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Plasma heating via parametric beating of Alfve ´n waves,
with heliospheric applications
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This paper advances a novel mechanism to explain the dissipation of the Alfve´n waves that carry
much of the energy in heliospheric and astrophysical turbulence, with specific applications to solar
wind heating. The essential point is that the nonlinear beating of relatively low-frequency Alfve´n
waves, which are abundant in the heliosphere, drives a compressible magnetosonic response whose
damping can dissipate significant energy. This mechanism involves both kinetic and
magnetohydrodynamic~MHD! processes. The damping of the magnetosonic waves is a kinetic
process. The nonlinear beating of Alfve´n waves, which produces the magnetosonic waves, is best
described by MHD theory. This mechanism complements and may compete with the well-known
alternative mechanism in which the cascade of turbulent energy to small-scale, high-frequency
Alfvén waves dissipates by ion-cyclotron damping. The MHD analysis in this paper reveals that the
fast magnetosonic mode dominates the dissipation when the plasma beta is near unity, and that the
timescale of dissipation in the heliosphere can vary from hours to a year depending upon the
direction of the driven wave and the plasma parameters where it is driven. The damping of the
driven magnetosonic waves may also contribute to the observed high-energy particle
distributions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1619975#
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I. INTRODUCTION

Alfvén waves have long been known to contribute s
nificantly to the turbulence observed in interplanetary1,2 and
astrophysical3 flows. However, it is not quite understood ho
the energy associated with these waves transmits itself in
form of dissipation due to large-scale interactions. This do
ment examines a wave interaction mechanism wher
Alfvénic turbulence can dissipate,4 with a particular focus on
issues related to solar wind heating and acceleration.

Understanding the coronal expansion of matter, first
dressed thoroughly by Parker, requires one or more me
nisms that can both account for the initial transition fro
subsonic to supersonic flow near 2 solar radii and explain
subsequent supersonic expansion that takes place at gr
distances from the Sun.5 Regardless of how the energy d
posited in the corona and the solar wind is dissipated, i
believed to originate in the solar convection zone. As t
energy is transported radially outward, it is subject to cert
constraints. For one, in a flow that is assumed to be ste
and in which viscosity is assumed to be negligible, the s
of the bulk flow energy, enthalpy, gravitational potential e
ergy, thermal conduction flux and magnetohydrodynam
~MHD! wave flux is constant.6 Second, the source of th
flow energy associated with coronal or solar wind expans

a!Present address: Department of Physics, University of Alberta, Edmon
Alberta T6G 2J1, Canada. Electronic mail: chalutz@umich.edu
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such as hot particles or MHD waves, must be sustained
order for an acceleration mechanism to take effect over la
distances.

The medium surrounding the sun, the heliosphere,
long been known to undergo considerable heating as tu
lence propagates outward to increasing heliocentric
tances. Subsequent adiabatic cooling results in the outw
expansion of the plasma and the acceleration of the s
wind. In particular, the plasma temperature increases fr
5000 K at the surface of the sun to millions of degre
Kelvin in the corona and the solar wind.7 Though this heat-
ing is known to occur, it is not understood precisely how t
heat in the corona is dissipated on time scales of tens
minutes or how the subsequent heating occurs. For exam
the critical points in the fast and slow solar winds are loca
at 2 and 5 solar radii, respectively. Thus, some of the ene
that is produced in the transition layer between the pho
sphere and the corona is dissipated within these dista
from the sun. Yet, Parker found that no bound oscillato
solutions exist inside the corona.5

Within the corona, this heating has been attributed
atomic emissions, thermal bremsstrahlung, magnetohydro
namic instabilities and interactions between Alfve´n waves
and the sun’s current sheet. Beyond the corona, various
teractions among magnetohydrodynamic waves and ion
particles are believed to be responsible for the heating. M
current models of solar wind heating are based on the c
cept of turbulent cascades from ordinary hydrodynam

n,
0 © 2003 American Institute of Physics
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theory. The cascade paradigm, whose description requ
numerical simulation, describes the transmission of energ
increasing wave number. When a critical wave numbe
reached, that corresponding to the ion cyclotron frequen
the energy in the Alfve´n waves is dissipated to the mediu
through resonant interactions.1,2 This type of cascade fol
lowed by a resonant interaction has been explored th
oughly by members of the space physics community.

In the present paper, we examine analytically an alter
tive model, in which the nonlinear beating of relatively low
frequency Alfvén waves, which are abundant in the heli
sphere, drives a compressible magnetosonic response w
damping dissipates significant energy. Magnetosonic wa
are, after all, present in any MHD plasma and damp read
Even though they are not observed at large amplitude, t
may be the important pathway for energy dissipatio
Though both this mechanism and the cascade mecha
should contribute to the heating of the solar wind, it is im
portant to determine which mechanism is dominant a
whether all of the heating observed in the heliosphere ca
accounted for on theoretical grounds.

