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Salt-finger convection in water discovered by Stommel, Arons, and Blanchard is discussed, and
conditions under which the principle of exchange of stabilities holds are given.

I. INTRODUCTION

Stommel, Arons, and Blanchard' discovered the
salt-finger phenomenon, or the phenomenon of
convection in water with a temperature gradient
and a salinity gradient in such a way that the
water becomes hotter and saltier with higher and
higher elevation. The fascinating feature of the
phenomenon is that convection can happen even
if the density of water, as a result of the tempera-
ture and salinity gradients, actually decreases with
height. Stommel ef al. described an experiment
with water with such gradients. A glass tube draws
the bottom water slowly upward, which warms
up but keeps its freshness as it rises, producing a
column of fresh water with nearly the same tem-
perature as outside the tube, thus, by buoyancy,
keeps rising. Since the salinity diffusivity in water
is less than one one-hundredth of the thermal
diffusivity, the same phenomenon can happen even
without the glass tube. Columns of fresh and
originally cold water will, when the configuration
is unstable, rise while columns of salty and origi-
nally hot water will sink. The salt-finger phenomenon
was suggested as one possible means of mixing in
the ocean, the top layer of which is warmer but
due to evaporation may be saltier than the water
below. Somehow the saltier water must transmit
its salinity downward by a process other than
molecular diffusion, since it is known that salinity
in the ocean does not decrease monotonically with
depth.

The problem of stability of water with tempera-~
ture and salinity gradients was formulated by
Stern,” who also discussed the so-called principle of
exchange of stabilities for the simple but rather
unrealistic case of free upper and lower boundaries.
For a fixed lower boundary, it has not been shown
that instability, if it oceurs, is not characterized
by growing oscillations. The purpose of this paper
is to give some conditions under which the principle
of exchange of stabilities holds.

II. EQUATIONS GOVERNING STABILITY

The equations governing the stability against
salt-finger convection were given by Stern.” The
following equations are taken from Yih,® and differ
from Stern’s only in notation. If T, is a reference
temperature, ¢, is a reference concentration, and
po is the corresponding density, then for small
deviations from the reference state

p=pll —a(T — Ty) + &'(c — co)l, )

in which p, T, and ¢ are, respectively, the density,
the temperature, and the salinity concentration,
and e is the coefficient of thermal expansion under
the prevailing pressure, the effect of the pressure
variation on « being neglected. Since the addition
of salt in solution does not appreciably affect the
volume of water, to which it is added, o' is simply
1/po, if ¢ is measured in mass per unit volume.

If d is the depth of water, « is the thermal dif-
fusivity, t is the time, and z,, for 7 = 1, 2, 3, are
Cartesian coordinates, the dimensionless coordinates
and time are defined by

Ty X2 T3 i(_

woa=(G.5.0) =5 ©

in which z, is measured in the direction of the
vertical. The perturbation quantities are then
assumed to have the forms

o, 7, = (B @), —p a06), —8' @)

f(xr y) €xXp (UT)} (3)

in which u; is the veloeity component in the z
direction, 7" and ¢’ denote temperature and con-
centration perturbations, 3 and 8’ are temperature
and salinity gradients, both in the 2z direction,
defined by

T, — T,

g =" =0

d b

G~ G

[
5— d )

2907



2908

¢ = o, + 0, is the growth rate, assumed complex

a priori, and f(x, y) satisfies
feo + fuu + azf =0, 4
a being the wavenumber, and subsecripts denoting
partial differentiations.
Then, the differential equations governing sta-
bility are
(D2 —a - ?%)(Dz — a’) w= —Rd’0 + R’a*, (5)
(D* — a® — a)f = —w, (6)

(DZ —a - %)7 = —w, )

in which v = kec(2), Pr is the Prandtl number v/,
R is the Rayleigh number

d4
R =00 ®
and
_« ;o 98 d -4
k—K, R_pOK,V’ D—dz’ (9)

«’ being the salinity diffusivity, g being the gravita-
tion acceleration, and » being the kinematic viscosity.
Note that the R’ here is the R, in Yih® and the
c(z), v(z), and w here are, respectively, the y(z),
v1(2), and —w there.

In this paper we shall consider rigid boundaries
only, for which the boundary conditions for w are

w(0) =0 and Dw(0) =0 (10)
at the bottom where z = 0, and
w(l) =0 and Dw(l) = 0, (11)
and the boundary conditions for 6 and v are
6(0) =0 and () =0 (12)
and (see Yih,® pp. 152, 153)
(1) =0 and (1) =0 (13)

for maintained temperature and salinity at the
upper rigid surface.

