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We calculate the amplitude of the large-wave vector scattering structure function S(q) of a long random coil 
in a good solvent, using field theory renormalization and expanding to first order in ,,=4- (dimension of 
space). This amplitude is some 35% smaller than that of a swollen Gaussian chain. This is consistent with 
nonrenormalization group theories and with experiment. 

I. INTRODUCTION 

Flexible linear polymers in a good solvent may be 
apprOXimated as self-repelling chains. Such a chain is 
a critical object, having fluctuations similar to those 
encountered in phase transition phenomena. 1 In par­
ticular, the local density p(r) of links (monomers) has 
power-law correlations over distances r much longer 
than a link, yet much shorter than the average size of 
the chain2-

4 

(p( r) p( 0» 0: rtf V-3 , (1) 

where lJ is the universal critical exponent relating the 
chain's radius of gyration R to its length n: R 0: nV. 
These power-law correlations may be observed by 
light5 or neutron3 scattering, where they determine the 
structure function Sn(q) at large wave vector q 

(2) 

The dimensionless coefficient to is a universal con­
stant, independent of the polymer or sol vent studied. 8 

Knowledge of boo is important, since it governs the de­
gree of physical or chemical interaction to be expected 
between nearby monomers. Although boo is defined in the 
dilute solution limit, it also gives information about the 
semidilute regime, where the chains overlap strongly. 
In this regime, S(q) for large q is independent of chain 
concentration-the correlations sufficiently deep within 
a chain are unaffected by the other chains. 6 For simi­
lar reasons, S(q) for large q is independent of the chain 
length distribution of the solution. 7 

In this note we calculate the universal coefficient boo 
using a renormalization methodS,s like those used to 
describe phase transitions. 9 It is similar in spirit to 
other renormalization treatments used to describe 
polymers. 10-

13 Our result is some 35% less than the 
simple "swollen Gaussian" approximation described 
below. Our result is consistent with the more realistic 
phenomenological calculations of McIntyre et al. 5 Our 
calculation of boo is based on expanding in e: == 4 minus the 
dimension d of space. 

To calculate the coefficient boo, we need the behavior 
of Sn(q) at small and at large q. The behavior of Sn(q) 
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for small q has been calculated recently by Witten and 
Schafer14 to first order in e:, using renormalization 
methods. We summarize their method in Sec. II below, 
and show how it may be extended to give the large q 
behavior in Sec. III. In Sec. IV we compare our result 
with previous calculations and with experiment. 

II. RENORMALIZATION FORMALISM 

The system is a grand canonical ensemble of single 
chains with all lengths n, with a monomer chemical 
potential s controlling the average length. (From this 
polydisperse ensemble we may readily extract the be­
havior of the monodisperse ensemble, with definite 
chain length n.) A chain may be represented as a se­
quence of pOints r;, each at a fixed distance 1 from its 
predecessor. A short-ranged repulsive potential v(r) 
acts between every pair of monomers at distance r in 
space. We may calculate S(q) in terms of a certain con­
strained partition function y(x, s), defined by 

y(x, s)== L exp(- sn/kT)exp [- L v(r; - rJllkT]. 
IT;) i< j 

(o,x) (3) 

where T is the temperature. The primed sum is a sum 
over allowed configurations (assumed for convenience 
to be equally likely) of the chain without the repulsion, 
but constrained so that some point of the chain passes 
through the origin and some other point passes through 
the point x. Apart from a q-independent factor, the 
structure function S(q, s) of this system is just the 
spatial Fourier transform of Y(x, s). We denote this 
transform by Y(q, s). The desired asymptotic ampli­
tude boo of Sn(q) is a simple multiple of the correspond­
ing amplitude Zoo of S(q, s). 

