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composed of 0.1-in. squares. Instead of measuring the
vector direction of the current it was found, in this case,
more informative to measure the horizontal and vertical
components. The reason is that off the principal axes on
this surface the current becomes elliptically polarized and
in some regions is nearly circular. Thus, there is no vector
direction that can be assigned to the current in these
regions although the horizontal and vertical components
are unambiguously defined.

In Fig. 7(a) are plotted the constant amplitude contours
for the vertically polarized component of the induced
surface current. The strong tendency toward a dipole
distribution is clearly indicated. Slight deviations from
symmetry are due to minute misalignment of the horn
while the ripples in the contours can be traced to inter-
ference from backscattering at the horn edges. These
details have been reproduced to show the resolution
possible. The constant amplitude contours for the hori-
zontal component are shown in Fig. 7(b). These exhibit

the quadrupole distribution expected from the type of
excitation employed. Relative amplitude is normalized to
the same reference as that for the vertical component in
Fig. 7(a).

Equiphase contours for these distributions are displayed
in Fig. 8(a) and 8(b) for the vertical and horizontal com-
ponents, respectively. Since the vertical polarization is
the first-order component of the induced surface current,
the equiphase contours are smooth and regular, but the
horizontal component is a second-order effect. Accordingly,
the ragged appearance of the equiphase contours is to be
expected. The diagram shows, however, the usual 180°
phase change in passing from one side of a null to the other.
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The principle of an optical computer for the measurement of two-dimensional spectral and cross-spectral densi-
ties is described. The performance of one of the experimental arrangements is checked by measuring the spectral
densities of a simple two-dimensional function. The apparatus may be used to compute the Fourier transform of

a two-dimensional function.

INTRODUCTION

ONSIDER a one-dimensional function #(x) such that
its correlation

L

1
R(§)=lim oL u(z+Hu(x)dr= (u(x+Eu(x)) (1)
-L
exists and is independent of the shift in the origin of x,
i.e., it is statistically homogeneous. The spectral density
E(k) of u is the Fourier transform of R(£),

1 oo
E®=— [ Revat @
T J -0
The main result of the generalized harmonic analysis is
that
L 2
lim—/ u(x)e**dx| = E(k), (3)
Lo 4L1|' L

* The work was sponsored by Fluid Dynamics Division of the
Office of Naval Research.

which provides a means for direct measurement of E(%).
Here we are assuming that % has continuous but no line
spectrum.! Similarly, for two-dimensional random func-
tions we may define the corresponding correlation and
two-dimensional spectral density,

1 L L
R(Sl’h):li_'?l i /_ . /_ . wu(xy £, w2t E2)u(x1,x0)dac1dxy
= (u(xy+£1, X2+ E2)u(1,%2) Jav, 4
and

1 © o ;
E(kl,kz)=————f / R(£1,&)eikibrtkatlge de,  (5)
7)) )
The spectral density is also given by the relation

1
Bk = fim (4Lm)?
7

L AL 2
/ / w(x1,x0) et Frortketdy dyy |
—-L J—-L

(6)

!In order to include functions with periodic or almost periodic
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If we further assume that #(x1,x,) is statistically isotropic
in addition to being homogeneous, then it is only neces-
sary to consider one-dimensional correlation and spectrum,

R(&) = (u (w11, m2)n(21,02) v, )
1 0
El(k1)='2——/ R(fl)eikle‘dfl. (8)

The inverse transform is

o

R(&)=

—o0

Eq(ky)e*6dky, ©
which may be written as

R(gl) =R(El,0) =/ / E(kl’k2)e—i(k151+k2-O)dkldk2

=/ [/ El(kl,kz)dkg]e—_iklsldkl. (10)

It follows from Eqs. (9) and (10) that
El(k1)=f E(kl,kz)dkz.

For statistically isotropic functions FE(k,ks)=E(k)
where %= k4 k4 so that one may write

Ey(ky)=2 / i E(k)——k(-i—k———. (1)
k1 (B— k)t
The solution of the above integral equation is?
1 = d dk;
pw=— [ CrmeRIms )

so that, for statistically isotropic function, the two-
dimensional spectral density E(k) can be recovered from
the one-dimensional spectral density E(%y).