III. CLASSIFICATION OF CASES

There are four cases, given for convenience in
Table I. It is physieally obvious and mathematically
readily demonstrable (as will be seen) that case 2
corresponds to stability. By following the approach
of Pellew and Southwell,* it can be proved for
case 3 that if the imaginary part of ¢ is not zero,
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TasLe 1. The four possible cases.

Case 1 2 3 4
R + + - -
R + - + -

then its real part must be negative. Case 4 is similar
to case 1, and the treatment for case 4 follows
much the same line as the treatment of case 1.
For this reason, we shall concentrate on case 1
(and incidentally case 2).

Before presenting the analysis we note that for
the case of the rigid upper surface with maintained
constant temperature and concentration, the bound-
ary conditions for 8 and v are the same. Further-
more, if we put ¢ equal to zero and let

y =6, (14)
(6) and (7) become identical. Upon substituting
6 for v in (5), Eqgs. (5) and (6), with ¢ = 0, together
with the boundary conditions, constitute precisely
the system governing Bénard cells at mneutral
stability. The solution of that system for ¢ = 0
is known to exist. However, this is not to say that
if o; # 0, then ¢, < 0. In fact, it does not even
say that if ¢, = 0, then o; must necessarily be
(although it can be) zero.

We note here the peculiarity that while for ¢ & 0
the order of the differential equation in w is eight
after § and v have been eliminated from (5), (6),
and (7), the order of that equation with ¢ = 0
is only six provided the boundary conditions for
0 and v are identical. The case for ¢ = 0 is a de-
generate case.

IV. CONDITIONS ON R, R/, AND k

Let R be positive, so that case 1 or 2 is considered,
and let the upper boundary be rigid and the bound-
ary conditions for 4 and ¥ on it be given by (13).
Multiplying (5) by w*, the complex conjugate
of w, and integrating between z = 0 and z = 1,
using (6) and (7) to evaluate the w* on the right-
hand side, we have, upon repeated use of (10),
(11), (12), and (13),

I, + (2(1,2 + é)[l + a2<a2 + %)Io
= —Ra’[K, + (a® + o*)K,]

+ R’az[Jl + (az + %)Jo] , (19
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in which
1= [1pwp, k.= [1D02, 7. = [ 1D,
(16)

n being 0, 1, or 2, with D° = 1. The real and imag-
inary parts of (15) are

I, + 22’1, + a'I,

+ Ra2(K1 + azKo) - R’az(‘] 1+ a’J o)
1 R'a®
+ Ur(ﬁ, (Il + GZIO) + RazKo - —kl' JO) = 0;
(17)
and
R'a®

1 2
U;(ﬁ (Il + an) - Ra2K0 + TJ()) = 0. (18)

If ¢, # 0, (18) shows that either R’ is negative or

EK, > B Jo.

A (19)

If R’ is negative, we have case 2 of Sec. III, and
(17) shows that ¢, < 0. If (19) bholds, due to the
presence of the terms RK, and R'J, in (17), we
cannot as yet reach the desired conclusion that

;=0 if o >0 (20)
For convenience, we shall write

M= é (Ix + a2]0> - RazKo + R'a2k_1J0, (21)

We shall now give some conditions on R, R’,
and % under which o, < 0 or ¢; = 0. We can expand
w in a convergent series:

W = D, A,sinnrez, (22)
which satisfies
w(0) = 0 = w(l).
Then, (6) and (7) give
8= — i N M sin nxz (23)
n=1 27|'2 + a2 + [ ’
Y= - i A sin nwz (24)
“ntx o+ okt !
which satisfy (12) and (13).
From (23) and (24) it follows that
© An 2
2K, = "}:; T E &+ oo (25)
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2Jo = 2 Lz%r“ + ;%’"+ ok’ - (26)
The ratio of the nth terms in (25) and (26) is
T
Ife, > 0and k& > 1,
2 <r, <1,
so that
kT < Ko < Jo (28)

Furthermore, (23) and (24) can be differentiated
at least once (actually twice) term by term, since
(22) is convergent, and similar arguments lead to

kK, < K, < J,. (29)

From (17), (18), (28), and (29) we deduce the
following results for £ > 1:

(8) o; =0 if o, >0, provided kR < R/,
() o, <0 if KR <R

Result (b) is obtained by showing that the as-
sumption o, > 0 leads to a contradiction.
Similarly, if £ < 1 and ¢, 2 0, we have

1<r, <k
and

Jo £ Ko < k72J,, J, < K, < k2. (30)

Thus, if B > R/, from (17) and (30) it follows that
o, > 0 and ¢; # 0 lead to a contradiction, so that

0, <0 if R>PR, and o, #0, (31

which is not without interest. Furthermore, (18)
and (30) show that

o. =0 if kR' > R. (32)

Thus, for & < 1 (which is the interesting case,
since it contains the case of water), it is only in
the range
R
k< 7 <1 (33)
that (20) is in question. Outside of the range (33),
either o, < 0 or ¢; = 0, or possibly both hold.

