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A statistical simulation of the low-voltage arc mode of plasma diodes is carried out on a large-scale digital
computer to ascertain the importance of various thermalization and transport mechanisms. The computer
experiment is two-dimensional and utilizes Monte Carlo techniques to study the low-voltage arc in neon at
p=2 Torr, current=4 A, and diode spacing=2.37 cm. Results on the potential distribution, electron-
density distribution, and electron-energy density function are presented and discussed. The theoretical

results are correlated with experimental results.

I INTRODUCTION

The_development of plasma-diode thermionic con-
verters_operating in the low-voltage arc, or ignited,
mode has indicated the need for a complete theoretical
understanding of this type of discharge. The system
analyzed here is a hot-cathode plasma diode with
parallel-plane electrode geometry operating in the
low-voltage arc mode. Although the electrode spacing
is considerably greater than that characteristic of
thermionic converters, the basic technique can be
applied to close-spaced cesium thermionic diodes.
Despite the extensive previous work, many aspects of
the behavior of this mode have not yet been resolved.
Extensive reviews of the previous studies have been
presented by Salinger! and by Bullis et al? Several
properties of the low-voltage arc make it difficult to
analyze theoretically. It is a high-current mode in
which the ionization is produced by collision processes
within the volume of the discharge and it is a highly
nonlinear, nonuniform discharge having strong axial
and radial variations in potential, particle densities, and
temperatures. It does not exist in thermal equilibrium,
but instead in a dynamic steady state governed by the
interaction of several generation, loss and transport
mechanisms. It operates in an intermediate pressure
range, 0.5-5 Torr, in which collisions cannot be neg-
lected, but in which the particle motion is not entirely
collision dominated. The appearance of the discharge
is shown in Fig. 1 for a neon-filled diode with a pressure
of a few Torr, current of a few amps, and diode spacing
of approximately 2 cm. In this figure, the darker the
shading, the more intense is the illumination of the
plasma. The low-voltage arc mode possesses an exceed-
ingly brilliant region in the shape of an oblate spheroid
adjacent to the cathode. This “cathode ball of fire” is
much brighter than the conventional ball-of-fire mode.
A very thin dark space exists between the cathode and
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the cathode ball of fire. The region toward the anode is
much less intensely illuminated.

Several analytic models have been proposed to ex-
plain the behavior of the low-voltage arc. These models
differ considerably in regard to the assumptions made
and thus it is not surprising that the conclusions drawn
aresomewhat at variance. Also, all of the recent analyses
have been performed for cesium low-voltage arcs which
are inherently more difficult to analyze than noble-gas
low-voltage arcs. All of these previous analyses have
been one-dimensional and have presumed a Maxwellian
electron-velocity distribution throughout the plasma
region. However, there is strong evidence that this
may not be true. Also, all attempts to solve the non-
linear and nonuniform transport problem have required
simplifying assumptions whose effects it has been diffi-
cult to assess. Finally, the problem of determining the
thermalization mechanisms has not been fully explored.

The present study involves a statistical simulation of
the low-voltage arc mode on a digital computer to
determine the predominant thermalization and trans-
port mechanisms. Several different computer experi-
ments have been used successfully in other recent
studies of plasma-diode problems®¢ However, these
previous studies have been one-dimensional, whereas
for simulation of the low-voltage arc mode it has been
necessary to develop a two-dimensional model.

II. FORMULATION OF THE MONTE CARLO
ANALYSIS

A. General Description of the Method

The Monte Carlo analysis used in the present in-
vestigation is a self-consistent analysis similar to
previous approaches in that it is largely based upon
determining the motions of individual particles under
the influence of the other particles in the system.
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T'16. 1. Visual appearance of the low-voltage arc mode in a planar
plasma diode.

A highly idealized and simplified outline of the basic
flow diagram for the computer simulation is shown in
Fig. 2. The procedure consists of a series of logical
subroutines which are sequentially performed in a basic
cycle. The various physical processes represented by
these subroutines are interdependent and occur con-
tinuously and simultaneously in a real plasma di-
ode. However, to permit computer simulation, the
interdependencies between these processes must be
distinguished and arranged in a cyclic sequence. For
this procedure to be valid, the change in the state of
the model over a single iteration must be small.

The process of following the particle motion consists
of computing the electric fields in the diode on the
basis of the electron distribution at a given instant, and
then updating the coordinates of the electrons over a
short time interval under the influence of the fields
they encounter during that interval. The effects of
collisions upon the electron motion are also treated in
great detail. Other subroutines generate thermionic
electrons at the cathode, determine currents to the
boundaries and adjust the anode voltage and dc electric
field. After the electron coordinates have been updated,
a new charge distribution is determined and used to
compute a new space-charge potential distribution and
a new electric-field distribution. The particles are then
updated again under the influence of the new field
distribution and the process is repeated cyclically.

Initial efforts also included updating of ions along
their trajectories, starting with an initial uniform ion
distribution, and generation of new ions by ionizing
collisions of electrons with neutral atoms. However,
with the inclusion of these effects in the simulation, it
was not possible to achieve stable operation and con-
vergence of the computer program without following
much larger numbers of electrons and ions than were
consistent with computer storage and computation
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time limitations. Instead, the ion distribution was held
fixed at the measured experimental distribution for
the diode being simulated. Such use of the experimental
ion distribution is reasonable, permits stable operation
of the simulation, and saves considerable computer
time over any method which includes ion drift.