Witten and Schafer's calculation of Y is based on a 
cluster expansion valid for weak repulsion v(r). The 
cluster diagrams for the expansion represent the poly­
mer chain with the constrained points 0 and x, and show 
the repulsion v acting between various parts of the chain. 
The diagrams up to first order in v are shown in Fig. 
1. Each diagram represents a certain convolution of 
"free chain propagators" G(P, t) == l/(P + f), and V(p), 
the Fourier transform of v(r). The variable f is a con­
stant times s, shifted so that (n>- 00 as f- O. Each seg­
ment of the solid line in the diagram corresponds to a 
G factor and each wavy line to a 'V factor. Thus, the 
diagram g corresponds to the expression15 
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FIG. 1. The single zeroth order and 4! /(22 l!) first-order 
diagrams for t(q, t). Letters a-g label the diagrams. In di­
agram g the notations p, p + q give the wave vectors of the cor­
responding propagator and interaction lines; p is an inter­
mediate wave vector to be integrated. 

G(o, t) f ddpG(p, t)V(P)G(P+q, t)G(O, t). (4) 

The sum _of the convolutions represented in Fig. 1 is 
equal to y(q, t), expanded to first order in the interac­
tion strength (up to an unimportant factor in 1). We 
note the resemblance between these diagrams and 
those of Fig. Ill3 of Yamakawa's text. i6 In order 
to be made useful, the expansion must be "renormal­
ized"j that is, expressed in terms of quantities which 
will remain finite in the excluded volume limit n- 00. 

The present perturbation expansion may be renormalized 
by the same methods used for the field theory of critical 
phenomena. The prescription we use17 requires that we 
generalize the integrals to noninteger dimension dj a 
standard and natural prescription18 is available for dOing 
this for the type of integrals which appear in our theory. 
As mentioned above, the perturbation expansion develops 
divergences in the excluded volume limit. These same 
divergences also manifest themselves as divergences in 
the diagrams as d approaches four. However, the 
divergent pieces have a sufficiently simple form that 
they may be absorbed into factors Zi multiplying the 
pseudotemperature t, the repulsion strength v and Y - - , 
itself. Then the expansion for YR '" Z1 Y is finite when 
expressed in terms of tR '" z2t and vR '" Zs V. This renor­
malized perturbation expansion has the same form as 
the original expansion, except that the singular (in E 
'" 4 - d) parts of all the subintegrations have been sys­
tematically subtracted away. 19,20 The resulting expan­
sion is well behaved in the limit d- 4. Furthermore, 
the microscopic length 1 (the length of a link in our 
model) is absent from the renormalized theory. This 
amounts to a symmetry of the renormalized theory which 
puts certain constraints on its behavior. In order for 
the renormalized theory to be consistent with a physical 
microscopic theory (with, e. g., a noninfinite repulsion 
energy for two monomers), the dimensionless re­
normalized repulsion strength VRt'REt2 must approach a 
"fixed-pOint" value g* = - E! 4 + 0(€2). This limit is in­
dependent of the repulsion strength v. Thus, v disap­
pears from the renormalized theory in the limit of long 
chains. ~emarkablY, the dependence of YR on q and tR 
becomes mdependent of the repulsion strength. Since 
the physical value of the coupling constant g* is of order 
E, one may consistently expand YR or the exponents in E 
using only a finite number of diagrams. To first order 

in I!:, we obtain15 [Eq. (14) of Ref. 14] 

yR(q, tR) = tR3(1 + ?r1 (1-E!4 {-1- ~1 dxln[l + x(l -x)qz] 

+t(1+q2) £1 dX[1+X(1-X)q2]-1}+0(E2») , 

(5) 

where qz '" if ItR, and l has been set equal to tR' The 
integrals may be performed to yield for the coefficient 
of -e/4 

1 + B In [B + 1 ] L 1 1 + q-2 ) 
B-1 \ +2iF ' 

(6) 

III. EXTRACTING ASYMPTOTIC BEHAVIOR 

To obtain the large-q limit_of S(q), we start from 
this I!:-expanded formula for YR(q, tR)' The naive ap­
proach here is to use the coefficient of the asymptotic 
q power of this formula. This approach is unsettling, 
since Y(q) is ill-behaved for large qj the E expansion 
breaks down in this limit because of €q-2 In q terms 
which dominate the EOq-Z behavior. To remedy this 
convergence problem, one may extract from the raw 
E-expanded quantity something which is known to vary 
uniformly in E and q. The methods used to obtain large­
q information in phase transition problems21,22 are not 
applicable. In these latter problems, the large q be­
havior may be obtained via scaling from the small-q 
behavior at the critical point. The analogous argument 
fails for polymers, because the required limit lies at 
an "exceptional momentum" (see Ref. 6) point-not 
given by scaling-of the field theory. 