Some prior work is specifically relevant to the prese
discussion. Gravity damping of Alfve´n waves in regions
where the Alfvén speed is low was used to explain the he
ing of protons in the solar corona to several million degre
and the acceleration of the solar wind.8,9 Statistical accelera
tion has been used in order to explain the presence of u
uitous high energy tails in the solar wind.10 Examination of
compressible MHD interactions in one dimension leads t
kinetic nonlinear Schro¨dinger equation, which include
damped nonlinear Alfve´nic turbulence that interacts wit
sound waves. Dissipative structures emerge due to the c
petition between the nonlinear steepening of the wave s
trum and collisionless damping.11–13 The effects of broad-
band forcing due to a turbulent energy spectrum have b
investigated using a simple MHD model. It was demo
strated that appropriate choices of plasma beta can rec
the Kolmogorov and Kraichnan dissipation scales.14,15 Most
recently, it was demonstrated numerically that a turbul
cascade of fast magnetosonic waves occurs on shorter t
scales than one involving Alfve´n or slow magnetosonic
waves, which are weakly coupled.16,17 Previous work has
also been done in the development of a wave coupling
malism for MHD waves and the study of instabilities invol
ing large-amplitude Alfve´n waves.18

II. THE PHYSICAL BASIS FOR THE NONLINEAR
MECHANISM

The nonlinear problem of interest is an example o
parametric process, whose first-order signal waves,
driven magnetosonic response, are coupled to a pair of in
acting Alfvén pump waves. As parametric beating tak
place, the damping of magnetosonic waves leads to
depletion of the Alfve´n waves, altering their amplitudes an
characteristics. Furthermore, the first-order signal is, in re
ity, coupled to processes of even higher order. Our appro
assumes that the higher-order processes are negligible
es
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pared to the Alfve´n wave interaction and magnetosonic wa
damping and that the shape, phase, and amplitude of
signal or driven wave does not change drastically over
correlation time of the longest Alfve´n wavelength considered
in this calculation.19

Prior to entering into any detailed discussion of t
mechanism at hand, it is worthwhile to understand how pa
metric beating, the nonlinear beating of specified amplitu
which drive a third amplitude, can lead to robust power lo
in the presence of strong damping. Driven waves involved
a three-wave parametric interaction satisfy the following f
quency,v, and wave vector,k, matching conditions. The
quantities bearing indices are associated with the pu
waves, whereas those without indices are associated with
driven waves:

v56v i6v j5~6kzi6kz j!vA5kzvA ~1!

and

k56k i6k j . ~2!

This is known as phase matching. At resonance, the dri
waves are prescribed by the matching conditions in acc
dance with the wave numbers and frequencies of the driv
normal modes. When the pump modes are expressed in t
of wave packets, a range of pump wave vectors and frequ
cies may excite a broad spectrum of driven waves. Howe
the strongest response always occurs when the driven w
vectors and frequencies nearly satisfy the resonant disper
relation for a naturally occurring mode in the plasma.
other words, the strongest driven mode has a phase velo
corresponding to the group velocity of the wave pack
When damping is present, the domain over which the driv
waves are nearly resonant is broadened.

Figure 1 shows, in the form of phase speed versus pro
gation angle, the dispersion relations of the Alfve´n wave and
the fast and slow magnetosonic waves. It can be use
illustrate the interactions that are possible between
Alfvén pump waves and a magnetosonic signal wave.
the present case when both driving waves are Alfve´nic, it

FIG. 1. Polar representation of Alfve´n and magnetosonic~fast, furthest from
the axis, and slow, closest to the axis! dispersion relations. (vA.cs) The
dashed lines reflect resonance broadening due to the presence of dampz
is the direction of the mean magnetic field.
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turns out that Eq.~1! is redundant with the parallel compo
nent of Eq.~2!. This has the implication that waves that a
driven at resonance must satisfy the dispersion relation
torsional Alfvén waves. Thus, the Alfve´n waves interact mos
strongly with the magnetosonic waves when the thick so
curve in Fig. 1 approaches one of the magnetosonic cur

Damping of the magnetosonic waves, first addressed
Barnes,20 leads to an effective broadening of the doma
shown by dashed lines, over which interacting waves
nearly resonant. For illustrative purposes, the damping c
ficient, G/v, is chosen to be 0.3 in Fig. 1 for both the slo
and fast modes. The effect of the presence of damping in
model of a plasma on the phase speeds of the normal m
will be addressed in Sec. IV. It is precisely this off-resona
beating that allows a large number of beat (i j ) products to
contribute to the overall magnetosonic response. As can
seen in the figure, the fast magnetosonic mode beats
ciently with Alfvén waves when its phase speed approac
the Alfvén speed. This occurs when the fast mode propag
in a direction that is nearly parallel to the mean magne
field. Interactions involving this wave experience som
broadening due to a small associated damping coeffici
On the other hand, the slow mode is far from the Alfv´n
resonance except when it propagates in a direction tha
perpendicular to the mean magnetic field or when the pla
beta approaches unity. Unfortunately, there is no wave
ergy associated with the zero-frequency amplitude. T
strong damping associated with the slow mode permits s
nearly perpendicular waves to beat with the Alfve´n pump
waves. However, the response is relatively weak. Theref
most of the energy associated with the mechanism descr
in this work is derived from the fast magnetosonic respon
except when the plasma beta approaches unity. The effe
rate at which this energy is dissipated to the solar wind p
ticles is quantified in the following sections.

