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Solutions of Penrose’s equation
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The computational use of Killing potentials which satisfy Penrose’s equation is
discussed. Penrose’s equation is presented as a conformal Killing—Yano equation
and the class of possible solutions is analyzed. It is shown that solutions exist in
space—times of Petrov typ®, D, or N. In the particular case of the Kerr back-
ground, it is shown that there can be no Killing potential for the axial Killing
vector. © 1999 American Institute of Physid$S0022-24889)03001-7

I. INTRODUCTION

In a space—time which admits a Killing vect&? it is straightforward to find its Killing
potential. Killing potentials are real bivectof3*® whose divergence returns the Killing vector
(1/3)V,Q3P=k?, Killing potentials attain physical importance when they are used in the Penrose—
Goldberg (PG)! superpotential for computing conserved quantities such as mass and angular
momentum. The PG superpotential is

1
2

Upe=1-g 5 G*.«Q%, (1)
whereG?° 4= —*R*23P_, the negative right and left dual of the Riemann tensor. When the Ricci

tensor is zero the®P,4=C2P.4, the Weyl tensor. 11Q2® satisfies Penrose’s equatiof) then

VbUgEZ Vi gGabkb (2)
for Einstein tensoG°. The current density
3=\~ gG™k, &)

is conserved independently of the left-hand side of 2.1t is the PG superpotential that allows
the Noether quantities to be computed by integrating over closed two-surfaces, which is Penrose’s
quasilocal constructiof.If one views the Killing vector itself as a conserved current then its
integral over a three-surface is identically equal to 1/3 the integral of its Killing potential over the
bounding two-surface and no new information can be obtained.

The tensor version of Penrose’s equatien

Pabc::V(aQb)c_V(an)b_'_ga[ch]e.e:O_ (4)
With j&=(1/3)V,Q* 2P, andk?®: = (1/3)V,Q?®, an equivalent equatirio P23°°=0 is
V Q= —25kP+ 2( 82, (5)

If Q" is a solution of the Penrose equation thep )= — (1/2)Q,(b,R?;) with a similar relation
connectingj® and Q* 2, For Ricci-flat space—timeg andk? are Killing vectors.
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For a particular space—time the number of independent Killing vectors is between zero and
tent; Penrosegave the complete solution to E@t) in Minkowski space for ten real independent
Q™.

This work discusses the existence of Killing potentials which satisfy Penrose’s equation or
equivalently the conformal Killing—Yand¢CKY) equation for two-formQ. The fact that such
tensors only exist in space—times of Petrov typeN, or O is discussed in Sec. Il B and
AppendicesC andD.

In the Kerr background, it has previously been shown that there is no Killing potential for the
axial Killing vector® We show, in Sec. Ill C, how this can be anticipated from properties of the
curvature and the fact that the axial Killing vector must vanish along the axis of symmetry.

We use both the abstract index notation familiar to relativists and some coordinate free
notation for which we provide Appendix A as a reference. We use boldface characters for index
free tensor notation, excepting differential forms which appear in calligraphic type. Appendix B
describes some aspects of the Petrov classification in a way convenient for our purposes.

Il. PREVIOUS RESULTS

An exact solution of the Penrose equation for Kerr's vacuum solution is given itBEJ-his
solution was first used in the context of the PG superpotential construction in Ref. 6. The Kerr
solution has two Killing vector¢KVs), stationaryk;, and axialk,,, and the metric is

g"=l@n+n®l—-mem-mem, (6)

where {I,n,m,m} is the Newman—Penrose principal null coframe, given in Boyer—Lindquist
coordinates by

|=dt—(2/A)dr—a sir? 6 de,

A .
nzi[dH(E/A)dr—a Sir? 6 de], (7)

1
m=——1[ia sin gdt—3dé—i(r?>+a?)sin 6 de],

J2R

whereR=r —ia cosé, S=RR, andA=r2+a2—2mr. The Killing potential forky is the bi-
vectorQ?tt)’ obtained by raising the components of the two-form

Q= (RM+RM), (8)

where M:=1/An—m/\m is an anti-self-dual two-form, that isM=—i M. We mention that
Q?tt)’ is a global solution since the quasilocal PG mass, resulting from integration of the PG
superpotential over two-surfaces of constaahdr, is independent of choice of two-surface

ﬁszuszdsaf —8m mg 9

for anyr beyond the outer event horizon.

