Equilibria of high pressure elliptic flux-conserving tokamak
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An analytical calculation is carried out to determine the plasma current and poloidal beta for a toroidal
plasma with an elliptic cross section under the constraint of flux conservation. It is shown that the
pressure buildup during heating occurs in two stages: An outward shift in the magnetic axis and an
elongation in the flux surfaces. The total plasma current increases with the pressure variable more rapidly
for an elliptic cross section than it does for a circular cross section. This current rise produces a rather
slow rise of the poloidal beta with pressure, particularly for large elongations. The ensuing class of flux
conserving equilibria is characterized by large beta but modest poloidal beta.

INTRODUCTION

Considerable interest has recently developed in the
concept of flux conservation®? in tokamaks as a means
of enhancing the beta (ratio of plasma to magnetic field
pressures) of these devices. Since the power density
of a magnetically confined fusion reactor depends on the
square of beta, and enhancement in this quantity could
have a major impact on the size and/or cost of the reac-
tor.

High beta equilibria with no limitation on the poloidal
beta have been shown®? to exist in axisymmetric de-
vices with circular cross section, Moreover, com-
puter simulations* have indicated that magnetohydro-
dynamic equilibria can exist in tokamaks with D-shaped
cross section with g values of up to 30%. Numerical
analysis indicates that keeping the poloidal beta close
to unity while maximizing beta is desirable® for ideal
magnetohydrodynamic stability.

In this paper we investigate the equilibrium proper-
ties of a flux-conserving tokamak with an elliptic cross
section whose inverse ellipticity is given by « =a®/b?
with ¢ and b being the semi-minor and major axes, re-
spectively. We will examine the effects of eilliptical
elongation on the pressure driven toroidal current rise
described in Ref. 2 by keeping the safety factor g and
the minor plasma radius a the same as in the circular
cross section case. We will show that the plasma pres-
sure buildup results in an outward shift of the magnetic
axis and an elongation of the magnetic flux surfaces.
The plasma current rises nonlinearly with pressure
even faster than in the circular case® such that the po-
loidal beta grows slower than linearly, a desirable ef-
fect for plasma stability.

ANALYSIS

We begfn with the well-known relations between the
poloidal beta, 8;, the diamagnetic parameter, u,, and
the inductance parameter per unit length, 7/;, for a
toroidal plasma with arbitrary cross section in equilib-
rium given by®
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In Egs. (1)-(5) B, is the toroidal magnetic field inside
the volume considered, and B, and B, are the normal
and tangential components, respectively, of the poloidal
field on the surface (see Fig., 1). The total plasma
current I(¢) inside the flux surface ¢ is given by

I =v'(@)BY), /8= [ grat, (©)
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FIG. 1. Elliptic flux-surface gecometry.
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where B, is the poloidal magnetic field. Although full
determination of the flux function requires the complete
solution of the equilibrium problem it is sufficient here
to employ representation for i corresponding to a Fou-
rier series p =Y a,(¢) cosné as follows":

$=S(% (7a)

pP=X? k@) Z2+ T()[X® - 3XZ%| ... (7o)
with

X=R-R,, (8a)

R,=R_+5(®) , (8b)

where k{¥) =a?/b? is the ellipticity parameter introduced
earlier, 7(}) is the triangularity parameter, and 5()
denotes the shift from the geometric center, R, of the
center of the flux tube R, as illustrated in Fig. 1. It
should be noted that the ellipticity parameter takes on

a constant value, k,, at the plasma boundary and as-
sumes a smaller value at the magnetic axis, i.e.,

k(@ =0) <Kg.

The triangularity parameter 7(y) must vanish on the
elliptic boundary where we wish to calculate s,, s;, and
I, but it increases toward the magnetic axis. However,
if we focus our attention on a plasma with strong ellip-
ticity at the boundary, the effect of the triangularity
becomes less promounced in the inner regions of the
plasma and will be neglected in this analysis whose
main purpose is to demonstrate that the pressure de-
pendence of the plasma current and the poloidal beta
under flux conservation will be enhanced by-'the effects
of ellipticity.

Since the poloidal field, B,, is related to the flux
through V¢ =RB,, it can now be written as

1 ZS(X2+KZZZ)1/2

By R M+26Sx —x32%7 °

9)

where S =dS/dp?, 6 =856/2p, and k' =3k/8y. To further
simplify the calculations we consider the case where
the boundary coincides with the flux surfaces so that
we can employ the elliptic coordinate system given by®

(102)
(10b)

X =c coshu costl =a cost ,
Z =c sinhy sint =b siné .

