port coordinate
transformation methods presented in Chapter III, enable us to obtain these
conditions. This result is a first step toward achievement of a general
method for finding equivalent networks while independently controlling
one of their structures. In Chapter V the conditions are used to obtain

formal solutions for the structure matrices. The problem of ensuring that

these formal solutions always correspond to realizable structures remains
to be solved. Chapter V, however, contains some applications based on the
discovery that,after specification of realizable topological and port
structure matrices, Cee’ the equivalence conditions still allow some free-
dom for selection of element transformation matrices, Kee’

In Chapter III we found that the e-port immittance matrix relating
a transformed set of e-port current and potential coordinates can be found
from the original e-port immittance matrix and an e-port coordinate trans-
formation matrix. We also found the necessary and sufficient conditions
under which the associated n- or p-port immittance matrix is identical
to that of the original e-port immittance matrix. We shall call this
procedure for finding new e-port matrices "Method I." If we assume that
the new e-port matrix is associated with a new network, then, in a sense,

we have solved the equivalence problem. The difficulty is that not enough

L
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information has been obtained to construct the equivalent network. Cauer
assumed the availability of ideal transformers, thereby removing con-
straints on the topological structure. He proved, by arguments based on
the network energy functions, that under this assumption the new e-port
matrix can be realized as a network as long as the e-port coordinate
transformation matrix is positive semidefinite. Schoeffler, on the other
hand, obtained new electromaegnetic structures by means of element co-
ordinate transformations but required that the topological and port struc-
tures of the networks be identical. Instead of modifying the require-
ments on the topological and port structures,we seek to obtain conditions
which hold for general values of the matrices representing the three
structures. When these matrices are known, and when they correspond to
realizable structures, it is possible to construct the network without
using ideal transformers, although electromagnetic field coupling may
still be required.

In order to obtain the desired conditions we propose an alternate
method, to be called "Method II," for the determination of e-port im-
ittance matrices. First, we carry out an element coordinate transforma-
tion and find the new element immittance matrix relating the transformed
coordinates. This new element immittance matrix directly represents a
new electromagnetic structure. We now recognize that the new elements
can be connected in new topological and port structures, represented by
8 nev fundamental connection matrix. This is the major consequence of
the ability to control element immittance matrices independently of the
topological and port structures. Application of the Kirchhoff laws in
terms of the new fundamental connection matrix by the method of Chapter

ITI results in a new e-port matrix. In contrast to the e-port immittance
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matrix obtained by Method I this e-port matrix involves electromagnetic,
topological, and port structure matrices of the new network explicitly.
In Method I this information is "mixed up" in an e-port coordinate trans-
formation matrix. On the other hand, the necessary and sufficient con-
ditions for n- and p-port equivalence for Method II are as yet unknown.
Our goal is to obtain them.

The approach used is to equate the e-port matrices obtained by
Methods I and II. Because the necessary and sufficient equivalence con-
ditions on Method I are known we can, in this way, establish necessary
and sufficient equivalence conditions on the matrices representing
Method II as well. By itself, however, this procedure would yield con-
ditions which involve the entries of an e-port coordinate transformation
matrix, so that the electromagnetic, topological, and port structure in-
formation would still be unseparated. The existence of the inverse of
the fundamental connection matrix, however, permits us to carry out ma-
nipulations which remove all entries of the e-port transformation matrix,
so that the conditions can be expressed solely in terms of the structure
matrices.

Since Method I was presented in Chapter III we begin the present
chapter with a discussion of Method II. We then establish the basic
relation between the two methods, and finelly carry out the manipula-
tions which remove the unwanted dependence on e-port coordinate trans-

formation matrices.
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4,1 e-Port Immittance Matrices from Structure Matrices

In Chapter III we found the symmetric immittance matrices re-

lating sets of transformed element coordinates. Equations (3.45) and

(3.46) read
- t e
Zee = (Kée) ZeeKee ’ (3.45)
and
=e e t
ee ngYée(ng) : (3.46)

These matrices represent new electromagnetic structures which can be
directly specified by Kée or ng. In order that the new structure be
realizable it is necessary and sufficient that the matrices of element
inductance, resistance, and capacitance values be positive semidefinite,
and further that the submatrices of resistance and capacitance values be
diagonal.