The next interesting result involves the axial Kerr symmetry. Goldbésgnd asymptotic
solutions of the Penrose equation for the Bondi—Sachs metric which includes the Kerr solution as
a special case. But Glasshowed that the axial Killing potential could not be a solution of the
Penrose equation at finite

The bivectoer‘t*)’ generally has six independent components and so enough information to
describe two Killing vectors. Since the Kerr solution has two KVs, can the duaf‘tﬁfyield Kip)?

Direct differentiation shows
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VuQi=0, (10

*xab

and soQ?tk)’ can only yieldky . In fact Qg™ satisfies the Killing—YandKY ) equation, which for
an antisymmetric tensok,, can be written as

Aa(b;c):O- (11)

This generalizes Killing’s equation to antisymmetric tensors and can be further generalized to
antisymmetric tensors of arbitrary valence. Modern usage reserves the name KY tensor for anti-
symmetric tensors. For the Kerr solution a symmetric ter&gy is constructed from the dual
Killing potential by

Kab=Qfi52Q55" =221 (aNpy —?Gap.- (12

This “hidden” symmetry of the Kerr solution was discovered by Cdrtard later shown to be the
“square” of a two-index Killing spinof or equivalently, the “square” of a Killing—Yano tensor.
ThoughK, satisfies Eq(11) it is symmetric and generally referred to as a Killing tensor.

Collinsor? found that all vacuum metrics of Petrov type with the exception of Kinnersley’s
type Il1B, possess a KY tensor. He gave an explicit expression for both the KY tensor and its
associated Killing tensor.

lll. EXISTENCE OF SOLUTIONS

A. Conformal Killing—Yano tensors

Many of the arguments in this work depend on the conformal covariance of Penrose’s equa-
tion. Penrose and Rindf€restablished the conformal covariance of its spinor farmA¢2%
=0 for a symmetric spinoo®¢. The tensor version was previously discovered by Tachibana as
the conformally covariant generalization of the KY equatibin this paper it was written in the
form

Qa(b;c)= (1/3)[gcha?e_ ga(ch)e;e]- (13

In that same work Tachibana showed that in a Ricci-flat spac& fgia CKY bivector satisfying
Eq. (13), (1/3)VPQ,, is a Killing vector.

From Eq.(13) we can obtain an expression f@,,. by writing out the symmetrization
brackets explicitly:

Qab;c: - Qac;b+ %gcha;ee_ %gach;ee_ %gach;ee'
Now, sinceQ,y.. is antisymmetric in the first two indices, we have
3Qab;c: Qab;c+ Qab;c_ Qba;c
= Qab;c_ Qac;b+ %gcha;ee_ %gach;ee_ %gach?e
+ ch;a_ %gach;ee+ %gban;ee+ %gcha?e
and so from(13) we can deduce that
3Qab;c: 3Q[ab;c]_ ch[aQb] e;e- (14

It is easily verified that given Eq14) we recover Eq(13) and hence Eqg(14) is an alternative
form of the CKY equation. Furthermore Penrose’s Ej.can easily be rewritten as Tachibana’s
Eqg. (13) and so is another form of the CKY equation.



312 J. Math. Phys., Vol. 40, No. 1, January 1999 E. Glass and J. Kress

SinceQ is an antisymmetric tensor, it is natural to discuss its properties in the language of
differential forms. Equatioril4) is manifestly antisymmetric in the first two indices, and so it is
straightforward to verify that it is the abstract index equivalent of the CKY two-form equation of
Bennet al,'?

3V,0=71dQ-2"*N\6Q, VZ. (15)

In this form, since* commutes withV,, it is readily verified using the identities given in
Appendix A, that wheneve is a CKY two-form so is*Q. Thus any solution to the CKY
equation can be decomposed into self-dual and anti-self-dual CKY two-forms.

B. Existence of CKY two-forms

On a flat background the CKY equation has many solutions, while, as will be explained, in a
more general space—time the curvature imposes tight consistency conditions and there can be at
most two independent solutions, one self-dual and one anti-self-dual with respect to the Hodge
star. This result appears to be closely tied to the four-dimensional nature of space—time and the
properties of these solutions are almost universally discussed in their spinor form, where the utility
of the two-component spinor formalism simplifies the calculations. A detailed discussion of this
can be found in spinor form in Ref. 12 or in terms of differential forms in Ref. 13.

Since any CKY two-form can be decomposed into self-dual and anti-self-dual parts that are
themselves CKY two-forms, in discussing their existence, it is sufficient to consider only two-
forms of definite Hodge-duality.