Our method is based on the idea of an effective ex­
ponent D(q) describing the q dependence of S(q, s). Ef­
fective exponent techniques have been used to calculate 
the thermodynamic quantities2s- 25 but, not to our knowl­
edge, for correlation functions. 

We define the effective exponent D(q) for l/S(q, s) as 

D(q)",aln[5"1(q, S)-5"1(0, s)] 
a In(q) (7) 

since S-l(q, s) goes as a constant + 0(q2) at small q and 
,ltv ' as t{ at large q, the effective exponent D(q) should 

vary smoothly from 2 to 1/ IJ. Since IJ can be expanded 
in powers of E, we anticipate that D(q) is uniformly28 
expandable in E, unlike S(q, s). Furthermore, the E 
expansion for D(q) may be reasily obtained from the I!: 
expansion for YR(q, s). One may then reintegrate the 
definition of D to obtain the asymptotic amplitude Zoo of 
S(q, s). This D could also be used to obtain the entire 
q dependence of S(q, s)j this representation of S auto­
matically has reasonable behavior at small and large 
q. The same technique could be used to represent 
Sn(q). 

We find that to first order in E D(q) is well behaved 
as anticipated. To calculate D(q), we note that S-1(q, S) 
may be simplified using the scaling form6,14 

S-1(q, s) = S-1(0, s)f(q~) , (8) 

where the correlation length ~'" (R) /d 1t2 is defined to 
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make f(x) = 1 +:XZ + O(xA). The asymptotic amplitude Zoo 
is defined by 

S(q, s);r=: S(O, s) zoo(q~rlJv • (9) 

Thus, Zoo can be expressed in terms of f{x) 

fix) ~ (zoor1x3- lv • (10) 

In turn, f(x) can be expressed in terms of D(q) 

rx d{ ~) 
In[fix)-l]-ln[f{xo)-l]= J>f) D(q) :~ . (11) 

The limiting coefficient may be extracted by subtract­
ing a suitable term from the integrand, then sending 
x to infinity and Xo to zerO. 

In Zoo = _ roo dx [D(X/~) _ 2 _ (1/ II - 2)x2). (12) 
Jo x (1+ ;) 

The right-hand side is readily expandable in € to give 
an appro){imate value for Zoo. 

To first order in € 1/ II - 2 = -€I 4 and D(q) may be ex­
pressed as D(q)=2(1H/4.d 1l(q)], where.d il is the non­
trivial contribution arising from the diagrams. It may 
be calculated from YR(q, t) = constant S(q, t) terms of 
r= (qr2 and B= (1 + 4r)1/2 

rf ll( ) = -1 _ !!. (1 + 2Y+ "z) 
q 4 Y+ 2(1 + 4r) 

+2~ In[!~11J[1+6Y+ll,,z-(1+r)2 ~:!;l 
(13) 

This function passes smoothly and nearly monotonically 
from 0 to -1/2 as q goes from 0 to infinity, despite the 
divergences in individual terms. Given this expression, 
one may readily perform the integration in Eq. (12) 
numerically. The integrand has a single maximum of 
about 0.7 at q"" 1. 6. The result of the integration is 
In Zoo :: - O. 4268€. A naive € expansionz7 of 

_(8In lR )1I(2V). [YR(q)q1IV] 
Z .. - -a;r ~l~ YR(O) 

confirms this result and makes it precise 

In Z., :: - 41/96€ :: - O. 4271€ . (14) 