We are now free to connect the transformed elements obtained
above in new topological and port structures. That is, we can specify
a fundamental connection matrix, Eée’ which is different from that of
the original network. The e-port immittance matrices associated with
the new structure can be obtained by expressing the Kirchhoff laws in

terms of E;e as was done in Chapter II. The e-port impedance matrix is

£ - \tme =
zee = (Cee) Zeelee (+.1)

or, by substituting (3.45),

= = \t t, e -
Zee = (Cee) (Kee) ZeeKeeCee

- t_e -
(Keecee) Zee(KeeCee) : (k.2)

The e-port admittance matrix is

I e s (0 2 (5.3)

ee






or, by substituting (3.46),

=f - K -1
Yee - Cee eeYee( ee) [(C )

O S0 S ST M (b.b)

ee ee ee ee ee

n

Equations (4.2) and (4.4) summarize Method II for obtaining new e-port im-
mittance matrices. By introducing the new fundamental connection matrix,

E;e’ we have, in effect, defined a new set of e-port coordinates which
are related by the immittance matrices, iieand ;Ze' We let the new coor-

dinates be represented by the matrices iel and Eel so that the new e-port

immittance equations read

Eel = ZeeIel ? (h.S)

and

=f=
el = TeePe1 - (4.6)

Lal}

The development of e-port immittance matrices in this way can be
represented by a further extension of the diagrams of coordinate relations
as shown in Fig. 4.1. The extensions of Fig. 3.1 represented by the new

fundamental connection matrix, C , appear at the left of the diagrams of

ee

Fig. 4.1.
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(a) Impedance Diagram
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(b) Admittance Diagram

Fig. 4.1.

Transformed-coordinate relation diagrams

with new network topological and port structures.
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4.2 Equivalence Conditions

We have now obtained new e-port immittance matrices by two meth-

ods. For impedance e-port matrices the methods can be summarized by the

equations,

s _ t.e

Zee - (CeeMee) Zee(ceeMee) ’ (k. 7)
for Method I, and

=f t, e =

Zee - (Kée ee) Zee(KéeCee) ’ (k.2)

for Method II. In Chapter III we obtained the necessary and sufficient
conditions under which Mee produces a matrix Zﬁe whose associated n-port
matrix of a passive network is identical to that of the original network.
In order to establish the corresponding conditions on matrices Kée and E;e
we can require that the e-port impedance matrices obtained by Methods I
and II be identical, or

-t 5f
Zoe = Zgo - (4.8)

Using (4.2) and (4.7) we have

= t_.e — t e
(Keecee) Zee(KéeCee) (CeeMee) Zee(ceeMee) ‘ (k.9)

The known conditions on Mee hold for general original network element im-
pedance matrices, Z:e. In order that Eq. (4.9) be true for general Z:e

it is necessary and sufficient that

KieCoe = * CoMee - (%.10)

The sufficiency of (4.10) is obvious. Necessity can be proved by con-
sidering the set of Z:e matrices for which the entry in row u and column v
is unity and all other entries are zero. The condition that the(i, j)th

entries on both sides of (4.9) be equal now reads

8,18y = buibv,j , (.11)
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where aui and avj are entries of Kéecee and bui and bvj are entries of

CeeMee' Equation (4.11) must hold for all possible values of the in-
dices u, v, i, and j. In particular if u = v and i = j we have

2
)

(8, ()%

so that the magnitudes of corresponding entries of Kéecee and CeeMee are

equal. Furthermore, if any corresponding entries, avj and bvj,have the

same sign then (4.11) requires that & and b . have the same sign for all

i

u and i, Likewise if any corresponding a, and bvj have opposite signs

J

then 8. and bu must have opposite signs for all u end i. This com-

i
pletes the proof that (4.9) implies (4.10), or in other words,that (4.10)
is a necessary condition for (4.9) to be true.