MEASUREMENT OF CORRELATIONS AND SPECTRA

The one-dimensional random functions are usually given
as electrical signals and the correlation can be measured
by using electronic multipliers and the spectrum by using
selective filters. For the two-dimensional functions it is
necessary to use numerical computations. However, in
many cases, such as the solar granules® and the shadow-
graph of the turbulent wake of a bullet,* the function is
given as a random picture on a photographic plate such

components (line spectrum) it is necessary to use Fourier-Stieltjes
integrals, which add nothing new. The almost periodic components
can be handled in a manner similar to that given above.

2 M. S. Uberoi, Astrophys. J. 122, 466 (1955).

3 M. S. Uberot, Astrophy. J. 121, 400 (1955).

4 M. S. Uberoi and L. S. G. Kovasznay, J. Appl. Phys. 26, 19 (1955).
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Fi1c. 1. Transformation of the coordinates.

that the local transparency is proportional to the function,
ie.,

T(x;,x2) =T o+ cu(x1,x2),

where T is the local transparency, Ty the average trans-
parency of the plate, and ¢ a constant which depends on
the photographic process. The combined transparency of
two identical plates placed back to face and displaced
from the matched position by amounts £; and &, is

T (214 £1, 224 £2) T (21,x00)
= [To—i-cu(xd-&, x2+$2)][To+cu(x1,xz)]. (13)

The correlation can be determined by measuring the
average combined transparency of sufficiently large over-
lapping area of the plates thus:

(T (21 +£1, 22+ £) T (21,%2) Jav
=T+ u(xr+ &y, 224 E)u(21,82) Jav.  (14)

The spectral density E(ky,k,) being the Fourler trans-
form of the correlation R(£,,£,) contains no new informa-
tion. However, it is often more easily subject to physical
interpretation, and its direct measurement is desirable.
For the case of statistically isotropic functions we can
easily measure the one-dimensional spectrum by scanning
the photographic plate with a narrow beam of light and
converting the transmitted light into an electrical signal
by using a photocell. The electrical signal can be ana-
lyzed by using selective filters. The two-dimensional spec-
tral density can be obtained from thus determined one-
dimensional spectral density by using Eq. (12). In the
more general case of statistically anisotropic functions it
is necessary to measure the two-dimensional spectral
density E(ki,ke) given by Eq. (6). For a fixed point
(k1,k2) or (k,8) in the wave number plane we may integrate
the latter equation with respect to the orthogonal co-
ordinates y; and y» such that y, is perpendicular to k
(see Fig. 1) thus:
E (ks k2)=E(k,9) )

2

= lim

L L
u(y1,y2)etFnitovdy, 4
L—0 (4L7r)2 </;L/_L Iy Vidye
1
= lim {

L L
u(yLy2)d ] cosky,d
e (4 L) ‘[_L [f_z, y1,Y2)@Ye V1aY1

L L
+ ’ / I: / u(yl,yz)dyz:l sinky.dy,
—L —L

2

2}. (15)
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Fic. 2. Schematic representation of arrangement I.

The determination of the two-dimensional spectral density
is reduced to the one-dimensional case.

Experimental Arrangement I

The operation indicated by Eq. (15) may be performed
optically as shown in Fig. 2. The photographic plate P,
bearing the data is placed between the two convex lenses
O; and O.. A point source and a photocell are placed at
the foci of the lenses O; and O, respectively. The trans-
parency of the photographic plate P, is

To+c sinkgy,/,

where ko is a constant, and we are assuming that the same
photographic process is used to develop Py and P,. If I,
is the intensity of light at the plate P; in absence of Py,
the intensity with P, is

Io(To+c sinky,),
where

k = dzko/ (d1+dz) ’

and we are assuming that the solid angle of the light
beam is small. The total light transmitted to the photo-
cell or its output is

L L
81=/ f Io[T0+C sinkygj[To—I-cu(yl,yz)]dyldyg. (16)
~LJ-L

For the sake of convenience we have assumed that
there is a square aperture with sides of length 2L parallel
to y; and y,. We further assume that L=nnr/k, where # is
a positive integer so that