V. A CIRCLE OF VALIDITY FOR THE PRINCIPLE
OF EXCHANGE OF STABILITIES

So far we have not shown that (20) holds. Since
for salt-finger convection in water k < 1, we shall
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henceforth concentrate on the case k < 1. First,
we shall present the lemma.
Lemma: If

Y

K
JoK,

then (20) holds.
The proof of the lemma is simple. If o; %= 0,
M defined by (21) vanishes, by virtue of (18). Thus

RK, _ 1

=}

<+ for o >0, (34)

I |

R7, & (35)
Then if o, > 0, (34) and (35) give
RE, _ kRE,
RJ,” R, (36)

and with (35) and (36) we deduce from (17) that
o, < 0. Hence, the assumption ¢, > 0 is incom-
patible with the assumption ¢; = 0, and (20) holds.

Our task then is to show that (34) holds. Since

2
2K, = = Z; Erﬁ e (37)
nA 2
2J == 7!' E 2 B + a _|_ k ’ (38)
we obtain from (25), (26), (37), and (38)
T, 2 A A )
J.K Zb,,,,, A 014,077
in which
m 2
L —— (m27r2 ¥ P T o'kal)(nzrz T P + o) (40)
2
m
bmn - (n27|_2 + a2 + ak_l)(mzwz + a2 + U) (41)

b.... We shall determine the limits of

,— G + Gum
mn bmn + bnm

Obviously, a.., =
(42)

for m not equal to n. It is clear from (39) and
@ = b,, that if

r,,.,.<l

% for o, >0,

(43)
for all m and » not equal to m, then (34) must
hold. Our effort will then be directed toward the
establishment of (43).

Using (40) and (41), we obtain

M

Tmn

CHIA-SHUN YIH

where

]l[ — m2 I(m27r2 + a2 + G)(n27r2 + a2 + o_k—-l)|2

+n° |(0°r + o’ + O(m’r® + o’ + ok TH?, (45)
D =m’|@’s" + & + o)(m’s® + o + ok
+ n® |(m*® + @ + o)’x” + o + kY|P (46)
We shall rewrite (44) in the form
T = 1 + % , (47)

where N = M — D. On expanding (45) and (46),
we find that

7 18
N = (1 - 1) >N, = 3 D, @8)
k h=1 h=1

where
N, = 2(m® — #*)’m™n’r%,,
N, = 2(m® — 2»)*(m® + n)r*d’o.,
Ny = (m* — 2®’(m* + oD E™" + 1)o?,
N, = 2(m* — n*)*r"ABo,, (49)
N, = (m* — 2*(m®> + 2 E™ + Dr'o?,
Ng = 2(m® — n®)*(k™" + Dr’d’o?,
N, = 2(m® — 0®%k "a,07,

A=ad+0e,B=2ad+ak’,
D, = m*n*(m® + nH7°, D, = 4m*n*z°B,
D, = m*(m* + »’)»*B?,
D, = 2mn*(m* + n*)7°4,
D; = 4m’n*(m® + n*)r*AB, Dy = 4m*n*r* AB?,
D; = (m® 4+ n%n* A%, Dy = 2(m* + n*)a* A’B, (50)
= (m® + n*)A°B?, = (m® + n®)r'es,
Dy, = (m* + n°)Bd?,
D, = m’n*(m® + n)r'k %,
D,, = 2m™n’r" Ak~ %%, = (m* + 2 A% %3,
D,s = (m® + 2)k %,

By direct comparison it can be easily verified that,
provided kz* > |o|?,

N1+N6+N7<D4+Dll)
N2+N3+N5<D1+D7+D10;
N4<D5.

D, = 2(m* + nY)x*Bd,
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Addition of these inequalities gives

7
hZNh<D1+D4+D7+Ds+Dw+Du<D.

Hence, from (48) we have

1
N < (E—— I)D,

and from (47) we have, finally

1

rmn<]-+(%_1>=z)

which is (43). Hence (34) holds, and by the lemma
we conclude that (20) holds for k < 1, provided
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o is on or within the circle k=* = |o|* in the complex
¢ plane. [We know that (20) holds for k¥ = 1.]
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