The iterative process is continued until the electron
distribution and the resulting potential distribution
reach a steady state or until a definite instability is
determined, in which event the computation is ter-
minated. Since the electrons are tracked individually
and the number of electrons that can be followed is
limited, a steady state may only be approached up to
the limit of statistical fluctuations of the particle
distributions. Once this “statistical steady state” is
reached, the electron distribution, potential distribu-
tion, and all other interesting information about the
system are sampled over a number of successive itera-
tions and these data are stored. The acquired data may
then be statistically analyzed to provide estimates,
within specified confidence limits, of many quantities
of interest within the plasma diode.

To justify this sampling in time for a single simula-
tion, it is necessary that all physical or mathematical
stochastic processes in the Monte Carlo simulation be
stationary and ergodic. The requirement of a stationary
state assures that, before sampling begins, a statistical
steady state has been reached in which all probability
functions are invariant under a shift in the time origin.
The requirement of ergodicity assures that data ob-
tained over a long period of time from a single simulation
may be interpreted in the same way as data obtained
simultaneously from a large number of identical simula-
tions at an arbitrary moment.

m

GENERATE THERMIONIC
S |

[ PRINT RESULTS |
ADJUST DENSITY T
SCALE FACTOR

STATISTICALLY ANALYZE
ACCUMULATED DATA

ETERMINE CURRENTS

TC BOUNDARIES

HAVE
ENOUGH SAMPLES
BEEN TAKEN ?

ADJUST ANODE VOLTAGE
AND D-C ELECTRIC FIELD

COMPUTE CHARGE COLLECT DATA ON
DENSITY DlSTRlBUTION PLASMA SYSTEM BEHAVIOR

COMPUTE SPACE CHARGE
POTENTIAL DISTR!EUTION

SOLUTION
CONVERGED ?

(COMPUTE SPACE CHARGE !

ELECTRIC FIELDS [ TEST FOR COLLISIONS ]

DETERMINE. NEW
ELECTRON DISTRIBUTION

UPDATE ELECTRONS
ALONG TRAJECTORIES

T16. 2. Idealized schematic of basic logical flow diagram.




SIMULATION OF THE LOW-VOLTAGE ARC MODE

B. Description of the Theoretical Model

The model used in the analysis is shown in Fig. 3. It
consists of a parallel-plane diode with a circular ther-
mionic cathode. The cathode is grounded and is sur-
rounded by a grounded guard ring., The diameters of
the guard ring and anode are large compared with the
cathode radius ¢ and the diode spacing d. The diode is
assumed to be filled with a noble gas at pressure p, and
there is no applied magnetic field. The discharge current
is designated as I, and the discharge voltage is desig-
nated as V..

The problem is treated in cylindrical coordinates, and
axial symmetry is assumed so that there is no variation
in the 6 direction. It is then adequate to consider only
a sector of the diode of depth A in the ¢ direction. Also,
there is, on the average, no net force on any particle
in the @ direction.

The major assumptions not already mentioned are
as follows:

(1) Nonrelativistic mechanics is used.

(2) The gas is weakly ionized.

(3) Collisions between charged particles may be
neglected. The coupling mechanism between charged
particles comes from the space-charge fields.

(4) The time steps taken are short enough that the
instantaneous state of the system undergoes only a
perturbational change from iteration to iteration.

(5) The gas pressure is sufficiently high so that colli-
sions damp out any large-amplitude plasma oscillations.

(6) In collisions of electrons with neutral atoms, the
scattering is isotropic. ,

(7) The electron emission from the cathode is space-
charge limited and is uniform over the surface of the
cathode.

(8) The only electron—neutral collision processes
included are elastic collisions and ionizing collisions.

When operated in the low-voltage arc mode, a plasma
diode exhibits a very steep current-voitage charac-
teristic, with large changes in current producing only
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F16. 3. Model of the diode used in the analysis,
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slight changes in voltage. In fact, for stable operation
in this mode it is generally necessary to use a current-
regulated power supply or a large current-limiting
resistor in series with the diode. To obtain a realistic
simulation, the model was therefore supplied with a
constant current source, and current was taken as an
independent variable. {This also provided a means for
controlling the anode potential by comparing the
instantaneous anode current due to computer electrons
crossing the anode boundary with the desired anode
current, and then modifying the anode voltage to drive
the current toward the desired value.)

C. Motion of Electrons

The equations of motion of the electrons may be
readily obtained by numerically integrating the force
equations. The axial velocity component and position
of an electron at time ¢;,,=1;-+A¢" are given by

; 2(ta) =2(t) = E.(1) At (1
an
3(tiyr) =2(8) +3[2(6) +2(4y0) JAL, (2)

where n=e¢/m and E,(t;) is the z component of the
electric field seen by the electron at time #. Similar
expressions are used for 7(f;11) and r(f141).

The kinetic energy &(#y1) may be obtained by
eliminating the 6-velocity components from the expres-
sions for &(#;;1) and &€(f) in terms of their velocity
components under the condition that #(#;) =v(t).
The result is

&(ti1) =8(0) +(1/29) {[22(8) +A2]AZ
+20r () A ]Ar),  (3)

where A2=2(f141) —2(#;) and similarly for Ar.

The probability that an electron of energy & will
undergo a collision of type % in an interval Af~ is given
by

Pk,(g, At—) =1—6Xp[—Vk<8) At—:], (4)

where #(8) is the collision frequency. The probability
of an electron surviving a time A#~ without undergoing
any type of collision is given by '

Py (&, Ar) =exp[ — At~ lé (&), (3)

where L is here the number of types of collisions
considered.