L
/ sinkyady,=0, an
~L

and

L L
= / f Io(To+c sinkys)cu(yi,yo)dydys.  (18)
L L

The essential term

L L
Ioc? / / sinkysu(y1,52)dy1,dy2
-LJ-1L
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is dominated by the term I,To, and it is necessary to
subtract the latter from the total output in order to ob-
tain reasonable accuracy. This is accomplished by oscil-
lating the plate P;. Let 8(f) be the displacement of the
plate. The photocell output becomes

L

L
= / / I[To+c sin(kys+kod (1)) Jeu (y1,32)dy1dys. (19)
—LJ-L

It is passed through a filter which rejects the direct current
and the temporally varying part is squared and averaged
with respect to time thus:

(er2)av— &12= [({sinkod (1)} })av— { (sinked (?) davii]

L L 2
X [ / / Ioc?u(y1,y2) coskyzdyldyg]
—LJ-1L

+[{{cosked (£)}2)av— {(cOskod (£) )av}*]
XI: / / Toc?u(y1,y2) sinkyzdyldyz:l , (20

where av denotes an average with respect to time.

We displace the plate P; by a quarter wavelength rela-
tive to the rest of the equipment so that its transparency
becomes

To+c coskoyy,

and in this case the photocell output is

L

L
ea= f / Lo Tok-c cos (kya-+had (1) Jou (yaye)dyadys, (21)
_LJ—

L
and its variance is

(ea")av— &5= [(Coskod" (1) Jav— {(cOSK03(?) )av}*]

L AL 2
X I: f / Tocu(y1,y2) sinkygdyldyg]
-rJ-1

4 [({sinkod?(?) Yav— { (sink0d (1) )av}?]

L L 2
XI:/ f Toc*u(y1,ys) sinkygdyldyz:l . (22)
—LJ-1

For certain periodic displacements §(¢) Eqgs. (20) and
(22) may coincide. In any case their sum is proportional
to the spectral density E(k,8) for k=#nn/L, and the con-
stant of proportionality can be determined by calibrating
the equipment. The dependence of E(k,8) on 6 is obtained
by rotating the data bearing plate, and that on % by
moving the plate P; in discrete steps such that Eq. (17)
is always satisfied. This amounts to the assumption that
#(x1,%2) has a period 2L in x; and x, direction. The enve-
lope of the line spectrum of this periodic function ap-
proaches the true spectrum as L — o,
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Experimental Arrangement II

The second experimental arrangement is shown in the
Fig. 3. The photographic plate bearing the data is scanned
with uniform speed a by a series of periodically spaced
narrow slits of length 2L each. One side of the square
aperture is parallel to the slits and is of length 2L.
As one slit leaves the aperture, another appears, and
in the absence of the data bearing plate, the light meas-
ured by the photocell is constant. This requires an ac-
curate adjustment of slits. There are a number of actual
arrangements which may be used for scanning. The ap-
paratus used is shown in Fig. 4. For convenience front
surfaced mirrors are used to bend the light beam through
90°. The scanning is done at 57 cps by a 24-in. rotating
drum with 22 slits of width 0.010 in. each. The periodic
scanning is equivalent to the assumption of Eq. (17).
The scanned area or the aperture is 3.4 in. square and is
fixed in position. The 5X7 in. film bearing the data is
larger in size and may be rotated around an axis perpen-
dicular to the aperture and passing through its center.
If I* is the line intensity of the slit, then output of the

photocell is
L

I* [ [Totculy,at)Idy,

—L

where y;=ot and «a is the slit speed. The dc component is
rejected, and the ac component

L

I*c / u(yrat)dy
—L

is periodic with a frequency of a/2L. It is passed through
a frequency selective filter which in this case is Hewlett-
Packard model 300 A wave analyzer. The mean square out-
put gives the spectral density E(k8) at multiples of the
basic frequency a/2L or the basic wave number /L.
The envelope of the line spectrum approaches the true
spectral density as L —. The dependence of E on 8 is
obtained by rotating the photographic plate bearing the
data.