These results describe the asymptotic behavior of the 
constrained partition function 1"(q, s). We may now 
transform to obtain the analogous result for 8,.(q) for a 
monodisperse ensemble with chains of length n. We 
first note that Sn(q) is equal up to a q-independent fac­
tor to Yn(q), the inverse Laplace transform of y(q, s) 

y(q, s) = L exp( - sn) Y,.(q) • (15) .. 
Furthermore, y(q, s) obeys a scaling laWS in q and s 

y(q, s) = rr-2 It (q rV) , (16) 

where t is linearly related to s via two unimportant 
constants c1 and sc: t=c1(s-sc). The critical ex­
ponent y relates the chain's partition function to its 
length n. 28 Since nq, s) has the form a" rY-2~ 
+~ t-r-2-2 v 1+ 0(q4) at small q and a.. rr-tq-t/ v for 
large q, it follows that for large n, Yn(q) has the form 

OIo(n)! + Olz(n)1 + O(l) 

for small q and OIoo(n) q-t Iv for large q. These 01 coeffi­
cients are proportional to the a coefficients 

exp(ns ) c-Y- 2nY+l 
Ol- Cl a" 
0- r(y+2) , (17) 

exp(nsc ) ct-Z-2VnY+l+Zv 

£lI2= r(Y+2+211) ~, 

exp(nsc) ct-1nY 
£lIoo = r( Y + 1) a .. , 

where r denotes Euler's gamma function. 
ratio too is a combination of 010, £lI2, and £lI,. 

The desired 

too::- ~ £lI,. (£lI )l/ZV 
£lie £lIO ' 

(18) 

or in terms of the grand canonical coefficients at 

_ [r(Y+2) ]l/(ZV)a.. (~)1/(2V) 
too -(y+1) r( 2 2) . y+ 11+ a" a" 

(19) 

The combination of a coefficients is just Z,.. Thus, (;,. 
for a monodisperse ensemble is a known factor times 
its grand canonical counterpart Zoo. Using the accepted29 

values for y, 1.162, and for II, 0.588, and our O(f:) re­
sult for In Z .. (Eq. 14), we find 

(;oo::0.4348+0(€2). (20) 

This is roughly a third smaller than the ideal chain 
value of 2/3. 

IV. DISCUSSION 

Our result for (;oo may also be compared with the 
"swollen Gaussian" (SG) model of Ptitsyn. 30 In this 
model, any pair of links i and i+ k is assumed dis­
tributed in space as in an ideal chain, but with an aver­
age separation varying as 11 instead of lf/2. This sim­
ple model already gives the correct asymptotic behavior 
S(q)-q-l/ v, and thus it gives a value for {;oo which can 
be compared with experiment 

[ 
2 J1I2~ r(1/(211)1 

1;".8(1= (211+1)(211+2) II' 
(21) 

which with the accepted value of II yields 1;,. =0.6589-
nearly the ideal chain value. 

The Ptitsyn model has been refined by McIntyre, 
Mazur, and Wims5 by using more realistic pair distri­
bution functions. They found a value for 1;,. some 15% 
smaller than the swollen Gaussian model. Recent work 
on the pair distribution function4 suggests revised values 
for the Mclntyre-Mazur-Wims parameters. Their ex­
ponent £lI describing the short distance behavior of the 
pair distribution function is believed to have a value 
near 2.71 (2 + 92 of Ref. 4). Their exponent t describing 
the long-distance fall-off is expected1•31•8 to be (1- IIrl. 