III. THE MHD EQUATIONS

The ideal magnetohydrodynamic equations are the p
of departure for the detailed calculations:

] tr1¹"~ru!50, ~3!

r] tu1r~u"¹!u52cs
2¹r1

1

m0
~¹3B!3B ~4!

and

] tB5¹3~u3B!, ~5!

where r, u, and B denote the mass density, velocity, a
magnetic field associated with the fluid,] t is a partial deriva-
tive in time, cs is the speed of sound, andm0 is the perme-
ability of free space. A cursory inspection of Eq.~4! already
yields some preliminary information about hydrodynam
or
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waves. The left-hand side of this equation represents fi
and second-order fluctuations associated with the kinetic
ergy of the particles. These are coupled to compressional
magnetic fluctuations on the right-hand side of the equat
Moreover, the first term on the right-hand side, associa
with compressible fluctuations, drives fluctuations in t
fluid velocity, which are purely longitudinal to first order. O
the other hand, the second term, associated with magn
fluctuations, drives first-order fluid-velocity fluctuations th
are orthogonal to both the magnetic field and the curr
density.

The calculation has been carried out in Fourier space
order to avoid the usual complications associated with so
ing a system of differential equations of high order. Beg
ning with the ideal magnetohydrodynamic equations desc
ing a plasma, the second- and higher-order couplings of
pump waves, either Alfve´n or magnetosonic, to first-orde
driven waves are considered. Upon identifying the relev
driving and driven terms in the resulting equation, the so
tion for the first-order driven velocity is obtained in terms
the higher-order quantities. Subsequently, energy dens
and energy extraction rates can be calculated.

The couplings can be observed upon making the follo
ing perturbative expansion about the dynamical quantitie
the ideal MHD equations. Terms with the subscript 0 a
defined as the average quantities in the expansion, whe
all others are first-order perturbative quantities represen
the sum of all Alfvénic (A) and magnetosonic (M ) fluctua-
tions present in the physical system under consideration

r5r01r1 , ~6!

u5uA1uM , ~7!

and

B5B0êz1BA1BM , ~8!

where êz is a unit vector along the static magnetic fiel
which is chosen to lie along thez axis. The zero-order ve
locity, which would produce a Doppler shift in the resultin
equations, is ignored.

Alfvénic fluctuations in a hot magnetoplasma are defin
by the following incompressibility condition,¹"uA50. Mag-
netosonic fluctuations are, on the other hand, compress
Both, however, share the property that particles move w
the ripples in magnetic field lines. This property is a con
quence of Eq.~5!, which is often referred to as the frozen-
law.

In order to solve the system of Eqs.~3!–~5!, an addi-
tional time derivative is applied to Eq.~4!. This allows the
immediate substitution of Eqs.~3! and ~5! into Eq. ~4!. The
overall structure of the equation after making the above s
stitutions and eliminating the dynamical variables,r1 , BA ,
and BM , appearing in first-order terms among the thr
equations, is as follows:
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m0r0~DA
2uA1DM

2 "uM !5second- and third-order coupling terms

5¹FB0"S (
g5A,M

Bg¹"uM1 (
f 5A,M

(
g5A,M

@~uf "¹!Bg2~Bf "¹!ug# D G
2B0]zS (

g5A,M
Bg¹"uM1 (

f 5A,M
(

g5A,M
@~uf "¹!Bg2~Bf "¹!ug# D 2

1

2
] t (

f 5A,M
(

g5A,M
¹~Bf "Bg!

1] t (
f 5A,M

(
g5A,M

~Bf "¹!Bg1m0 (
g5A,M

@cs
2¹~¹"~r1ug!!2] t~r1] tug!#

2m0r0] t (
f 5A,M

(
g5A,M

~uf "¹!ug2m0] tr1 (
f 5A,M

(
g5A,M

~uf "¹!ug , ~9!
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whereDA
2 andDM

2 denote the dispersion operators for Alfve´n
and magnetosonic waves, respectively. The summations
over the Alfvén and magnetosonic indices. It is worthwhi
to note that the continuity equation only enters into the co
pressive magnetosonic wave dispersion relation to first o
and not into the first-order torsional Alfve´n wave dispersion
relation.

The development of Eq.~9! is similar to an earlier analy
sis by Goldstein, except for the fact that first-order quantit
are not assumed to vary only alongB0 and the Alfvén pump
waves are chosen to be linearly rather than circula
polarized.21 In addition, Eq.~9! includes higher-order inter
actions with magnetosonic waves. The limitation to a ‘‘sl
geometry’’ is relaxed in subsequent papers in which mo
chromatic large-amplitude circularly polarized Alfve´n waves
are coupled to electromagnetic daughter waves via the
merical solution of a system of linearized equations.22,23Un-
like most past work, which has examined the behavior o
single, initial, large-amplitude wave, we consider here
effects that may be produced through the interaction of m
waves of a more modest amplitude. The dispersion opera
are defined as follows:

DA
2~x,t !u~x,t !5] t

2u2vA
2]z

2u ~10!

and

DM
2 ~x,t !"u~x,t !5] t

2u2vA
2]z

2u1vA
2¹~]zuz!

1vA
2 êz]z~¹"u!2~vA

21cs
2!¹~¹"u!,

~11!
re

-
er

s
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u-

a
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where

vA
25

B0
2

m0r0
, ~12!

cs
25

5

3

P0

r0
, ~13!

vA is the zero-order Alfve´n speed andP0 is the zero-order
pressure.