In order to understand how the curvature of the underlying space—time restricts the solutions
to Eq.(15) two steps are required. First, it can be shown directly from the CKY two-form equation
that the real eigenvectors @dnti-) self-dual CKY two-forms are shear-free and hence principal
null directions of the conformal tensor. Second, by differentiating (&) an integrability con-
dition can be obtained that restricts the Petrov type by showing these eigenvectonepeaid
principal null directions.

In the case of non-null self-dual two-forms, Dietz anddRyer* used spinor methods to
obtain both of these results for a scaling covariant generalization ofiBp.It was later shown,
again using spinor methods, that similar results can be obtained for the nuffcase.

An outline of these results in the notation of differential forms is given in Appendices C and
D. It is shown that apart from conformally flat space—times, non-fauiti-) self-dual CKY
two-forms can only exist in space—times of Petrov typewhile null (anti-) self-dual CKY
two-forms require a background space—time of Petrov type

C. The divergence of a CKY two-form

In order to apply the PG superpotential method using a given CKY two-f@rnits diver-
gence(coderivative §Q must be dual to a Killing vector. Tachibana showed that this was always
the case in a Ricci flat backgroutdthe result also holds for the slightly more general case of an
Einstein space-time

In the Kerr background, there are two independent Killing vectors and two independent CKY
two-forms (one of each Hodge-dualityHowever the divergence of either of these CKY two-
forms is proportional to the timelike Killing vector, leaving the axial KV without a Killing
potential. This allows a divergence free linear combination of the self-dual and anti-self-dual CKY
two-forms to be found. The Hodge-dual of this two-form is known as a Killing—Yano two-form
and satisfies the Killing—Yano equatiéhl), which can be written in a similar fashion to E45)
as

3V,Q=X1dQ. (16)
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However, this leaves open the question of why it is that the timelike rather than the axial KV
possesses a Killing potential? To answer this question, we note that the axial Killing vector must
vanish along the symmetry axis and we show that a Killing vector obtained as the divergence of
a CKY two-form must be nowhere vanishing.

First consider a non-null anti-self-dual CKY two-for@ . From Eg.(15) we can write
d(Q?) in terms of Q™ and Q":

d(Q ?)=3(6Q)*1Q",
which after contracting witlQ~ leads to
8Q =-3d(Q7?)* 19"

HencesQ~ vanishes if and only itl(Q~2) vanishes.

In a vacuum typeD background we can deduce th@t 2 is a constant multiple oft',~ %3
from the fact thatQ~ is an eigen-two-form of and both © 2) %20~ andCQ~ are Maxwell
fields. Hence ifQ~ vanishes, then so do&, and the background becomes conformally flat.

Further, it can be deduced from the Bianchi identities that for a yp@cuum space—time,
the gradient of’, vanishes if and only if th&V’, itself vanishes|[In the Newman—Penrog&lP)
formalism, using a principal null tetrad, the vacuum typecondition implies that the only
nonzero curvature componentds, and k=o=v=\=0. Then, imposingVXa\If2=O, the Bianchi
identities lead to eithes=u=7=m7=0 or ¥,=0. If we assume the former, then the NP equations
for the derivatives of the spin coefficients immediately force the conclusionthatnishes. We
therefore conclude thad ™2 is nowhere constant and hené@~ is nowhere vanishing and Kerr's
axial Killing vector cannothave a Killing potential.

IV. SUMMARY

We have shown here that Penrose’s equation for Killing potentials is equivalent to the con-
formal Killing—Yano equation for two-forms. With no appeal to Ricci-flatness existence of solu-
tions was proven for space—times of Petrov typeN or O. It was further shown, for typ®
vacuum backgrounds possessing a Killing—Yano two-form, that Killing vectors with zeros cannot
have Killing potentials.
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APPENDIX A: DIFFERENTIAL FORMS

We denote a basis for vector fields H¥,}. The natural dual of this we denote kg?}, a
basis for covector or one-form fields. A coordinate basiXjs 9/9x* ande®=dx?. The metric
gives a natural bijection between vector and one-form fields, which we dendtebgt”; X" is
the one-form metric dual to the vectdranda* is the vector field metric dual to the one-fomm

The one-forms, along with the wedge produtt generate the algebra of differential forms.
The wedge product is antisymmetric and so the differential forms of dgogecaa be thought of as
the subset of covariant tensors of valepciat are antisymmetric in their argumentsalfind 8
are one-forms with components,= a(X,) and 8= B(Xy), then

a/\B=aj,f€*®eP= a,B,e?/\e". (A1)
A vector can be contracted with theeform P to give a (—1)-form X_1P so that

(XJ,P)(Xalaxazv"-!x ):pp(xaxalaxazv---!xa )1

8p-1 p—-1
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and so the components ofpaform can be expressed using the hook as
1
Pab---c:: P(Xa 1Xb yaen ,Xc) = a XCJ‘ . ‘JXbJXaJP.