The corresponding condition for p-port admittance equivalence is

obtained by setting

=f ]
Y, = Yge , (4.12)

or

==L, w& (7L v _ N A R\ 1
(Ce:Kée)Yee(CeiKée) N (Meecee)Yee(Méecee)

The necessary and sufficient condition that this equation be true for gen-

eral Y° is that
ee

==l _ ¢ A=l
CeeK:ee B t-M‘eecee (4.13)

It is interesting to interpret the basic conditions represented
by Eqs. (4.8) and (4.12) in terms of the coordinate relation diagrams pre-
sented up to now. The conditions require that the extreme left and right
vertical lines of the diagrams in Fig. 4.l represent the same matrix,
thereby connecting the diagrams into three-dimensional figures as shown

in Fig. 4.2. When e-port coordinate transformation matrices M_, and
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(a) Impedance Diagram

(b) Admittance Diagram

Fig. 4.2, Transformed-coordinate relation diagrams
with new network topological and port structures,
after application of equivalence conditions.
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Mée meet the necessary and sufficient conditions for n- and p-port equiv-
alence then Eqs. (4.10) and (4.13) represent corresponding necessary and
sufficient conditions on element coordinate transformation matrices,Kée
and ng, and the fundamental connection matrices,cee and E;e' Unfortu-
nately, however, Eqs. (4.10) and (4.13) involve the e-port coordinate
transformation matrices,Mee and Mée,so that a different set of conditions
results for each choice of Mee and Mée‘ We will now show how this de-
pendence can be removed to obtain conditions involving the structure ma-
trices only.

The fact that Cee is nonsingular enables us to isolate Mee on the
right of (k.10) by miltiplying both sides by C_1 to get

+ M . (b.1k)

C =
ee ee ee - ee

When M__ haes the form required by n-port impedance equivalence, Eq. (4.1h4)

becomes _ o - -
Knn Knm Kﬁb Vnn Onm onb Ftnn onm Mnb
C;i Khn Kﬁm Kﬁb 0mn Uﬁm 0mb = My Mmm Mmb
Kon Xom  Koo| [%on  Com b %0 C%m Mob)
or
rUﬁn Onm ong -khn+Knb§£n Knm+x:nbcbm Khﬁ_ rﬁhn 0nm Mnb—
%m  Ym Cmb Holon K Folon  Kad| % £ M Mm Mm
Con Com Y| [Mon*Foron  KomForCom Koo, %0 %m Mov_
or
| (Knn+Knb§£n) (K * nbcbm) Knb ] -nn onm Mnb—
(K KeCon) KoKt Koo M M M
['cbn(K Kb bn) (-, (K +Knbcbm) ['cannh = 2% % M
'cbm(xﬁn mb bn) 'cbm(Khm+Kﬁbem “on’mb
| Ko e Con] Ko Ky ) Ko | !

(4.15)"
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We can now make use of the fact that the certain submatrices of Mee are
arbitrary, so that the corresponding submatrices of the triple product,
C;;Keeaée, on the left of (4.15) are also arbitrary. The conditions on
the remaining submatrices on the left side of (4.15) for n-port equiva-
lence are:

(i) the upper left submatrix must be a unit matrix

multiplied by + 1, or

K _+K

on nbasn + U ; (4.16)

nn

(ii) the upper center submatrix must be a zero matrix,
or

Ko+ K. Cop = O (b.17)

(iii) the lower left submatrix must be a zero matrix, or
- Cbn(Knn+Khbcbn) - Cbm(Kﬁn+Kthbn) * Kon t Klon = O (4.18)

(iv) the lower center submatrix must be a zero matrix,

or
- Con oK Con) = ConMom*¥Com) + Ko * Koplom = Opm + (¥+19)

Equation (4.18) can be simplified by observing that the parenthesized ex-
pression in the first term on the left side must be a unit matrix times

+ 1, according to Eq. (4.16), so that

* Con = ComKanKinCon) * ¥on * Kooon = %%n (4.20)

Similarly, the parenthesized expression in the first term on the left side
of (4.19) must, according to Eq. (4.17), be a zero matrix. Thus, (4.19)

becomes

- Cbm(Kmm+Kmbem) *Kom * Korlom © OCom (k.21)
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In addition, n-port impedance equivalence requires that the center sub-

matrix be nonsingular, or

Km * ¥Coy » Donsingular . (k.22)

Equations (4.16) and (4.17) can be treated as a single n x k dimensional

matrix equation by writing

Ky Komd + KplChp Comd = (+u o 1,
or
Ko * Kl = (U 0.1 - (4.23)

Equations (4.20) and (4.21) can be written as the single b x k dimensional

matrix equation,

(Kﬁb bm mb bn Egm] bm[ mn mm] + [Kbn Kﬁm = [tpbn Obm] ’

or

(Koo Conno Cok = Confnx * ok = [#Con Opn! - (k.2h)

Equations (4.23) and (4.24), plus the nonsingularity condition,
(4.22), are the necessary and sufficient conditions on Kée’ Eée and Cee
which make the network with electromagnetic structure represented by
(Kee)tzzel(ee and the topological and port structures represented by Eée;
n-port impedance equivalent to the original network for all values of
the original element impedance matrix, Z:e. All dependence of the con~
ditions on entries of the e-port coordinate transformation matrix, Mee’
has been removed.