Their exponent ~ is32 our 211 -1. For the general 
Mclntyre-Mazur-Wims theory, we find 

--.h.. _ r[(£lI-l/1I+1)/t] r(3/2) (2r[(£lI+3)/t] ]1!(2V) 

too.so - rt(3 -l/v)/zl f[(£lI+ 1)/t] 3rt(0l+ 1)/t1 . 
(22) 

Using the values above for £lI, t, and II yields a {;,. some 
25% smaller than the swollen Gaussian model value 
{;oo.8G· 
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Given I;~, one may predict the asymptotic scattering 
intensity in a solution with overlapping chains of dif­
ferent lengths. For large wave vector q, each short 
segment of chain of size of order 1/ q scatters indepen­
dently. The intensity is then proportional to the number 
of such segments. 6

,7 Thus, if the number-averaged 
chain length is (n) and the polymer concentration is Cp 

S(q)~ b~(n)Cpq-l/V , (23) 

where the constant b~ is independent of n, Cp , and q. 
On the other hand, in the dilute, monodisperse limit, 
the scaling law of Eq. (2) holds 

Sn(q) =rt-Cp f(qR/d l/2
) , (24) 

where f(x)- ?;~ x-lIv for large x. Comparing these two 
expressions for S(q), we conclude 

(25) 

The coefficient in [ 1 depends on the type of polymer 
and solvent, but not on n or Cp • 33 In a system where this 
coefficient is known, I;~ can be measured even in a semi­
dilute, polydisperse solution by measuring b~. Once 
an accurate value of ?;~ has been established, the value 
of b~ will be known for any polymer-solvent with known 
nR-lIv • 

Some experimental information on 1;., is available in 
published light5,2,34,35 and neutron3 scattering data. Two 
conditions must be met to attain the asymptotic regime 
of our theory. First, the wave vector q must be large 
compared to the inverse chain size qR» L Second, 
segments of the polymer of size -1/ q must be large 
enough to be considered as excluded-volume chains 
themselves; 1. e., the number of links n(q) in such a 
segment should obey 1/q~n(q)v. Flory theory21 and lat­
tice studies36 suggest that the eXCluded volume behavior 
is largely attained when the linear swelling factor O!q of 
the segment is larger than -1. 3. Since the linear 
swelling factor of a chain or segment goes as its size 
1/ q to the - 1/6 power. we require a giobal swelling 
factor Q satisfying 0!(qR)-1I6 :::: 1. 3. For wave vectors 
q too large to satisfy this condition, the asymptotic 
scattering becomes that of ideal segments37 or of indi­
vidual links. 

The experiment of Slagowski38 discussed by Mazur and 
McIntyre2 appears to come closest to satisfying these 
conditions. By using polystyrene of molecular weight 
exceeding 40 million in benzene, he attained values of 
q~ 20 and 0!(qR)-1/6,., 1. 5. Values of Soo from these 
data decrease with improving solvent and attain a value 
of 0.585 iii the best solvent. To obtain this value, we 
applied a 16% polydispersity correction, which assures 
that the asymptotic scattering observed in a e solvent 
has the Debye value ?;.,:o 2/3. The measured b~ lies 
below the swollen Gaussian prediction in accord with 
our result and with the refined Ptitsyn theories (Eq. 
22). As the experiments come closer to the asymptotic 
regime. the measured ,~ appears to be approaching the 
predicted values. 

Neutron scattering data3 on the asymptotic S(q) report 
the q-S/3 behavior we expect. However, in these data, 
the wave vectors q are too large to satisfy our second 

condition: segments of size -1/ q'" 10 A are not much 
longer than the statistical segment length, and thus may 
not show the asymptotic excluded volume effects. 

V. CONCLUSION 

This study shows that the amplitude of the asymptotic 
structure function for a self-repelling chain can be cal­
culated directly by renormalized field theory method 
using the E expansion. The 0(11:) result presented here 
shows that the reduced amplitude ,~ should depend 
strongly on the dimension of space. This first approxi­
mation is consistent with experiment and with previous 
empirical theories. Our work indicates a stronger de­
parture from swollen Gaussian behavior than do these 
theories. Our method requires no explicit assumptions 
about the pair distribution function. And our result can 
be systematically improved by calculating to higher 
orders in ~ and applying recent resummation methods. 39 

I am grateful to Professor L. Schafer for his indis­
pensible role in the early formulation of this problem. 
R. Ullman made useful comments on the manuscript. 
I thank the Center for Polymer Studies at Boston Uni­
versity for hospitality during an early stage of this work. 
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