We can define an inner product between any pair of two-forms:
P- Q=X IXpIPX2IXP1Q=27P,, Q%"

For P-P we write P2.
The metric defines a natural map frgwforms to (h— p)-forms called the Hodge star. In four
dimensions, this maps two-forms to two-forms, and is defined so that

PA*Q=(P- Q)*1,

where*1 is the volume four-form. For a Lorentzian metric, this map squarestand so has
eigenvalues;-i. Elements of the eigenspace correspondingto)@-i are calledanti-) self-dual
two-forms. Any two-form can be decomposed into self-dual and anti-self-dual parts

P=P"+P~ where *P ==*iP.
The Hodge star relates the hook and wedge operations by
XJ*P=+(PAX"). (A2)
The two-form commutator is given by
[P,Q]=—2X,JPA\X31Q (A3)

for two-formsP and Q. The Lie algebra of two-forms under commutation is the Lie algebra of the
Lorentz group.

It is often useful to work with a null coframébasis for one-forms{l,n,m,m! dual to a
Newman—Penrose tetrad, that is, one for which all inner products vanish except

[-n=—-m-m=1. (A4)
From this we can construct a basis for the anti-self-dual two-forms:
U=-n/\m, M=IAn—m/A\m, V=I/Am (A5)
with the property that all inner products vanish except
uv=1 M-M=-2 (AB)
In this basis, the two-form commutator can be calculated from
[(MU]=—4U, [MV]=4Y, [UV]=-M. (A7)

The null basis elementg andV for each have one two-dimensional eigenspace, with correspond-
ing zero eigenvalue, spanned fiy*,m*} and{I#,m*}, respectively. These are also the eigens-
paces ofM for which they have eigenvalueisl and—1. Note that choosing/ determineg/ and
V up to their relative scaling or interchange.

We denote the torsion-free metric compatible covariant derivative of a two-f@rmith
respect to a vector field by V,Q. In terms of this, the exterior derivativleand coderivatived
=*d* can be expressed:

dEea/\an, E_XaJVXa.
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APPENDIX B: THE PETROV CLASSIFICATION

In a vacuum background, the Riemann curvature teRs@ equal to the Weyl conformal
curvature tenso€. The symmetries of these tensors allow them to be written as the sum of terms
made of symmetric tensor products of two-forfns., terms likeP ® 9+P ® Q). So, both can be
considered as self-adjoint maps on two-formsCjf,.q4 are components o andP,, the compo-
nents of a two-form, then the definition

(CP)ap= %CabchCd

gives the components of the two-for@P. As a map on two-forms, the conformal tensor pre-
serves the eigenspaces+oénd so may be decomposed into a part made from self-dual two-forms
alone and a part made from anti-self-dual two-forms. That is, we can write

c=cH+c),

whereC(*)Q*=0. Note that since the conformal tensor is r&fl;) is the complex conjugate of
Cc"), and so it is sufficient to classify only one of these.

The action ofC(~) on the Newman—Penrose two-form basis described in Appendix A is the
same as the action @ on this basis and can be written as

Z/[ _\1’2 \1’3 _\I’4 Z/{
CONM|=| -2¥, 2V, —-2¥,|| M|,
v -V, v, -—v,]|[LV

Note that the matrix of this transformation is trace-free and the mapping is self-afjuattis,
Q-CP=CQ-P).

The Petrov classification is a classification of this mapping. The space—time is known as
algebraically general when there are three distinct eigenvalues, and algebraically special other-
wise. Two special cases of interest here are that of Byp&dN, for which a basis can be chosen
so that the matrix above takes the forms,

~v, 0 0 0 00
0o 2v, 0 |, 0 o0 of,
0 0o -V, -, 0 0

respectively.

The real null direction of a null anti-self-dual two-for® is said to be aprincipal null
direction (PND) of the conformal tensor i@-CQ=0. We will call such aQ, aprincipal null (PN)
two-form. There can be at most four independent PNDs and their number and “multiplicities”
provide another description of the Petrov typeBhe multiplicities can be determined in the
present formulation by the followingvith P an anti-self-dual two-form

Multiplicity Equivalent conditions
1 Q-CQ=0 v,=0
2 [0,CQ]=0 CO=Q V,=V,=0
3 Q-CP=0VP Co=0 V,=¥;=¥,=0
4 [Q,CP]=0VP CPxQ VP U, =V,=¥,=¥,=0
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APPENDIX C: CKY TWO-FORMS AND SHEAR-FREE CONGRUENCES

Defining the shear of a null geodesic vector field requires the choice of a “screen space,” and
S0 is not an intrinsic property of the vector field. However, if the shear vanishes for one choice of
screen space, then it does for all and hence the notion of a shear-free null vector field is well
defined. For definitions and discussion of optical scalars see Ref. 3.