The corresponding conditions for p-port admittance equivalence
are obtained by a parallel development beginning with the solution of

(4.13) for Mée)






ATt - '
CeiKeeCee - i-MEe * (4.25)
The conditions are
k' -C_K nonsingular . 4,26
aa ~ Cok'kq ’ & (b.20)
0
() ! = qp
Kbp ckakp ’ (b.27)
+U
-~ pp
_—
and
1
qu
-0 1 ' 1 1 =
Cbk(Kkk*ququ) * Kfq?qk * Kbk TC * (k.28)
. PK

We have now obtained the major result of the study. Applications

will be considered in the following chapter.






CHAPTER V

APPLICATIONS

Throughout this study we have focussed attention on the fact that
the n- and p-port immittance characteristics of a passive network are de-
termined by its

(1) electromagnetic structure,

(i1) topological structure, and

(111) port structure.
Now that the necessary and sufficient n- and p-port equivalence conditions
on the matrices representing these structures have been obtained, we can
turn to the problem of finding equivalent networks themselves. The ap-
pearance of the element coordinate transformation metrices, Kee and Kée s
and the fundamental connection matrices, Cee and Eée, in the equivalence
conditions suggests two possible approaches to the problem:

(1) specify the electromagnetic structure of the equivalent net-
work by selecting an element coordinate transformation matrix, Kée or
Kée’ and use the conditions obtained in Chapter IV to solve formally for
the associated fundamental connection matrix representing the topological
and port structures of the equivalent network;

(11) specify the topological and port structures of the equivalent
network by selecting a t-graph with designated port locations, find the
associated fundamental connection matrix, and use the conditions obtained
in Chapter IV to solve formally for the element coordinate transformation
matrix.

In principle, these methods permit us to control the structures
of the equivalent network individually, in contrast to methods which de-

termine new e-port immittance matrices whose three structures cannot be

o1
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separated. In practice, (i) is of little value because of the great
difficulty of selecting element coordinate transformation matrices, Kee
or Kée’ in such a way that the formal solutions for the fundamental con-
nection matrix of the equivalent network actually correspond to ported
t-graphs. It is not surprising that this difficulty exists since the
prior specification of the element values of a network clearly restricts
the available characteristics to a great extent. For completeness, how-
ever, we present the formal solution for Eée in Section 5.1.

Problem (ii) is considerably more interesting since preliminary
specification of the equivalent network topological and port structures
is much less restrictive than specification of its electromagnetic struc-
ture. We will find that the number of conditions required by n- or p-port
equivalence is always less than the number of entries of the element co-
ordinate transformation matrix. The resulting freedom often makes it
possible to find realizable element immittance matrices.

Preliminary specification of the topological and port structures
is a feature of most synthesis methods. For example, the decision to
expand a driving point reactance function as a continued fraction de-
termines that it be realized in a ladder structure. Thus, it is not
surprising that specification of topological and port structures also
plays a role in equivalence problems. In Section 5.2 we shall discuss
this approach further and in Sections 5.3 and 5.4 present examples

leading to realizable structures.
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5.1 Formal Solution for Fundamental Connection Matrices.

One of the necessary and sufficient conditions for n-port imped-

ance equivalence found in Chapter IV is given by Eq. (4.24),

(Koo ~Comfan Lo = Confax * Kok = 1#Con O - (h.2%)
If Kib and Khb are chosen in such a way that

(be'cmemb) is nonsingular , (5.1)

then (4.24) can be solved formally for Efk as

Cox = (Koo Conp) ™ (128, O + Oty ) (5.2)