Considering only elastic and ionizing collisions, the
sum of the probabilities of the various events is

Py (8, Ar)+Pr' (8, At) -+ P/ (8, AF)
=14P' (8, Ar), (6)

where Py (€, At™) is defined in Eq. 5; Pz’ (8§, At and
Pr' (8, At™) are, respectively, the probabilities that an
electron of energy & will undergo an elastic or ionizing
collision in an interval Af~, as given in Eq. 4, and
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Pg (8, Ar) is the joint probability of an electron
undergoing both an elastic and ionizing collision during
At~ To determine the occurrence of a collision, it is
convenient to normalize the probabilities on the left
so that their sum is unity. To do this, define

P/'=Py(§,A) /[14+Ps'(8,A8)], k=0, E, I
(7

In practice, it is necessary to choose Af~ short enough
that there is a negligible probability of an electron
undergoing more than one collision during A¢~. Then
PJ (8, Ar)«K1 and P~ P/ (8, At).

Next, generate a random number Rg, uniformly
distributed on 0L Re=1, and test R¢ as follows. If
0= Rc< Py, then no collision occurs; if Po’< Re<
Py'4Pg", an elastic collision occurs; if Py’ Pg"<
R¢<1, an ionizing collision occurs.

If it is decided that a given electron has undergone a
collision during the interval A¢~, then its velocity com-
ponents and energy must be appropriately adjusted.
For simplicity, the scattering is assumed to be iso-
tropic. Also, it is assumed that, after scattering, the
¢ component of the electron’s motion always gets its
average fraction of the remaining energy, i.e., one-third.
If &' is the kinetic energy remaining after the collision,
the velocity components after the collision are then
related to the energy by

242 =3(2me"). (8)

For the scattering to be isotropic, it is necessary
that all values of the angle y, which the component of
the velocity vector in the z—7 plane makes with the 2
axis, be equally probable. This leads to a cumulative
distribution function for ¢ of G(¢) =y/2r. A random
number Ri, uniformly distributed on 0= Ri=1, is
generated and equated to G(¢), yielding ¢=2mR;.
Relating ¢ to 2’ and #, and inserting numerical values
then yields

' =4.8427X10°(8") 12 sin2x Ry, 9)

(10)

m/sec

and
2 =4.8427X105(8")12 cos2r Ry, m/sec.

If the electron undergoes an ionizing collision a new
electron must be generated at the point of the collision.
The energy to be shared between the primary and
secondary electrons immediately after the collision is
&—§&;, where & is the threshold energy for ionization.
It is assumed that this energy is uniformly and ran-
domly shared between the two electrons with equal
probability. The kinetic energy of the primary electron
is then taken as & = R;(§—&r), while that of the second-
ary electron is taken as &”=(1-—-R;)(8—8&r), where
R; is a random number. The velocity components of
the two electrons are then assigned in the manner of
Eqgs. (9) and (10).

In an elastic collision with a neutral atom, the mean
fractional energy loss of an electron is in the range of
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10— to 1075, In a plasma which is collision dominated,
or nearly so, elastic collisions occur frequently enough
for this small fractional energy loss to become an
important thermalization mechanism. However, since
a computer simulation cannot be run nearly long enough
for these small electron-energy losses to have a signifi-
cant cumulative effect, these losses are neglected, and
it is assumed that &2==8. Thermalization within the
computer model is brought about by randomization
of the electron directional distribution in elastic colli-
sions coupled with randomization of electron energy
in the fluctuating electric field of the tracked electrons
themselves. Initial operation of the program using
elastic collision frequencies based upon published colli-
sion cross section data failed to provide sufficient
thermalization using this method to assure stable opera-~
tion and convergence. However, an increase in the
collision frequency by a factor of ten to simulate the
effect of the necessary, but missing, thermalization
mechanism did lead to stability and convergence. The
number of possible candidates for this predominant
thermalization mechanism was reduced to recoil loss
in elastic collisions, as discussed above, and some form
of collective charged particle interaction such as the
growth and breakup of local plasma instabilities with
characteristic wavelengths less than the minimum
resolvable distance in the computer model. In future
calculations it is anticipated that a smaller grid size
can be utilized so that local plasma oscillations can be
included as a thermalization mechanism. There is no
fundamental limitation to the inclusion of these mecha-
nisms; only limitations on computer time.

D. Determination of Charge Densities, Space-Charge
Potentials, and Electric Fields

To determine the spatial variation of the electron
densities, the diode is divided into cells and, at each
iteration, the number of tracked electrons in each cell
is counted. Sample estimates of the net charge densities
in each of the cells are then given by

pii=(e/Yi;) (nijt—BaNij). (11)

Here #;,;t is the experimentally determined ion density
in cell (¢, §); N;; is the number of tracked sample
computer electrons in cell (7, 7); B,~ is the electron-
density scale factor, i.e., the number of physical elec-
trons in the total population of the volume under
consideration that each sample computer electron
represents, and ¥, ; is the volume of cell (3, 7).

Due to the limited number of particles that can be
tracked on the computer, there will be a relatively small
number of computer particles of each species in each
cell, and so taking the difference in Eq. (11) may lead
to large fluctuations and unrealistically high values
for the p;;’s. To smooth out these fluctuations and
bring the p; /s down to realistic magnitudes, two steps
are taken. First, the electron density in each cell is
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replaced by the average of the electron densities of that
cell and the eight surrounding cells, thereby spreading
the charge of each computer electron over a nine-cell
region and reducing the fluctuations at the expense of a
reduction in resolution of the electron density. Next, the
smoothed charge density is multiplied by a space-charge
reduction factor B which reduces the estimated net
charge density to that value required to bring the
instantaneous peak potential within the diode, V.,
into agreement with a specified experimental value of
V. A feedback loop is used to regulate s, and hence,
Vi at the correct value.