The usual dispersion relations for the fast and sl
modes, in addition to their coupling to Alfve´n waves, is ob-
tained as follows. The entire expression consisting of fir
order driven quantities and higher-order driving terms, E
~9!, is Fourier transformed. The dispersion operators in F
rier space are as follows, where1 is the unit dyadic:

DA
2~k,v!52v21kz

2vA
2 ~14!

and

DM
2 ~k,v!52@~v22kz

2vA
2 !11vA

2kz~kẑ1 ẑk!

2~vA
21cs

2!kk #. ~15!

It is important to note that in this section,DM
2 operates as a

tensor, rather than a scalar. Upon choosing the follow
spherical representation for the wave number,

k

k
5sinu cosf x̂1sinu sinf ŷ1cosu ẑ, ~16!

we obtain
DM
2 ~k,v!5

2S v22k2vA
2 cos2 u2k2~cs

21vA
2 !sin2 u cos2 f 2k2~cs

21vA
2 !sin2 u sinf cosf 2k2cs

2 cosu sinu cosf

2k2~cs
21vA

2 !sin2 u sinf cosf v22k2vA
2 cos2 u2k2~cs

21vA
2 !sin2 u sin2 f 2k2cs

2 cosu sinu sinf

2k2cs
2 cosu sinu cosf 2k2cs

2 cosu sinu sinf v22k2cs
2 cos2 u

D .

~17!
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At this point, we definevph5vul50 /k, the usual phase ve
locities of the MHD modes, wherel denotes an eigenvalu
of DM

2 , and x̂, ŷ and ẑ are unit vectors in the Cartesia
coordinate system. The matrix in Eq.~17! is symmetric and
is, therefore, orthogonally diagonalizable for all values ou
andf.24 The resulting eigenvalues are

l052v21k2vA
2 cos2 u, ~18!

lN52v21
1

2
k2@cs

21vA
2

1~21!NA~cs
21vA

2 !224cs
2vA

2 cos2 u#. ~19!

Dispersion relations for all modes can be obtained by set
l50, with Eq. ~18! giving the usual Alfve´n waves and Eq.
~19! the usual magnetosonic waves.25 Upon invoking this
equality, we can determine the phase velocities for the
sional Alfvén and the fast and slow magnetosonic wav
respectively. The eigenvector,u0 , associated withl0 appears
in the following equation:

u0}2sinf x̂1cosf ŷ, ~20!

whereas those associated withlN , uN , can be computed
using either of the following equations:

uN}Fvph
2

cs
2 2cos2 uG ~cosf x̂1sinf ŷ!1sinu cosu ẑ ~21!

or

uN}sinu cosu~cosf x̂1sinf ŷ!1Fvph
2 2vA

2

cs
2 2sin2 uG ẑ.

~22!

Equations~21! and ~22! are valid for both the fast and slow
magnetosonic modes and can be shown to be mathemati
equivalent. However, Eq.~21! is indeterminate in the limits
of parallel and perpendicular propagation for the slow mo
and Eq.~22! is indeterminate in the same limits for the fa
mode. Regardless, the application of l’Hopital’s rule recov
the correct ratio between the parallel and perpendicular c
ponents of the fluctuating velocities in all four cases.

The determination of the driven fluctuating magne
sonic and Alfvén velocities can be completed by eliminatin
r1 , BA , andBM using the relations

r1

r0
5 k̂"

uM

vphM
, ~23!

BA

B0
52

uA

vA
, ~24!

and

BM

B0
5~ ẑk̂2cosu1!"

uM

vphM
, ~25!

where vphM is the phase velocity of magnetosonic wave
and, ultimately, dividing by the appropriate dispersion re
tion.
g

r-
,

lly

e

s
-

-

,
-

IV. THE DESCRIPTION OF THE DAMPED, DRIVEN
MODES

We address here the specific example of the beating
Alfvén waves, which results in the production of fast a
slow magnetosonic waves. The reasonable underlying
sumption is that the decay time of these driven waves is s
compared to the correlation time of the Alfve´n waves. In
particular, the energy density associated with each mod
computed using known expressions. Finally, the role of t
mechanism in the process of solar wind heating is explo
by evaluating the effective damping rate associated with
overall mechanism. For the purpose of this discussion,
Alfvén wave turbulence is assumed to have a simple pl
wave structure. This approach allows one to obtain a va
for the effective damping rate without resorting to numeric
integration. However, the turbulence encountered in the
liosphere, in fact, has a more complicated structure, wh
might often be approximated as the sum of Gaussian w
packets, on length scales that are greater than or equal t
order of the correlation length of the turbulence.

In order to allow for the broad spectrum of the Alfve´nic
turbulence, we represent the pump waves as a sum of m
components, each of which is a plane wave. The comp
representation of a summation ofH real plane waves with
constant complex root-mean-squared~rms! amplitudes,wh ,
frequencies,vh , and wave numbers,kh , is

w~x,t !5
1

2AH
(
h51

H

(
m561

@Re~wh!1 im Im~wh!#

3exp~2 imvh
(m)t1 imkh"x!exp~ imfh!. ~26!

The factor in the denominator is due to the fact that the r
amplitude forH independent amplitudes scales as the r
total amplitude divided byAH. In the event thatw(x,t) hap-
pens to be a vector,wh is also associated with a direction
The sum overm accounts for complex conjugate pairs. Th
bracketed subscript above the omega is a convention use
denote conjugate pairs. (1) denotes a value that is not con
jugated. (2) denotes the conjugate of the former. The co
stant exponential term, exp(imfh), is an arbitrary phase.