If the formal solution, E£k,is a submatrix of a fundamental connection
matrix of a t-graph, then it carries all the connection information re-
quired to construct an associated electrical network. In general, how-
ever, the formal solution will not be a legitimate submatrix of a funda-
mental connection matrix. This difficulty is comparable to the problem
of interpreting the e-port immittance matrices resulting from Cauer's
method of linear transformation of port variables, In addition to the

solution, (5.2), it is necessary that the remaining two equivalence con-

ditions be satisfied, i.e., that

Km * Kplom 0 nonsingular , (4.22)

and that

Kk * Kook = (#Vnn Opmd - (4.23)

We now turn to the more tractable problem which begins with a
specification of the topological and port structures of the equivalent

network.
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5.2 Determination of Element Immittance Matrices

When the t-graph and associated fundamental connection matrix,
E;e’ of a network which is to be equivalent to a given one are specified
in advance, Eqs (4.23) and (4.24) become a set of linear equations in the
entries of an element coordinate transformation matrix, Kée’ There are
nk such constraints from (4.23) and bk from (4.24), while the number of
entries of Kee to be selected is eg. The minimum number of degrees of

freedom remaining is

da = e2 - nk - bk

(k+b)? - nk - bk

K° + bk + b° - nk , (5.3)

a number which is always positive since n must be less than or equal to

k. One convenient method of exploiting this freedom is to incorporate

the constraints arising from the equivalence conditions into an element
transformation matrix, Kee’ by defining a subset of its entries as
"parameters,” and expressing the remaining entries in terms of the param-
eters by means of the equivalence conditions. The only requirement on

the parameters is that they be selected in such a way that the nonsingu-
larity condition, (4.22), is satisfied. As an example of this procedure
we will derive the familiar Tee-Pi two port transformation for a resistive

network.
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2.3 Example 1: The Tee-Pi Transformation

A resistive Tee network is shown in Fig. 5.1. Assigned directions
of positive element-current flow are indicated by arrows. The two n-ports,
designated as ports 1 and 2, have been created by cutting Rl and R2’ 80

that Rh must be a tree element. Two new elements, R

and R_., have been

3 5’

ad joined. We will consider that R3 is an additional cotree element, and

RS an additional tree element. The branch numbering has been assigned

to correlate with that of the Pi-network shown in Fig. 5.2. Here ﬁi and
ﬁé define the two n-ports. The tree is chosen to consist of ﬁL and ﬁs,so
that these elements define the two b-ports, while the cotree element, R.,
defines the m-port. This scheme provides that elements with the same

numbers have corresponding functions in both networks. The conventional

Pi-network has only three elements, R, and R, in Fig. 5.2 being zero.

1 2
It is necessary that they be included, however, so that the n-ports can
be defined. Later an element coordinate transformation will be used
to set these elements to zero values. This procedure is related to the
introduction of "dummy" zero immittance elements as described in Chapter
II. Here, however, we create dummy elements in the new network by means
of an element coordinate transformation, rather than introducing them in
a given network to represent a general port configuration.

Since the determination of an equivalent network will involve,as

a first step,transformation of the original element impedance matrix, and
since the given network is resistive, it is possible to specify that the

adjoined elements both be unit resistors. In order to realize a general

frequency-dependent equivalent network it would be necessary to adjoin a

sufficient number of inductive and capacitive elements. Any number of

elements can be adjoined, and, in general, there is more realization
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R, R,
l W\V' > * - l\/\/\' J
PORT | — Rq <— PORT 2
Fig. 5.1. Resistive Tee-network.

Fig. 5.2.

Resistive Pi-network.
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freedom in large networks than small ones; the computational difficulties
are also greater. The given element impedance matrix, adjoined by unit

resistance cotree and tree elements, is

- ll -

R, 010,10 O

1 e

0 Ry, 010 0
A - - ——

=0 o,1,0 of.

ee | T 7 RN IR

o 0'!0, R O

R
K o;o}o 1 (5.4)

The dotted lines indicate the partitioning according to the elements asso-
ciated with the two n-ports, the one m-port, and the two b-ports. This

partitioning follows that of the fundamental connection matrix of the

t-graph chosen for analysis of the Tee-network. This matrix, Cee’ is
[ ! | ]
1 0;0,0 O
| t
O 1,0,0 O
_____ A==
c_ =|o o'1lo of .
ee |
_____ ..'__.._|_..___.._
-1 -1 /01 0
| |
[0 0j0 0 1 (5.5)