With an estimate of the charge-density variation, it
is possible to solve Poisson’s equation to obtain the
space-charge potential variation. The boundary-value
problem to be solved is

8%/ 85*+8%/0r*+(1/1) dp/dr=—p(2, 1) /e,

0=52=d,0=5rZ», (12)

0(0,7) =¢(d,r)=0, 0Zr=o, (13)
ez, 0)=0, 0=z=d, (14)
d¢/dr=0 at r=0,o, 0=z=d. (15)

Since this problem must be solved hundreds of times
during the course of the computation, it is necessary
to use the fastest possible method of solution. The
method used is a combination of Fourier analysis and
the marching method”® as adapted to cylindrical
coordinates. The details of the analysis may be found
in Ref. 1.

In this method, the boundary conditions (14) and
(15) at r=oc0 are approximated at a finite distance 7
by taking o(74Ar) =vy¢(7), where v is an appro-
priately determined constant. This method approxi-
mates the infinite region =0 by the bounded region
0=r=<7, and permits discarding of computer electrons
which cross the radial boundary r=7. With 48 radial
cell divisions this led to an average error in computed
potential of 0.519 and an average error of only 0.13%
over the inner 39 cells. Once the array of potentials is
known, the electric fields are obtained by differentiating
the potentials using finite-difference methods.

E. Generation and Loss Mechanisms

To determine the currents crossing the various
boundaries it is necessary at each iteration of the
simulation to count the number of electrons crossing
these boundaries. Prior to updating each electron, the
coordinates of the electron are tested to see if it has
crossed any of the boundary planes and left the diode.
If it has, a count is registered for the appropriate

7R. W. Hockney, Rept. No. SU-SEL-64-056, Stanford Elec-
ir(g;i;:S Laboratories, Stanford University, Stanford, Calif. (May
964).
8R. P. Wadhwa and G. Kooyers, Rept. No. NASA CR-54033,
Electron Tube Division, Litton Industries, San Carlos, Calif.
(1964), pp. 87-104.
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boundary plane, the electron is eliminated from storage

in the computer memory, and the next electron is

considered. If, on the other hand, the electron lies

within the boundaries, it is updated in the usual fashion.
The electron current to the anode is given by

I =eB,~ (N, )uw/[AE(A8/21) ], (16)
where (V5 ).v is the mean number of computer elec-
trons reaching the anode plane, averaged over several
iterations. The factor A8/2r is the fraction of the total
anode surface to which the sector under analysis of the
diode corresponds, and is thus the fraction of the
electron current which enters the anode through A8.
The discharge current 7 is approximated by the electron
current to the anode, so that I3l

Next consider the thermionic emission of electrons
from the cathode. In the low-voltage arc mode the
emission is space-charge limited, and it is estimated
that the distance from the cathode to the potential
minimum is of the order of 10~% cm. On the other hand,
the diode spacing is of the order of 2 cm, so that for an
axial resolution of 48 cells the distance to the first grid
point off the cathode is of the order of 10~2 cm. There-
fore, the detailed variation of the potential distribution
in the neighborhood of the potential minimum cannot
be resolved, so that the detailed particle motion in-
volved in the space-charge-limiting process cannot be
simulated.

The approach that is followed is to generate at the
cathode at each iteration a number of electrons corre-
sponding to the space-charge-limited current. The
emitted electrons are effectively coming from the
potential minimum, but negligible error is introduced
by assuming that the virtual cathode at the potential
minimum coincides with the real cathode. The required
number of electrons is

(New™ Jav=(A0At/2weB™) [+ (N +Ni e (17)

Here, the first term on the right supplies the number
of electrons corresponding to the desired discharge
current reaching the anode. The second term balances
those electrons lost by backscattering from the plasma
to the cathode plane and by radial diffusion.

The electrons are generated with zero initial energy
and velocity components, since these initial values are
negligible compared with the values attained after the
electrons are accelerated through the cathode sheath.
The probability density function for the radial coordi-
nates of the emitted electrons is taken to be proportional
to 7Af to assure uniform emission over the surface of
the cathode. A similar procedure is used for controlling
the anode potential by comparing the instantaneous
anode current with the desired anode current.

A necessary requirement is the adjustment of the
density-scale factor B,~. As the simulation approaches
a steady state, the number of tracked electrons may
tend to exceed the allowable upper bound. Whenever



3938 S. N.

this occurs, a randomly selected fraction of the tracked
electrons, say 39, is eliminated from storage and
discarded. At the same time, the density-scale factor
is increased by the same fraction to properly increase
the weights of the remaining tracked electrons that
have not been eliminated. Since the elimination is done
randomly, no bias is introduced by this process. How-
ever, it does tend to preferentially enhance the fluctua-
tions in the low-density regions. To overcome this
would require an important sampling scheme which
combines a spatially varying B,~ with nonuniform
elimination probabilities.

F. Estimation of Plasma Parameters

To terminate the computation it is necessary to
specify suitable convergence criteria for the simulation.
Due to the complexity of the model, the specification
of adequate numerical criteria is difficult. In practice, it
is found most convenient to visually monitor a large
number of printed output variables from iteration to
iteration. When it is judged that the mean values of
these variables have adequately leveled off, and all
that remain are statistical fluctuations about the means.
the simulation is considered to have converged. Addi-
tional iterations are then run during which data are
collected for statistical analysis. These data are then
used to estimate mean values and confidence limits for
all physical quantities of interest.