In view of these transformations we can write

-~ -

n - e,=abl(a? cos® + b? sinb) X (a? sin?t + b2 cos?e) |1/ 2,

(10¢}
n* 2, =bcosd(a®sin?6 +b* cos?e)1/? | (10d)
ds, =21R (a® sin0 + b% cos?6)' /2 do , (10e)

so that s,, and s, as given by Egqs. (4) and (5) may now
be put in the form

_(Sad)? a6 (1 - k) cos?6 + k)(1 -z cosé)

S T RIE Yo (gcos®6 +d cos6+1-g¥°
s~ (Sa)2¢ d8 [(1 - &) cos®6 + k| cos6(1 ~ € cos6) (12)
B JkIE ) 27 (gcos®6+dcosd +1 — g)?
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In Eqs. (11) and (12) € =a(¥)/b(z), and
d=286'a s (13)
g=Sk'k1d?, (14)
while the total plasma current is given by

d6 [(1-«)cos?6+k](1 - € cosh)
21 gcosi+dcost+l-g

1) ~Saex™/? .15
Note that the parameter |d! represents the effect of the
horizontal displacement of R, (relative to the geometric
center R_) while the elongation parameter g reflects the
effect of the vertical deformation during the creation of
a high pressure plasma under the constraint of flux con-
servation. We shall examine these two parameters in
detail later, but for the purpose of carrying out the in-
tegrations in Eqs. (11), (12), and (15) we first let

t =tan(8/2) so that

_ (Sac)? 2 J’“’ n1t® 4t + et 41y
SITRE 7 at (1-d)*+2(1-2g)2+1-ap’ (16)
Q

_ Sa)2é 2 (=
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A+ -y *+2(1-29)P+1-d?°’
17

) =Saéx/? %

» 0388 + ot + 1,2+ 1
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0

where
m=1+¢&, my=-1-3é+4k(1+8),

N,==-1+38+4x(1- &), n,=1-§, (19a)

and
Er=—1-¢, £,=2[+1-2k)(1+8)], &;=2E(4k ~ 3€),
g,=2[6 - (1-2¢)(1+8)), and &, =1 - 2. {19b)

These integrals have nontrivial solutions only when the
inequality |1 - 2g|> (1 -d®)!/? is satisfied. Since, as
pointed out earlier, xk has a smaller value near the mag-
netic axis than it does at the boundary, it may be noted
from (14) that the parameter g will also be smaller in
the same region. From {14) and (7) it can be seen that
the range of g is between zero and 1/2 so that the do-
main for |d| and g is below the curve 2g=1 - (1 - g%)!/2
and above g=0 shown in Fig. 2. The curve in question
yields some interesting and important information re-
garding the plasma behavior during the process of

05
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FIG. 2. Variation of the magnetic axis shift with the elonga-
tion parameter.

Mizoguchi, Kammash, and Sigmar 2087



pressure buildup. Two different phenomena take place:
a shift of the magnetic axis and an elongation of the
flux surface. In the early stages of heating the domi-
nant effect is the outward shift of the plasma since
the elongation occurs slowly. However, as the
plasma pressure increases, the secondary stage sets
in at a turning point defined by dg/d!d| =1 for which id|
has a value of 0.8. At this point the effect of the mag-
netic axis shift saturates and the effect of elongation
becomes dominant. This observation is in agreement
with the conclusions of the computer studies by Dory
and Peng.? [Present day low beta tokamak experiments
seem to indicate that |d! is of the order of ¢ (the ratio
of the minor radius to the major radius at the boundary)
while the elongation effect is so weak that g is of the
third order in ¢. |

These considerations suggest replacing the inequality
connecting 171 and g by the relation 1 - 2g=X(1 - d%
where A is a constant equal to or larger than unity.
have sketched this equation in Fig. 2 for A=1.1, V2,
and 2. We observe that for large values of A the elon-
gation effect rises very sharply but sets in at relatively
large shifts |di. It appears therefore that the most
probable connection between |d! and g is llkely to be
given by 1 - 2g= [1+3@](1 —d®*? where B(d) may be of
order of g2, The corresponding curve in Fig. 2 is the
one shown by the broken line. It follows curve {(A)
closely at low pressure because of the small value of
3 in this region. However, as the plasma pressure in-
creases, j also increases and the curve departs from
(A) and asymptotically approaches the curve associated
with large é The transition from one curve to the
other does not have a serious effect on our analysis so
that to zero order approximation in 8 we shall take
curve (A), namely, 1-2¢=(1-d?)'?, as the link be-
tween the parameters |d| and g. The ensuing equilib-
rium model contains the essence of the pressure driven
noncircular distortions yet enables an analytic investi-
gation of flux conserving effects.