The fundamental connection matrix of the t-graph chosen for analysis of

the P1 network is

1 0l010 0
| |
0o 11010 o0
_____ I S,
- l !
€ =|0 0110 of .
ee  |__ _
il
<1 oli1l1 o
| |
! ;-1{o 1 (5.6)

Since submatrix C, = of C_  is a zero matrix, conditions (4.23) and (4.24)

become
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Ko + ®¥plox = [0, 0] » (5.7)

and

KooCok * Kox = 2%, Opn) (5.8)
while condition (4.22) becomes

Kﬁm + Kimbcbm , honsingular .
We now choose to let the entries of submatrices Khb and Kﬁb be the "param-

eters" of Kée and express the remaining entries in terms of these param-

eters. This choice permits the direct expression of submatrices K, and

nk
Kok 88

~
n

nk [tphn onm] - Kﬁba£k ’ (5.9)

and

Kok = #Cpn Opmd - KpCpy » (5.10)

so that Kée can be written

o o }
(U Knlon)  Kolom  Kap

Kée = Kﬁn Kﬁm Kmb *

(o orlon)  Foplom  Kob (5.11)

-

We note that the equivalence conditions do not restrict submatrices Khn
and K, except through the nonsingularity requirement, (4.22).

As indicated above, Rl

to zero to obtain the usual Pi configuration. Since the transformed ele-

and ﬁé of the final network are to be set

ment impedance matrix is, from Chapter III,

- t,e
Zee = (Kée) ZeeKee ’ (3.&5)

ﬁi and ﬁé can only be zero for general values of the original network
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elements if the first two columns of KEe are identically zero. In terms

of the submatrices of (5.11) these additional conditions are

W -K,C o= 0 (5.12)
Kmn = Omn ’ (5013)
Lon - KetCon = Obn ‘ (5.14)

Equation (5.12) can be rewritten as

KioCon = pn » (5.15)

or, in terms of the problem at hand,

ko), k25 0 -1 1o 1 (5.16)

The solution of this equation for Knb

-1 0
K = + .
® o Tlo -l] (5.17)
Condition (5.1k4) is

k k -1 0 -1 -1
kSh k55 o -1 0 0

which has the solution

is clearly

1 1
oo = t{o o} ) (5.19)

Using the upper (+) signs for K, 8nd K, , the remaining constrained sub-
matrices of Kee become
10]TT

el, ol (5.20)

KTom = [
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_ 1 1)1 o
Korlom = - [ } = :

O oj-1, o0 (5.21)

—

and

substitution of (5.12), (5.13), (5.14), (5.20), and (5.21) into (5.11)

gives

0O 0 -1 0 -1

Kee = |0 O k33kg kygi

o 0 o 1 1

0 0 0 0 O (5.22)

-

The new element impedance matrix obtained from this transformation matrix,

Kyos is
Zoe = (o) ZoeKe
(0 o 0 0 0 ]
0 0 0 0 0
= [0 O (R +R +k33 ) (-R +k33 34) (R2 33 35) .
0 0 (-R +k33 3h) (R1+Rh+k3h ) (Ru+k3hk35)
0 0 (Rytkggkyo)  (Ryrkgkoc) (R2+Rh+k352{J
(5.23)

For general values of k33, k3h’ and k35 this element impedance matrix in-

volves coupling. Since resistive coupling is not permitted we now wish
to select these terms in such a way that the coupling is removed. The

conditions are

Rytkyky = O, (5.24)

Rytkagkss = O, (5.25)
and

Rtkyks = 0 . (5.26)
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Solution for k33, k3h’ and k

5 gives

3

LI}
~ -~
wrﬁu
+ o
N
\/
[V

k33 (5.27)
3
R.R
ky, = <-§l-—l‘> ; (5.28)
2
1
and R.R 3
Ky = |t (5.29)
35 R . 29

Substitution of these values into (5.23) produces the final element imped-
ance matrix without coupling,

0O 0 0 0 O

o 0 o 0 O

o~

e = |0 O D/Ru o o],

0 0 O D/R2 0

LO 0 0 © D/RL (5.30)

where D = (R R R R u*RéRu)’