In the statistical analysis the sample mean and
standard error of the sample mean are computed for
each estimated parameter of interest. These are then
used to compute confidence bands for the spatial
variations of the estimated parameters. Since much
data are collected during each sampling iteration, and
the computation time during each sampling iteration
is lengthy, data collection, storage, and processing
considerations limit the number of sampling iterations
to around 100. Consequently, Student’s ¢ statistics are
used to eliminate biases in the estimates of confidence
bandwidths due to small-sample effects. In addition,
sampling over successive iterations causes a degree of
correlation between successive samples since the elec-
tron-updating procedure is a Markov process in which
the successive steps are not statistically independent
of one another. The effect of this correlation is also
considered in the computation of confidence bands,
since the correlation increases the width of the con-
fidence interval by increasing the standard error.

This analysis is used for computing the means for
several arrays of plasma variables. The confidence
intervals are computed for selected rows of these
arrays. The sample mean of the electron density in
cell (4, 7) is given by (n:; )av=(Bs/Yi;)) (Nii av,s
where (NV;; )av is the sample mean of the number of
computer electrons in cell (7, /) and ¥, ; is the volume
of the cell. The sample means of the potentials at each
grid point are estimated from the sum of the space-
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charge potential and d-¢ potential at each mesh point
as (Viidav={@s.j)avt (i/K) (Va)ov. By differentiating
the potential distribution, the electric-field intensity
may be determined. Also, by recording the location of
every ionizing collision occurring during the sampling
iterations following convergence, the mean number of
computer ionizations per iteration (Z;;).» may be
determined. The sample mean ionization rate per
unit volume per second is then given by ({i;)av=
(Zi,3)avBat/ YV ;A Sample means and confidence in-
tervals are also determined for the currents to the
boundaries.

Next it is necessary to estimate the electron tem-
perature and energy density function. The “tempera-
ture” used here is defined by the relation

6<8 >av=%m(v2>av%kT—' (18)
This definition differs from the usual kinetic theory
definition, in which m((v—2)%)ay/2=3k7"/2, in that
it includes the translatory kinetic energy of the elec-
trons. The mean velocity is omitted from the definition
(18) because inclusion of this term would require the
collection, storage and reduction of data on the in-
dividual velocity components of each electron, in
addition to the electron energies, thereby tripling the
data to be processed for the computation of tempera-
tures. In regions where the electron distribution is
reasonably well thermalized, the drift energy is pre-
sumed to be small compared to the thermal energy, and
the neglect of 7 in Eq. (18) introduces little error. In
nonthermalized regions, where 7 is not small, Eq. (18)
yields a higher temperature than the customary defini-
tion. With either definition, the concept of a tempera-
ture loses much of its usefulness and significance in
regions having significant drift velocities or anisotropies
because the information concerning these latter proc-
esses is lost in the averaging process. To emphasize
the distinction between the present definition of tem-
perature and the usual kinetic theory definition, the
quantity 7 defined by Eq. (18) will be referred to as a
“pseudoelectron temperature.” Using Eq. (18), the
sample mean pseudoelectron temperature in cell (4, 5)
is given by (T ;7 Vav="7737{(8: ;)av, °K, where {&; ;)av is
the mean electron energy in cell (4, j) expressed in eV.

To estimate the electron energy density function,
f(&, z), the diode is divided into groups of cells along the
z axis, and then the electrons in each cell group during
the sampling iterations are sorted into energy classes.
The mean fraction (k). 0f the electrons in cell group
k which are in energy class m is then computed for each
pair (k, m). The mean fraction of electrons per unit
energy interval is then given by (fi(8x) Yav= {(Kkm)av/
(A8,,), where (A8) ., is the width of the mth energy class,
centered about energy &.. The products (%i; )av
{ fx(&m) Yav, where cell (4, ) is centered within cell group
k, provide sample estimates of the axial variation of

f(&, 2).
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III. SIMULATION AND ANALYSIS OF A NEON
LOW-VOLTAGE ARC

A. Specification of Operating Conditions

The discharge to be simulated is a neon low-voltage
arc operating under the conditions p=2 Torr, I=4 A,
and d=2.37 cm. The cathode radius is =0.889 cm, and
the cathode temperature is sufficiently high to assure
space-charge-limited operation. The neutral gas tem-
perature is estimated to be T=300°K. This particular
operating point was chosen to make use of and provide
a comparison with Martin’s® extensive Langmuir-probe
data under these conditions. Pulsed and shielded
Langmuir-probe data for the spatial variations of the
plasma potential, electron density, and electron tem-
perature, obtained by Martin, are shown in Fig. 4 for
the stated operating conditions. Data of this type are

i6 T

PLASMA POTENTIAL

1
g

nN
ELECTRON DENSITY, 10 ELECTRONS/cr®
~
ENERGY EQUMALENT OF ELECTRON TEMPERATURE, eV

1

TEMPERATURE

ELECTRON \
/ DENSITY \

PLASMA POTENTIAL, VOLTS
@
T

L

rn
]
|

A1 !
o} 0% 1.0 15 20 237
AXIAL DISTANCE, cm

F16. 4. Experimental behavior of the plasma diode being simu-
lated. Axial profiles of plasma potential, electron density, and
electron temperature. Operating conditions: neon at p=2 Torr,
I=4 A, and d=2.37 cm. (from Martin?).

used to estimate an initial state of the system from
which to begin computations. Other reasons for choos-
ing this particular operating point are that it is known
to be stable and that complete atomic collision data are
available for neon.