As Landau damping is absent from the fluid descripti
of plasmas, it is necessary to incorporate such damping p
nomenologically. One standard way to reflect the ra
damping of magnetosonic waves compared to that assoc
with Alfvén waves is to add an artificial damping term to t
dispersion relation. The damping rate for magnetoso
waves varies as a function of the phase speed. However,
may be inclined to approximate the damping coefficie
G/v, using a constant or polynomial in analogy to collision
damping. In either case,G/v must be evaluated or approx
mated outside the context of MHD theory. This is a stand
approach in problems involving fluid theories and is und
taken below. The inclusion of this damping in Eq.~11! yields

DM
2 "u~x,t !5] t

2u12G] tu2vA
2]z

2u1vA
2¹~]zuz!

1vA
2 êz]z~¹"u!2~vA

21cs
2!¹~¹"u!. ~27!



he

u
in

o
th

d
-

in
n

h
te

ion.
ne-
ex-
%
of

ic
oci-
he
ing
hese
ase
al-

f the
-

te
au
es.
on
of

the

is
n a

in-
ion
ast
ping
s,
on

di-
o-

he
:

ate
-

th
tri-
an
ctor

4805Phys. Plasmas, Vol. 10, No. 12, December 2003 Plasma heating via parametric beating of Alfvén waves . . .
The undamped Alfve´nic dispersion operator,DA
2 , remains

the same. The analogous expression forDM
2 in Fourier space

is

DM
2 ~k,v!52@~v@v12iG#2kz

2vA
2 !11vA

2kz~kẑ1 ẑk!

2~vA
21cs

2!kk #. ~28!

Since DM
2 is orthogonally diagonalizable, we can use t

eigenvectors obtained in Eqs.~20!–~22! in order to construct
an orthonormal basis24 for R3. Therefore, any vectoru in R3

can be represented as a linear combination of this set of
vectors, denoted by the caret, according to the follow
Galerkin method:

u5 (
N51

2

cNûN1c0û0 . ~29!

The amplitudes,cN andc0 , represent the components ofu in
each orthogonal direction and add in quadrature. Up
adopting this representation and acknowledging that all
dynamical variables can be expressed in terms ofuA , whose
dispersion relation is prescribed byDA

250, anduM , Eq. ~9!
can be written in the following manner, whereO2A andO2M

are nonlinear tensor operators:

DM
2 uu&5O2AuuA&1O2MuuM&. ~30!

The amplitudesc0 and cN can immediately be calculate
from Eq. ~30! by premultiplying it by the complex conju
gates of the unit vectorsû0 and ûN and dividing by the as-
sociated eigenvalue:

ci5
^ûi uO2AuuA&

l i
1

^ûi uO2MuuM&
l i

. ~31!

Returning to the eigenvalues of Eq.~28! associated with the
magnetosonic waves, these can be rewritten in the follow
convenient and compact form upon factoring and rearra
ing:

lN52~112ib ! )
Z51,2

~v1kap~Z,N!!, ~32!

where

p~Z,N!5
~21!Z

&

3Acs
21vA

21~21!NA~cs
21vA

2 !224
kz

2

k2 cs
2vA

2,

~33!

a5
A11A114b22A12A114b2

&A114b2
, ~34!

and

b5
G

v
. ~35!

The expression,p, as written, is the phase velocity at whic
undriven and undamped magnetosonic waves propaga
nit
g

n
e

g
g-

. It

varies as a function ofk. Equations~32! and~33! reveal the
usual fast (N52) and slow (N51) modes, traveling forward
(Z51) and backward (Z52). In addition, the resistive
damping introduced in Eq.~27! appears not only to have
added imaginary terms to the roots of the dispersion relat
The respective phase velocities for the fast and slow mag
tosonic waves have also been shifted downward. For
ample, whenb50.3, the phase velocities are reduced to 89
of their undamped values. As can be seen in the work
Barnes,20 the inclusion of Landau damping using kinet
theory does indeed produce a shift in the real phase vel
ties of the magnetosonic waves. However, in light of t
earlier discussion of parametric beating, resistive damp
does not only broaden the resonances associated with t
interactions. It also shifts the frequencies at which ph
matching can occur downward, producing two effects. It
ters the combinations of Alfve´n waves that most strongly
drive a magnetosonic response as well as the strength o
response unless Alfve´n wave damping is introduced in a con
sistent manner.

In addition, the introduction of a constant damping ra
does not include the variation in the strength of the Land
damping associated with the different magnetosonic mod
In order to reflect the dependence of the energy density
frequency and wave number, the variation in the strength
the damping must be included in the calculation. On
other hand, the dispersion relations appearing in Eq.~32! are
not entirely useless. In regimes where collisional damping
important, they may be used to calculate the heating i
manner analogous to the one that follows.

The introduction of resistive damping does, however,
form us about how damping manifests itself in the dispers
relation. Because Landau damping is different for the f
and slow magnetosonic modes and the sign of the dam
ratio differs for modes propagating in opposite direction
Eq. ~32! cannot be used to reflect damping that depends
the angle of propagation simply by permittingG to vary.
Instead, the appropriate imaginary terms may be added
rectly to the roots of the dispersion relation. A suitable intr
duction of such terms into Eq.~32! in congruence with the
distinctiveness of the fast and slow modes follows for t
perpendicular dispersion operator, whereG has been set to 0

lN52 )
Z51,2

~v1k@11 idZN~h!#p~Z,N!!, ~36!

where

dZN~h!5dZN01dZN1h~u!1dZN2h2~u!1dZN3h3~u!
~37!

and

h~u!5cos~u!. ~38!