The nonsingularity condition, (L4.22),becomes

—

1
kyg + [k3h 35] . £ 0,
or ——l
k33 + k3u - k35 £ 0,
or

R R R R R
f X/ uA/——E*O: (5.31)

which cen be satisfied for all positive resistance values by choosing
either the positive or negative roots of all terms on the left. This re-
sult is the well known Tee-Pi transformation. Even if this solution were

not already known to be true we could be sure that it represented an
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equivalence transformation as long as conditions (4.22), (4.23), and
(4.24) had been incorporated correctly. That is, it is never necessary
to actually obtain the accessible n-port immittance matrix of either

the original or final networks to apply the theory.
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5.4 Example 2: Star Tree to Linear Tree Transformation

Synthesis methods for single element kind networks are sometimes
based on special topological and port structures (Ref. 6 ). Two impor-
tant classes are those involving a star tree (all tree arcs have one
vertex in common), and those involving a linear tree (the unique path
between one pair of vertices includes all arcs of the tree). Examples
of inductive three-ports with star and linear trees are shown in Figs.
5.3 and 5.4, Both are completely connected four node networks, and so
differ only in the selection of the t-graphs and associated ports. There
are no k-ports which are not n-ports so that m = O and all matrices with
this subscript vanish from the equivalence conditions. Also, k =n +m =

n. Equations (4.23) and (4.24) become

K+ X Con = #0n 7 (5.32)
and
Kbn * Kbb6£n = t-cbn ' (5.33)

The nonsingularity condition, (4.22), no longer appears. As in Example 1
we let the entries of submatrices Kﬁb and be be the "parameters" and

solve for Knn and Kbn in terms of them.

Kim = Yo = KnCon (5.34)
and
Koo = *Cpn = Koplon (5.35)

Substitution of these relations into Kée gives

(+U ) L

nb bn

(£ Kouon) Kom (5.36)

ee

Every choice of Khb and Kﬁb produces & new element impedance matrix
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<— PORT 2

PORT | —»

Fig, 5.3. Inductive 3-port with star tree.

PORT 3

Fig. 5.4. Inductive 3-port with linear tree.
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resulting in an equivalent three-port network.

In the present case we

have that submatrix Cbn of the fundamental connection matrix of the

star tree network, Fig. 5.3,1is

-1 1 O
Cbn = o -1 1,
1 0 -1 (5.37)
while for the linear tree network, Fig. 5.4, we have
<1 1 ©
Cbn = 1 -1 -1f .
1 0 -1 (5.38)
A particularly simple choice of parameter matrices, Knb and Kﬁb is
Ko = Omp 2 (5.39)
and
Ko = Yp - (5.40)
Using the upper (+) signs in (5.36), K,, now becomes
1 0 o O O oO
O 1 0 o o0 oO
O 0 1 o0 0 O
K e = .
€ 0O 0 0 1 0 O
-1 0 2 0 1 O
0O 0 O O o0 1 (5.41)
L. o

The original element impedance matrix is






L.s 0O 0 O O

. 0 0 Lgs 0 0 0
)
ee 0 0 0 1ILs 0 0

0 0 o0 O L5S 0

0 0 0 0 0 Ls (5.42)

3

so that the new element impedance matrix associated with the above ele-

ment coordinate transformation matrix is

2.28 = (Kee)tzeeKee
_(L1+L5)s 0 -2Ls 0 -Lgs 0 ]
0 Lys 0 0 0
i -2Lss 0 (L3+ML5)5 0 2L53 0 ‘
0 0 0 L,s 0 0
-L5s 0 2Lss 0 LSS 0
| 0 0 0 0 0 ILgs (5.43)

By forming the determinants of the principal minors it can be shown that
this matrix is positive-definite as long as all inductance values of the
original network are positive, This means that the equivalent network
is realizable by means of coupled elements.

Although it is not necessary to determine the n-port impedance
matrix we may do so in order to verify that the new network is equivalent

to the original one. The n-port impedance matrix of the new network is

zzn = zin + (E£n)ti§b6£n + (aﬁn)tzgn + Z§b6£n ) (5.14)
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or

r(L L.) 0 2L | [ 1 1 17
l+ 5 8 - 5s - 1 th 0
=C
Znn = 0 LES 0 + 1l -1 0 0 L5s
- 0] N i
2L5s (L3+ Ls)s I 0 -1 1~ I 0 0
- “1 r -1 - -1 ol
-1 1 1 0 0 0 0 -Lss 0] |-1
+ 1l -1 0 -Lss 0 2Lss + |0 0 0 1
0 -1 =1 0 0] 0] 2L_s 0 1
L_ - L. - L 5 J L.
F(L +L, +L,)s Ly s -L s |
1746 4 6
= -th (L2+Lh+LS )S "Lss .
-L -
I 58 LSS (L3+L5+L6)s-