In this simulation, 10 000 particles of each species
(i.e., electrons and ions) were tracked, and a 48 by
49 cell array was chosen for the computation of poten-
tials. The optimum electron updating interval was
found to be Ar==2X10"" sec. Somewhat arbitrarily,
Af was taken as 107% rad, leading to density scale
factors of the order of 300. Data were collected for
analysis over 150 updating iterations after convergence
was reached.

°R. J. Martin, Tech. Rept. No. 101, Contr. No. DA-36-039

AMC-02269 (E), Electron Physics Laboratory, The University of
Michigan, Ann Arbor (June 1967).
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B. Results of the Analysis and Conclusions

The results of the analysis are presented as a series
of contour plots and parametric curves of the computed
behavior of the plasma properties. The presented curves
are the result of smoothing the curves obtained directly
from the computer. The latter curves contained many
fluctuations about the reduced smooth curves.

Figure 5 shows the computed contours of constant
potential in the discharge, while Fig. 6 shows the
confidence intervals for the axial variation of the
potential as a function of radial cell index. In these
figures, the potential peak near the center of the dis-
charge is clearly displayed. This peak occurs somewhat
closer to the anode than is observed experimentally,
and the cathode fall of potential is not as steep as in
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Fi1G. 6. Ninety-percent confidence bands for the axial variation of
the total potential as a function of radial cell index.
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Fic. 7. Contour plot of electric field lines.

experimental observations. This discrepancy will be
discussed shortly. It is also seen that the space-charge
component of the total potential decreases rapidly with
increasing radial distance, so that the total potential
approaches a ramp function due to the applied dc
potential. An anode fall of potential exists only near
the center of the anode where the space-charge electric
field predominates over the applied dc electric field. On
the radially distant parts of the anode where the situa-
tion is reversed, there is no anode fall of potential; the
potential rises monotonically to the anode voltage.
Figure 7 shows the electric field lines which indicate
the directions along which ions in the real discharge
drift due to mobility effects. It is evident that most of
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the ions generated within the central high-potential
region eventually reach the cathode plane, while only a
small fraction drift toward the anode. It is also evident
that diffusion must play a major role in permitting ions
to move across the field lines to radially distant regions
not directly connected by field lines to the high-poten-
tial region where most of the ions are generated.
Figure 8 shows a contour plot of curves of constant
| E|/p. This ratio is a measure of the mean energy
acquired by the ions from the electric field. The loca-
tions of the cathode double sheath and anode fall of
potential are clearly displayed. Nowhere in the dis-
charge is the electric field strength sufficiently low for
the condition | £ |/p<<2 V/Torr-cm to be valid. This
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Fic. 10. Ninety-percent confidence bands for the axial variation of
the electron density as a function of radial cell index.
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is the criterion suggested by McDaniel'® for the validity
of using an analysis employing constant ionic mobility,
independent of the field strength. Thus, the high | E|/p
values shown in Fig. 8 suggest that any transport
analysis of the low-voltage arc mode, which includes
the effect of ion drift, should employ an electric-field-
dependent ion mobility, The strong electric fields also
suggest that the electron drift velocities are nonnegligi-
ble throughout most of the discharge, so that the
neglect of 7 in the definition of temperature is not well
justified. Future treatments should permit the gathering
of electron velocity data for a more rigorous treatment
of electron temperature.

Figure 9 shows the computed contours of constant
electron density in the discharge. A peak in the electron
density occurs at the center of the discharge with rapid
decreases in the density occurring radially and axially
toward the anode. However, a strong secondary maxi-
mum also occurs at the cathode, in disagreement with
experiment. Figure 10 shows the 909, confidence bands
for the electron densities #—(z, r;). Percentagewise, the
greatest uncertainties in the estimated electron density
occur for both very large and very small 7. This is
because the real electron density decreases radially,
while the cell volume increases radially, producing
maximum concentrations of computer electrons at
intermediate radial distances.

It is believed that the discrepancy between the
computed and experimental profiles for both the elec-
tron density and electric potential arise from a com-
bination of inaccuracy of the experimental ion density
profiles in the neighborhood of the cathode and the
inability of the computer program to correct for this
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WE. W. McDaniel, Collision Phenomena in Ionized Gases
(John Wiley & Sons, Inc., New York, 1964), p. 437.
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F16. 12. Ninety-percent confidence bands for the axial variation
of the electron pseudotemperature as a function of radial cell
index.

inaccuracy by a self-consistent inclusion of diffusion
and drift of the ions in the simulation. In the cathode
ball-of-fire region, the measured ion densities were
accurate to at most only 209, and measurements
on the central axis were not made closer than 0.5 cm
to the cathode. It is possible that the ion density near
the cathode falls to only 1.5 10" ions/cm3 rather than
the 0.4X 10 jons/cm® indicated in the extrapolation
in Fig. 4. This increased ion density near the cathode
would raise the potential there and narrow the com-
puted cathode fall space. The steeper cathode fall would,
in turn, accelerate thermionic electrons away from the
cathode more rapidly and eliminate the secondary
maximum of electron density at the cathode. The
confidence band for estimated electron densities on
the axis at the cathode would then be lowered and
would appear somewhat like the dashed lines in Fig. 10,
If it had been possible to include drift and diffusion
of the ions into the simulation, the initial ion distribu-
tion and the electron and potential distributions would
all have been corrected in an internally consistent
manner. A proposed, but as yet untested, method for
the inclusion of ion drift and diffusion in the computer
simulation of a gas discharge is outlined in the Appendix.