Robinson® showed that the real null eigenvectoof a (antj) self-dual null two-forme is
geodesic and shear-free if and onlydfis proportional to a source-free Maxwell field, that is
d¢=0. Note that the eigenspace of such a two-form is two-dimensional, isotropic and integrable.
So we can use this fact or the Frobenius integrability condition, didet a/\ ¢ for somea, for
the vanishing of the shear of It is convenient here to use these results interchangeably as our
criterion for a shear-free null geodesic.

Note that a shear-free null geodesic is a PND of the conformal tensor.

1. Null CKY two-forms

Now, suppose tha® is a null anti-self-dual CKY two-form. Since the right-hand side of CKY
two-form Eq.(15) is simply the anti-self-dual part of 2Z*/\8Q, we have that

0=0-3V,0=—-2(Z2"/\6Q)- Q=271(5Q)* Q.

Hence we can find am such that6Q=a*_1Q or equivalentlydQ=—a/\Q. So the real null
eigenvector ofQ is shear-free.

2. Non-null CKY two-forms

We wish to show that the eigenspaces of a non-null CKY two-f@nare integrable and
hence contain a shear-free null geodesic vector field. That is, we want to showXrendfY are
elements of the same eigenspacedofvith eigenvaluex (XJQ=xX" andY_1Q=\Y"), then so
is[X,Y]. Since[X,Y]=V,Y—VX, we will show thatVyY_1Q=\VY". Note that this eigen-
space is isotropic, that ig(X,Y)=0.

Since the mapr—a* 1Q is of maximal rank for non-nul, it can always be inverted and a
one-forma found such thasQ= — a* 1Q andd Q= a/\ Q. Using these expressions 60 and
dQ, and the CKY two-form Eq(15), we have

VY 1O=Vy(YIQ)—YIVyQ=AVy Y +XAY"— 2N a(X)Y".
Rearranging and writing the vector equation dual to this shows that
(ViYJQ)F = AV Y=(XA—Ia(X))Y. (C1

Note that the right-hand side is a multiple ¥find hence an eigenvector @f with eigenvaluex.
However, upon contracting the left-hand side with we find that it is an element of the other
eigenspace, having eigenvalue.. Hence we must conclude that

VyYJQ—\VyYP=0, (C2

and we have the required result.
Since each eigenspace ¢f is integrable they each give rise to a null self-dual two-form
proportional to a Maxwell field, and hence the real eigenvectorg afe shear-free.

APPENDIX D: INTEGRABILITY OF CKY TWO-FORMS

Apart from conformally flat space—times, CKY two-forms can only exist in space—times of
Petrov typeD or N. To understand this it is sufficient to consider only CKY tensors of definite
Hodge-duality, for which we give an integrability condition. For an anti-self-dual CKY two-form
Q!
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[Q,CP]=4P,CQ], V two-forms P. (D1)

If we let P=0Q, it follows that

[CQ,Q]=0.

Then, from the commutator algebra of anti-self-dual two-forms (B4), it can be deduced that
CQ must be proportional t@, i.e.,

CO=u0, (D2)

whereu is a scalar. From this, we can deduce the Petrov type as described in Appendix B.

1. Null CKY two-forms

When @Q is null this implies that the real null eigenvector 6f is a repeated principal null
direction. However, if we write out EqD1) in an anti-self-dual two-form basis chosen so that
U=Q andV=P, we find thatu= —¥,=0. Not only does this immediately tell us tha =0, but
upon substitution into E{D1) we have thaf Q,CP]=0 for all anti-self-dual two-form$. Hence
the real null direction defined bg is a fourfold PND and the space—time is of Petrov typpe

2. Non-null CKY two-forms

When @ is non-null, we concluded in Appendix C that the real null eigenvectorg afre
shear-free. If we align our anti-self-dual two-form basis so thé&kQ theni/ andV have shear-
free eigenvectors and hence are PN two-forms. From this we conclud&/grwatl,=0. The
integrability condition Eq.(D2) immediately requires tha¥’; and ¥; vanish and hence the
space—time is of Petrov tyfe.

This reasoning made no use of Ricci-flatness wherein the Goldberg-Sachs tHeermru
imply the same result.
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