In this particular treatment, we have chosen to approxim
the damping factor,dZN(h), using a third degree polyno
mial. In the above representation,dZN(h)p(Z,N).0 is im-
plicit in order to reflect the damping rather than the grow
of the driven waves. As long as the nearly resonant con
butions to the driven fluctuations are more important th
those that are considerably off resonance, the damping fa
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may be approximated by its values at resonance. In m
cases, this is the damping rate associated with the fast m
netosonic wave, which is resonant with the Alfve´n pump for
parallel angles of propagation. Since there are no th
Alfvén-wave interactions, the most robust response occ
very slightly away from this resonance. On the other ha
when the plasma beta approaches unity, the slow mode
participates strongly in the interaction. Once again, the m
robust response occurs when there is a partial resonanc
other words, the strongest response occurs when the
parts of the phase velocities are matched.

Barnes first presented an accurate calculation of the L
dau damping of resonant magnetosonic waves for all di
tions of propagation and polarizations.20 We fit dZN(h) to the
plots appearing in Fig. 3 of his paper for an isotropic plas
with b5m0P0 /B0

251. The results are shown in Table I. Th
real parts of the magnetosonic phase velocities could be
rected in a similar manner by fitting them to the plots appe
ing in Fig. 4 of the Barnes paper using another polynomia
can be seen immediately that the Vlasov theory pred
phase velocities that are smaller than those obtained u
MHD and Chew–Goldberger–Low~CGL! theory. Although
this correction would yield a more accurate expression
the energy density, it is unnecessary as long as the Alf´n
and magnetosonic phase velocities are introduced into
problem in the same manner, thereby reflecting phase ma
ing in a physically consistent way. We, therefore, use the
phase velocities obtained from the MHD theory to descr
the waves.

V. THE EVALUATION OF THE ENERGY DENSITY
ASSOCIATED WITH ALFVÉ N–ALFVÉN MODE
BEATING

Since this paper addresses the production of magn
sonic waves due to the second-order interaction of Alfv´n
waves, attention is only directed to the relevant terms in
~9!. Moreover, the other terms are beat products involv
magnetosonic fluctuations, whose amplitude is small co
pared to the Alfve´nic fluctuations in space plasmas accordi
to nearly incompressible MHD.26 In most cases, this condi
tion is, at the very least, marginally satisfied. However,
suming that neither wave nor structure is monochroma
but is composed of many fluctuations with randomly distr
uted wave numbers and phases, the small amplitude ass
tion for each single fluctuation should be satisfied.27 There-
fore, the contributions of these terms are dwarfed by
Alfvén–Alfvén interaction. The precise three-wave intera
tion that will be examined here is

TABLE I. Damping ratios for magnetosonic waves. The range of damp
ratios for all angles of propagation is provided along with the rates co
sponding to resonant peaks.

Plasma beta d21 d22 d22 ~resonant!

0.2 N/A 0.0001–0.03 0.0001
1 0.5–0.6 0.001–0.05 0.009
5 0.1–0.7 0.01–0.5 N/A
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DM
28"uM8 52

g4

8H (
h51

H

(
j 51

H

(
m561

(
n561

vk exp~ i ~mfh

1nf j !!d3~k2mkh2nk j !d~v2mvh2nv j !

3~@Re~uAh!1 im Im~uAh!#"@Re~uA j!

1 in Im~uA j!# !. ~39!

The right-hand side of Eq.~39! is the net Alfvén–Alfvén
interaction term from Eq.~9!. The left-hand side of Eq.~39!
contains the scalar product of the dispersion operator,DM

28 ,
obtained using the polynomial fit to the damping rate fro
kinetic theory and the unknown magnetosonic response,uM8 .
DM

28 is defined in terms of the eigenvalues in Eqs.~39! and
~36! and the eigenvectors in Eqs.~20!–~22! as follows:

DM
285P"D"PT, ~40!

where

P5@u0 u1 u2# ~41!

and

D5F l0 0 0

0 l1 0

0 0 l2

G . ~42!

P is a matrix containing the eigenvectors obtained by dia
nalizingDM

2 andD is a diagonal matrix containing the eigen
values. It should be noted that Eq.~39! is the governing
equation that will be used in the remainder of this discussi

Equation~39! clearly demonstrates that the second ord
Alfvén–Alfvén coupling drives a wave whose fluctuating v
locity is in the direction defined byk5kh6k j . All directions
of propagation with respect touN are possible for both fas
and slow magnetosonic waves. Here,N can designate eithe
wave. However,k and u0 are always perpendicular for Al
fvén waves. Thus, we deduce that the driven wave in
~39! is purely magnetosonic. No Alfve´n signal waves are
driven as a result of Alfve´n–Alfvén pump wave interactions
based upon the assumptions made in this paper.