We

With this we can evaluate the integrals in s,, s,, and
the plasma current to obtain

50t
T 16VaT
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16Vas
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and
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It might be noted in Eqs. (21) and (22) that the terms
containing (1 ~ @) and (1 — @)® in the denominator come
from the substitution for cos#f in the original integrals.
These terms cancel out in the low pressure limit, i.e.,
a—1, and do not contribute significantly in the high
pressure limit, o~ 0, compared with the rest of the
terms. We therefore find that the total plasma current
approximately reduces to

i
= @

where

1-2¢
1-4d

1+d

T4 (23)

o= 7T

e CpSe-l/2
() =Saex 201 -4)
- {14 1/4 _ (1_d>3/4] (24)
X[(1+€)<'l—;—d‘> +(1—€) T+d
which increases with ellipticity by the factor x™'/% as

it does in the low beta case. The second term in Eq.
(24) reveals the effect of the elongation parameter g,
and it shows that this effect results in a larger plasma
current by a factor [(1 —d)/(1 - 2¢)]*/2 >1 compared
with the circular case of Ref. 2.

AL
%i% (1—1—72 (156 \7—1— 1_16 ‘/—1275 %ﬁ: —% %) In the high pressure limit, the terms containing ek
and @”"/2 in Eqs. (20) and (21) will dominate. Taking
(20) these leading terms and substituting these results in
(Sa)e 1 By —Ep+by—Eytis Eqs. (1) and (2) we obtain the following relations be-
25K E (1-d? 1-a) tween 8, u;, and[;, at the boundary,
]
1 9 1 d5/4 < 1 € 1 <1_d)7/4
—_— e — - 5 - = _— -~
L J«‘( g " 10K 2“‘)(1 d> T2 2+<) 1+d (25)
Bi+5 =71 174 37172
2 1 ( )( AR '”75 ]
T \Tra) TV T N\Twa
1 15 Bics 2 1-dy/* 5 §+5+3>(1—d)”4
i, k\2 Tz S TMTEYGTa) TP\T27 2T ) \ivd (26)
bty =7 " )(1 d)“" " )<1_d>3/4J2
*\1va) TV TN\T3a
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Keeping only the leading term in Egs. (25) and (26), we
obtain

5k (1—d>‘”

b g o\ 1ed 2

We now introduce the pressure variable which, when
normalized to the initial current, I;, can be defined as

B =2 j PdvV(2mR 1™ . (28)

Then, it can be seen that

B I% 4§[1)(/i —d)’ 3742
=7 <, 1-4d i-4d . (29)
B I S[(l+€)<m) +(1—€)<1+d> :,

To determine S we recall the relation for the safety
factor, namely,

4. VARD)  (2$VkR )L~ bet) - 3 (30)

Since F =RB,=RB4[1+0(p)|, where B is the toroidal
field in vacuum, it is a constant to zero order in .
Moreover, the changes in the ellipticity k¥ are also of
order O{B, €); therefore, it is readily seen that $ under-
goes only additive nonsingular changes of O(8) which we
neglect. From Eqs. (25) and (29), the parameter |d!| is
related to the pressure variable as

- VK 1 9¢ 1—d)5/4
br=1e1-ap [(‘5 - 7*10"'2"‘>(1+d

1 € 1\/1-4 ’“]
+5(-§-§+z>(m) ’ (31)

where we have ignored /;. I we only keep the leading
last term in Eq. (31), then d can be cbtained to yield

5\/’?_ 4/7
-d=1 —<m> (32)

valid for B;> 16¢/5Vk.

Figure 3 shows the relations between the normalized

L 1 I
10 E: 20 30

FIG. 3. Variation of the normalized plasma current with the
pressure variable for various ellipticities.
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FIG. 4. Variation of the poloidal beta with the pressure vari-
able and the magnetic shift for several ellipticities.

current, I/}, and the pressure variable, j3,;, for various
ellipticities at the plasma boundary calculated numer-
ically from Eqs. (25) and (31). We see that the current
increase with pressure is more dramatic for large
ellipticities. In addition, we observe that the stronger
the ellipticity the quicker the outward shift in the mag-
netic axis takes place, and hence the more effective the
role of elongation is in the increase in the plasma cur-
rent.

The variation of the poloidal beta with plasma pres-
sure is illustrated in Fig. 4 where we observe that the
effect of ellipticity is correspondingly less dramatic
than it is in Fig. 8 for the current. At the bottom of
Fig. 4 we show the parameter |d| as a function of 5,
for the three values of k. We see that, in contrast to
its effect on the current, the effect of strong ellipticity
is to depress the rate of increase of the poloidal beta
with the plasma pressure as may be readily deduced
from Eq. (3a). Although not as striking as in the case
of a circular cross section, the poloidal beta does
nevertheless increase with pressure for a plasma with
an elliptic cross section.
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