Ninety-percent confidence intervals were also deter-
mined for the electron currents to the boundaries. The
anode current was in the range 1.2<I;~<2.1 A, the
radial diffusion current was in the range 1.0<I;~<
1.4 A, and the electron current backscattered to the
cathode plane from the plasma was in the range 0.48 <
—I1,7<0.78 A. The anode voltage was in the range
12.7<V.<130 V.

The observed anode current was somewhat lower
than expected, while the observed radial diffusion
current was somewhat higher than expected. These
results, coupled with the observed behavior of the



3942 S. N.

SALINGER AND J. E. ROWE

F16. 13. Relief plot of the electron-en-
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electric fields and a comparison of the model geometry
with Martin’s experimental plasma diode, yield an
important conclusion as to the nature of the electron
transport mechanism in the low-voltage arc mode. Since
the anode current was determined on the basis of the
electrons striking the anode at radial distances of
r<7=2.67 cm, while the radius of the anode in Martin’s
experimental diode was 5.08 cm, it appears that a
sizable fraction of those electrons, which would have
struck the anode and contributed to the current, crossed
the boundary r=7 and were eliminated from the com-
puter’s memory before they could reach the anode and
contribute to the current. The following theory of
electron transport to the anode then emerges.
Electrons entering the plasma from the cathode are
accelerated along the inward-curving field lines toward
the high-potential region where they may undergo
exciting and ionizing collisions. A strong radial electron
density gradient forms, across which an outward radial
electron diffusion current develops. In addition, elec-
trons may diffuse radially while they are being ac-
celerated away from the cathode, and sizable numbers
may never even enter the high-potential region. As
these electrons diffuse radially outward, they encounter
electric fields which cause them to simultaneously drift
toward the anode. Thus, the path of least resistance
for electrons to reach the anode is not to climb down the
anode fall of potential, but rather to diffuse radially
to where there is no anode fall of potential and where
they may drift toward the anode in a prevailing ac-
celerating electric field. This mechanism permits large
numbers of electrons, with energies which are much less
than those required for climbing down the anode fall
of potential, to reach the anode, thereby permitting a
much larger current to flow than is predicted by one-
dimensional theories assuming a uniform anode sheath.
The computed behavior of the electron pseudotem-
perature is shown in Figs. 11 and 12. A strong maximum
is seen to occur on the 2 axis in front of the cathode, in

agreement with experiment. The rise in temperature
from the cathode to the peak is due to the gain in kinetic
energy of the primary thermionic electrons as they are
accelerated through the cathode double sheath. The
fall in temperature from the peak to the anode is due
to the thermalization of the electrons within the plasma
as an increasing fraction of the high-energy primary
electrons is converted to low-energy “ultimate” elec-
trons. As discussed previously, the pseudotemperatures
computed here are somewhat higher than those that
would be obtained from the usual kinetic theory defini-
tion of temperature.

Figure 13 presents a relief plot of the electron-energy
density function f(§, z) along the z axis. In this figure,
the process of thermalization is clearly displayed. At
the cathode, f(€, z) is a narrow-peaked, Gaussian-like
distribution with its center at the energy equivalent
of the total potential. This shows that most of the
electrons here are in a beam moving away from the
cathode and being accelerated by the cathode fall of
potential. The spread in the energy distribution about
the peak is due to the effects of space-charge inter-
actions and collisions with neutral atoms upon the beam
of thermionic electrons.

As this beam of electrons moves away from the
cathode into regions of higher potential, the center
energy of the peak increases, while the amplitude of
the peak decreases and the width of the energy dis-
tribution about the peak increases. Simultaneously,
another peak begins to grow at a much lower energy in
the neighborhood of 1 or 2 eV. This low-energy peak
is due to the thermalized electrons within the plasma.
The thermalized distribution grows as the center of the
plasma is approached, while the high-energy peak
decreases as an increasing fraction of the primary beam
electrons is thermalized. The thermalized part of the
distribution clearly displays a Maxwellian form. In the
region where the high-energy tail becomes negligible,
the amplitude of the Maxwellian distribution is propor-



SIMULATION OF THE LOW-VOLTAGE ARC MODE

tional to the electron density, which exhibits a peak
near the center of the discharge and decreases toward
the anode.

It is seen that the dissipation of the cathode electron
beam and the transition to a Maxwellian distribution
is quite gradual, with the high-energy peak being de-
tectable more than halfway into the plasma. In the
cathode double sheath region the distribution is strongly
doubled-humped, which suggests the existence of strong
beam—plasma interactions tending to aid in the dis-
sipation and thermalization of the primary beam. It
is concluded that, although recoil in collisions with
neutral atoms is the main thermalization mechanism
in the central portion of the discharge, the growth and
breakup of microinstabilities arising from the beam-
plasma interactions provide the main thermalization
mechanism for dissipation of the primary beam in the
cathode double sheath. Although it has long been known
that these interactions provide the primary thermaliza-
tion mechanism in low-pressure discharges, it must
here be concluded that they are also important in
discharges at pressures up to 10 Torr, such as the
low-voltage arc.