The resulting fluctuating velocity amplitudes of th
driven magnetosonic waves in Fourier space can be ca
lated by dividing the orthogonal components on the rig
hand side of Eq.~39! by the set of eigenvalues represented
Eq. ~36!. The velocity in configuration space can be used
calculate the total energy density resulting from the inter
tion as follows upon summing over the fast and slow mod
N, appearing below and the plane waves,h and j , and com-
plex conjugates,m andn, in Eq. ~39!:

«M5 lim
t→`

~2p!3

2g6

M

V2t E d3kE
2`/2

`/2

dv

3 (
N51

2

CMN~u,f !ucN~k,v!u2. ~43!

g
-
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The amplitudes,cN , are defined in Eq.~31!. CMN(u,f) is the ratio of the total magnetosonic energy density to the kin
magnetosonic energy density and can be derived using Eqs.~3!–~5! in conjunction with the magnetosonic dispersion relatio

CMN~u,f!511
2~vA

2 sin2 aN@cos2 u1sin2 u cos2~f2bN!#1cs
2@cosu cosaN1sinu sinaN cos~f2bN!#2!

cs
21vA

21~21!N@~cs
21vA

2 !224cs
2vA

2 cos2 u#1/2 , ~44!

where

aN5arccos
uNz

uuNu
~45!

and

bN5arctan
uNy

uNx
5f ~46!

are the polar and azimuthal angles describing the direction ofuN with respect toB0 . Equation~41! is used to calculate the
effective coupling of energy from the Alfve´n waves to the magnetosonic waves. The ratio of the driven energy density t
of the pump waves defines a coupling efficiency. The desired dissipation rate,jM , is obtained by multiplying this efficiency
by the damping rate for magnetosonic waves at each coordinate in configuration space:

jM5 lim
t→`

~2p!3

g6

r0

Vt E d3kE
2`/2

`/2

dv (
N51

2

GN~k,v!CMN~u,f!ucN~k,v!u2, ~47!

where

GN~k,v!5Im~v!5d2N~h!uRe~v!u. ~48!

Upon invoking Eq.~47!, we obtain the following, wherevh jmn5mvh1nv j andkh jmn5mkh1nk j :

jM5
r0

64H2 (
h51

H

(
j 51

H

(
k51

H

(
l 51

H

(
m561

(
n561

(
q561

(
r 561

(
N51

2

CMN~kh jmn!3d2N~h@kh jmn# !uvh jmnu3

3exp~ i ~mfh1nf j2qfk2rf l !!
uûN"kh jmnu2dkh jmn ,kklqr

dvh jmn ,vklqr

)Z51
2 uvh jmn1ukh jmnu@11 idZN~h@kh jmn# !#p~Z,N!u2

3~@Re~uAh!1 im Im~uAh!#"@Re~uA j!1 in Im~uA j!# !

3~@Re~uAk!2 im Im~uAk!#"@Re~uAl!2 in Im~uAl!# !. ~49!

The expression for the Alfve´n pump wave energy density is

«A5
r0

4H (
h51

H

(
j 51

H

(
m561

(
n561

dmkh ,nkj
dmvh ,nv j

exp~ i ~mfh2nf j !!3@Re~uAh!1 im Im~uAh!#"@Re~uA j!2 in Im~uA j!#.

~50!

In Eqs.~50! and~51!, the well-known relation between the Dirac and Kronecker delta functions is used. Dividing Eq.~49! by
Eq. ~50! yields the desired rate of energy dissipation,n. Upon taking ensemble averages over the random phases,fh , in each
term in the sums in the preceding equations, all cross terms vanish. Upon defining new quantities in terms of the drive
kh jmn5mkh1nk j , and the angles,uh jmn , between these vectors andB0 , we obtain Eq.~51!. A similar expression, Eq.~52!,
is obtained for the coupling efficiency,i, defined below, which depends only upon the ratio of the fluctuating amplitude,uuAu,
to the background Alfve´n speed,vA , the plasma beta,b, and the angle of propagation of the driven wave,uh jmn :
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n5
jM

«A
5

1

16H(h51
H (m561uRe~uAh!1m Im~uAh!u2 (

h51

H

(
j 51

H

(
m561

(
n561

(
N51

2

CMN~uh jmn!

3
d2N~h@uh jmn# !kh jmnvA

3 uûN"k̂h jmnu2

)Z51
2 uvA cosuh jmn1@11 idZN~h@uh jmn# !#p~Z,N,uh jmn!u2 3u@Re~uAh!1 im Im~uAh!#"@Re~uA j!

1 in Im~uA j!#u2 ~51!

and

i5
«M

«A
5

1

32H(h51
H (m561uRe~uAh!1m Im~uAh!u2

(
h51

H

(
j 51

H

(
m561

(
n561

(
N51

2

CMN~uh jmn!

3
vA

2 uûN"k̂h jmnu2

)Z51
2 uvA cosuh jmn1@11 idZN~h@uh jmn# !#p~Z,N,uh jmn!u2

3u@Re~uAh!1 im Im~uAh!#"@Re~uA j!

1 in Im~uA j!#u2. ~52!
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Expressions for the dot products of the unit eigenvect
with k follow from Eqs.~21! and ~22!:

û1"k̂5
~p2~2,1!2vA

2 !cosu

A~p2~2,1!2vA
22cs

2 sin2 u!21cs
4 sin2 u cos2 u

~53!

and

û2"k̂5
p2~2,2!sinu

A~p2~2,2!2cs
2 cos2 u!21cs

4 sin2 u cos2 u
. ~54!