MEASUREMENT OF CROSS-SPECTRAL DENSITY OF
TWO-DIMENSIONAL FUNCTIONS

Consider two functions #(x1,22) and v(x1,%;) such that
their cross correlation

R(&,8:) = (u(x1,22) o X1+ £1, X2t £2) Dav (23)
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Fi16. 3. Schematic representation of arrangement I1.
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F1G. 4. The apparatus used to measure the spectral densities.

exists. The cross-spectral density of % and » is

1 L] 20
E(kl;k2)=(—2?/ f R(&y,tn)eitbithabnde de,.  (24)

L —

For example, we may be interested in the cross-spectral
density of the solar granule pattern at a given time with
that at a later time.

The measurement of the two-dimensional cross-spectral
density can be reduced to the one-dimensional case by
either using the arrangement I or II. For example in the
IT arrangement we use two sets of identical slits, one
exactly below the other to simultaneously scan the two
photographic transcriptions of # and v using two inde-
pendent photocells. It is necessary to preserve proper
phase relation between the two functions % and v. The
outputs of the photocells are fed to a cross-spectral
density analyzer® which gives the sine and cosine com-
ponents of the cross spectral E(ky,k,;) or E(k,0) [see Fig. 1
for the relation between (ki1,ks) and (k,0)] for a one value
of 8. The dependence on 6 is obtained by rotating the
photographic transcriptions of # and » by the same
amount relative to the rest of the equipment.

We need hardly add that any of the experimental ar-
rangements may be used to measure the Fourier trans-
form of a two-dimensional function.

An Example

The operation of the experimental arrangement II was
checked by measuring the spectral densities of a simple

8 M. S. Uberoi and E. G. Gilbert, Rev. Sci. Instr. 30, 176 (1959).
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function. Black circles were placed at random on white
paper such that the resulting pattern was as statistically
homogeneous and isotropic as possible. Obviously, no
calibration of the photographic process is necessary to
transcribe this random function. A photograph of the
pattern was taken on a high contrast film (Fig. 5). The
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FI16. 6, Measured and computed spectral densities of
the test random function.

two- and one-dimensional spectral densities of this func-
tion were obtained by scanning the data bearing film with
a slit and a narrow hole, respectively. It was found that
the spectral densities varied as the plate was rotated, i.e.,
the random function was not statistically isotropic. This
is partly due to the finite size of the sample. Since it is
not our purpose here to generate an isotropic random
function, the measured spectra were averaged with re-
spect to the angle of rotation and are shown in Fig. 6.
We note that the measured Ei1(k1) shows considerably
more scatter than E(£) which is due to the finite field of
the function used. The scanning with a slit uses more of
the available information than scanning with a dot. The
one-dimensional spectral density was computed from the
two-dimensional spectral density using Eq. (11) and shows
good agreement with the measured one-dimensional spec-
tral density, as shown in Fig. 6. This is taken to be a test
of the performance of the apparatus.

Sources of Error

Available photocells showed some variation of sensi-
tivity across their surfaces so that it was necessary to
focus the entire light to a point on the photocell surface,
otherwise the image moves across the surface as the slit
moves across the aperture. An RCA No. 5819 photocell

‘was used in arrangement II.

All slits must have the same width and be equally
spaced so that in absence of the data bearing plate the
light intensity remains constant as one slit moves out of
the aperture and another appears. This was done with an
accuracy of +19%,. The finite size of the slit washes out
the fine details for k>/slitwidth. It is possible to par-
tially compensate for this loss, but it was not necessary
for the purpose of checking the operation of the equipment.

The reader may consult references given below® about
mapping and measurements of random fields and the
mathematical aspects of the estimation of the spectral
density of an isotropic process.

ACKNOWLEDGMENTS

The equipment was developed by the author and
Stanley Wallis and Henry J. Hartog. Valuable criticism
of the work by Professor Elmer G. Gilbert, Professor
Arnold M. Kuethe, and Professor William W. Willmarth
is gratefully acknowledged.

6 M. S. Uberoi and L. S. G. Kovasznay, Quart. Appl. Math. 4,
375 (1953). L. J. Tick, “Estimation of the spectral density of an

isotropic process,” Sci. Paper 13, Engineering Statistic Laboratory,
New York University.