Ninety-percent confidence bands for f(§, z) are shown
in Fig. 14. Even though the computed behavior of
f(&, z) was obtained under the conditions of a fixed
ion distribution, it is expected that with the inclusion
of ion updating in the model and the consequent nar-
rowing of the cathode double sheath, as discussed
previously, the behavior of (&, z) will remain qualita-
tively the same as in Fig. 14. The major modification
would be a shift of the thermalized peak toward the
cathode with a resultant axial compression of the
double sheath and thermalization region. The dissipa-
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F16. 14. Ninety-percent confidence bands for the electron-energy
density function for selected cell groups along the z axis.
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tion of the primary electron beam would then be some-
what more rapid than is indicated in Fig. 13.

Finally, data were collected on the spatial distribu-
tion and rate of occurrence of ionizing collisions of
electrons with neutral atoms. However, so few ioniza-
tion events occurred during the sampling iterations
that a meaningful estimate of the ionization rate was
impossible. This is attributed to a very low concentra-
tion of electrons with sufficlent energy to undergo
ionizing collisions, as is verified by the electron energy
density function of Fig. 13. Those ionizing collisions
that did occur were confined to a region near the center
of the discharge, corresponding to where the last rem-
nant of the primary electron beam has its highest
energy and widest energy spread prior to its being
completely dissipated in the plasma. However, since
the peak beam energy in this region is still well below
the ionization potential, it is concluded that the ioniza-
tion is produced by electrons in the high-energy tail
of the quasi-Maxwellian distribution which exists in
this region.
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APPENDIX

In this Appendix, a method is proposed for the in-
clusion of ion drift and diffusion in the computer
simulation of a gas discharge. Since the positive ions
are much more massive than the electrons, they acceler-
ate much more slowly, and under the influence of a
given electric field they take much longer to travel a
given distance than do the electrons. As a result, if the
ions are updated in time steps that are proper for
electrons, the number of iterations that would be needed
to reach a statistical steady state would be prohibitively
large. On the other hand, if electrons are updated in
time steps that are proper for following the motion of
ions, the electrons would travel so far each time step
that electron trajectory calculations and the statis-
tical analysis of the electron distribution would be
meaningless.

The approach suggested for circumventing this diffi-
culty is to use a short updating interval Af for the
electrons and a longer updating interval A#t for the
ions, with each distribution being held fixed while the
other is updated. The lengths of the time steps are
chosen to move the particles of each species an optimum
distance in accordance with the requirements of having
only perturbational changes and of reaching con-
vergence .in a minimum number of iterations. The
validity of the method rests upon the assumptions
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that the motion of an ion during an electron-updating
interval At~ may be neglected and that the statistical
properties of the ensemble of electrons change by a
negligible amount during an ion-updating interval
Att. Thus, although a real electron would travel a
great distance during the interval Att, if the electron
distribution is reasonably close to the steady-state
distribution the macroscopic spatial electron distribu-
tion does not appreciably change. At the end of the
interval Att, each electron that was being observed
at the start of the interval is considered to be replaced
by a statistically equivalent electron with the same
phase-space coordinates at the end of Af* that the
original electron had at the beginning of Att.

The net motion of a computer ion in the z direction
during A+ may be decomposed into a component
AZgrigy due to drift in the electric field and a component
Azgigt due to diffusion. Thus, the 2 coordinate following
the kth updating interval is

Z(tk+1) =Z(tk) +Azdrift+AZdifﬁ

with a similar expression for the 7 coordinate.

During the ion-updating interval At+ there will be a
high probability that an jon will undergo many colli-
sions with gas atoms so that its motion may be taken
to be mobility limited. Experimental measurements of
the drift velocities of ions in noble gases as a function
of E/p indicate that the ionic mobility varies with
E/p as!

W(E/p) =l 1-ao( T/300) (E/p) 1.

Here yo and o are experimentally determined constants
which are different for each gas. uo is the “zero-field”
mobility at 1 Torr and 300°K, while «; is the “high-
field” mobility parameter. Azgm¢; is then given by

Azgrig=p [ E.(te) /pE. () At*.

(19)

(20)

(21)

17, S, Frost, Phys. Rev. 105, 354 (1957).
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Here E.(%) is the z component of the electric field at
the position of the ion at time #. A similar expression
is used for Argis:.

The proposed model of ion diffusion is based upon
the random walk model of Chandrasekhar.? In this
approach, an expression is derived for the spatial and
temporal distribution of a cloud of ions which are
released from a point source and allowed to diffuse.
From this, the cumulative probability that an ion will
diffuse a distance Ax in a time Att may be derived. An
isotropic angular distribution is also assumed. Then, by
applying random number tests to the cumulative
distribution functions, a distance and direction may be
assigned to the diffusion of each ion during Att, and
the ion’s coordinates may be shifted correspondingly.
For diffusion in a two-dimensional Cartesian system
(y, 2) this leads to

Aydiff = ( —4 DAL lnR,) 12 Sin21rR¢ (22)

and
Azgiss= (—4D+Att InR,) 2 cos2w Ry.

Here Dt=(kT/e)uy, while R, and Ry are random
numbers uniformly distributed on the interval [0, 1].
The analogous equations in cylindrical coordinates are
considerably more complicated.

Finally, if ions are to be updated, the ion distribution
must be discretized, so that in the computation of charge
density in Eq. (11), the replacement n; it =B,*N; ;*
is made with B,* and N;;+ defined similarly to By~
and N, ;~, respectively. Also, new ions must be created
in the proper spatial and temporal distribution to
replace those eliminated in crossing the boundaries. A
possible method for doing this is presented in Ref.
(1). The tracking of large numbers of particles of two
species will, of course, require the use of a very fast
digital computer with a large storage capacity.

(23)

12§, Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).