-1
1
L6S- i 1
1 0—
-1 -1
0 -1
(5.45)

This result is identical with the usual mesh impedance matrix obtained by

inspection of Fig. 5.3, or calculated from

Zon = Zon * (cbn)tzzbcbn ,
or
- 1T 1r a0
Ls O 0 -1 0 1liLs O ol |-1
zo = | 0 Is O|+ |1 -1 0|0 1Lg O 0
] 0 0 L3§_ L 0 1 -l_ I 0 0 L6i i 1
-(L1+Lh+L6)s -th -L6s T
= ~L,s (L2+Lu+L5)s 'Lss .
I -L¢s -Lss (L3+L5+L6)s-

(5.46)

(5.47)

This completes the presentation of applications of the conditions

obtained in Chapter IV. We note that in Example 2 the equivalent network

involved coupled elements.

The problem of introducing the additional

-1
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constraint that the new element immittance matrices be diagonal appears

to be quite difficult in general. The coupling removal equations are non-
linear in the elements of the transformation matrix, Kée' Furthermore,
there are e(e - 1)/2 such relations among only ek free entries of Ko
This problem and others suggested by the results obtained here are dis-

cussed further in the following chapter.






CHAPTER VI

CONCLUSION

The major result of this study is the discovery of the conditions
on the matrices which represent the electromagnetic, topological, and
port structures of passive networks in order that they be n- or p-port
equivalent to a given network. The networks considered are composed of
passive, linear, time-invariant, bilateral electrical elements whose asso-
ciated linear graphs are connected, and without self-loops. The develop-
ment of these conditions contributes to the theory of equivalent networks
by introducing the possibility of direct control over the three under-
lying structures.

The method used to obtain this result was made possible by the
availability of Kron's "orthogonal" method involving a nonsingular matrix
representation of topological structures. The successful exploitation
of this analysis method partially verifies a frequent assertion by Kron
(for example, Ref. 9) that nonsingular topological structure matrices
should have wide usefulness in network studies.

In this study specification of individual structures is followed
by formal solution for the remaining structure matrices using the nec-
essary and sufficient equivalence conditions. An outstanding unsolved
problem is that of ensuring that these formal solutions correspond to
realizable electromagnetic, topological, or port structures. This prob-
lem appears to be quite difficult. One approach might be to seek the con-
ditions under which special classes of specified structures lead to real-
izable equivalent networks. For example, one could consider topological

and port structures based on star or linear trees, and find the conditions
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on element coordinate transformation matrices required for equivalence
and realizability of the new electromagnetic structure.

A second major problem is that of finding electromagnetic struc-
tures which do not require coupling. For general element immittance ma-
trices of the given network, coupling removal requires the simultaneous
solution of a set of nonlinear equations, since the off-diagonal entries
of the new element immittance matrices are bilinear forms in the entries
of the element coordinate transformation matrices. This sort of computa-
tional problem arises frequently in network synthesis studies. Cederbaum
(Ref. 2) has recently suggested that a methematical programming technique
be used to attack such problems; unfortunately, little is known about
programming problems in which the constraints are nonlinear.

The development of realizability and coupling removal conditions
are major tasks on which progress must be made before the conditions ob-
tained here can provide a fully effective means for controlling the struc-
tures of equivalent networks. A new area of investigation suggested by
the methods used here involves the problem of general synthesis of N-port
networks.

In one sense a complete solution to the n- and p-port equivalence
problems treated here would also completely resolve the synthesis problem,
since it would then be possible to begin with an undesirable, or even un-
realizable network with the desired immittance characteristics and trans-
form it to a new network, if one exists, with the desired properties.

For example, one could treat a given N x N immittance matrix as the ele-
ment immittance matrix of a set of N coupled elements, adjoin a number of
new elements, and seek new electromagnetic, topological, and port struc-

tures which preserve the given immittance matrix, but which do not require
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coupling. Obviously, it would be necessary to have made progress on the
realizability and coupling removal problems described above in order to
carry out such a scheme.

This concludes our study of equivalent networks. We hope that
the methods and results presented here will be useful to other workers

interested in equivalence and related network problems.
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