It is useful to observe howi andn in Eqs.~51! and~52! vary
with b anduh jmn . For the sake of obtaining a simple graph
cal result to illustrate the physics, only the beating of a p
of waves is considered here, leaving more complicated c
for future investigation. We show in Figs. 2 and 3 howi
depends uponuh jmn , for several values of beta. Note thati is
independent ofkh jmn , and that it is normalized by the di
mensionless total strength of the Alfve´n waves,uuAu2/vA

2 .
The expressions,CM;2,d, andp(Z,N) are defined in Eqs
~42!, ~37!, and~33!, respectively. It should be noted that th

FIG. 2. Fast mode coupling efficiency as a function of the direction
driven waves.
s

ir
es

imaginary part of the phase velocity of damped waves
always negative, and that the plots in Figs. 2 and 3 are s
metric aboutp/2.

Figure 2 indicates that energy is most efficiently coup
into driven fast magnetosonic modes that propagate
liquely and nearly alongB0 . For any given Alfve´n wave of
fixed finite amplitude and direction, the matching conditio
in Sec. II imply that nearly resonant magnetosonic wav
will be produced by the interaction with a second wa
whose wave vector lies along a specific trajectory in Euc
ean space. Each of the four matching conditions, two
which are redundant, produces a trajectory in Euclide
space. Thus, a particular Alfve´n wave can be damped due
an interaction with many different Alfve´n waves, but only
with those Alfvén waves that lie within a specific region i
phase space. An interesting question for future work is h
this will affect the evolution of some initial Alfve´n wave
spectrum over time.

Furthermore, the energy dissipation rate can be infer
by comparing Eqs. ~51! and ~52!. Hence, n
;2id2Nkh jmn vA cosuhjmn;2id2Nvhjmn. Note thatvh jmn is
the frequency of the resonantly driven wave. It is also a go

f FIG. 3. Slow mode coupling efficiency as a function of the direction
driven waves.
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approximation to the frequency of nearly resonant driv
waves. As the wave number and, thus, the frequency
crease, damping occurs more rapidly in absolute terms
addition, the damping rate is proportional to the square of
Alfvén wave amplitude, so that the damping slows down
the waves dissipate.

We now consider some specific examples. In the so
wind, the largest wave number in the energy-containing p
of the spectrum, the region where the observed wave am
tude is fairly constant, decreases substantially as the dist
from the sun increases. For heliocentric distances less th
a.u., it is typically28 on the order of 1029 m21. At 5 a.u., this
critical wave number is already smaller29 than 10210 m21.
The typical ratio,uuAu/vA;udBu/B0 , is 0.55. Using these
parameters and Figs. 2 and 3,n can be evaluated for som
value ofb.

It is not uncommon to findb;1 in the solar wind. This
is known to occur in the sunspot region in the photosph
and lower chromosphere, in the plage region in the lower
middle corona~1.2 solar radii! and in significant portions o
the upper corona and solar wind.30 Whenb;1, the resonant
value ofd22, corresponding to the fast magnetosonic mo
is no greater than 1022. As mentioned before, the resonan
seen in Fig. 2 occurs for driven waves that propagate ne
along B0 . For these numbers,n/vh jmn;1, which corre-
sponds to a damping time of a few hours for waves withk
;1029 m, wherevA;50 km/s~as is is typical for the corona
and the solar wind within 1 a.u.!. As the distance from the
Sun increases, this damping time will tend to increase asvA

decreases and as the maximumk in the energy-containing
part of the Alfvén-wave spectrum decreases, but it will te
to decrease ifudBu/B0 increases asB0 decreases. Even so
whereverb;1 one would expect the spectrum of Alfve´nic
turbulence will evolve quite rapidly, with correspondin
plasma heating. The existence of very strong Alfve´n-wave
damping for b;1 could also be very important in othe
astrophysical contexts.

However,b does not have to drop much below 1 befo
the damping by the mechanism described here beco
much smaller and probably unimportant. In particular, it
also not uncommon to encounterb;0.2 in the solar wind,
particularly at heliocentric distances of 5–20 solar radii. F
this case, the resonant value ofd22 is 1024. In this case
n/v'331023, which corresponds to a damping time on t
order of a year for waves withk;1029 m, where vA

;50 km/s. Thus, for such ‘‘low-b’’ regions of the solar
wind, this process would be expected to contribute only m
ginally to the evolution of turbulence. It could limit the in
crease ofudBu/B0 at a few a.u., where timescales are da
and whereB0 may be decreasing more rapidly thanudBu/B0 .
Nonetheless, it might contribute to ion heating in the ou
regions of the heliosphere.

The damping decreases strongly again when the pla
beta exceeds unity, although it is not clear that this has di
relevance to the solar wind. For example, whenb55, the
partially resonant slow mode dominates the interaction,d21,
which is approximately 0.5, can be used in the place ofd22.
In this casen/v'331023. This suggests a potential feed
back mechanism inb;1 plasmas that contain significan
n
n-
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Alfvénic turbulence. The damping will heat the plasma ju
enough to keepb above 1 and drive down the damping rat
This feedback process could control the temperature of p
mas that are attempting to cool by expansion or radiation
could also mean that plasmas that begin as high-b systems
and then expand or radiate actively will effectively burn
their Alfvénic turbulence in the process.

VI. CONCLUSION

In this paper, the Alfve´n wave population has been su
gested as a possible source of energy for solar wind hea
and acceleration. In particular, as plasma expands rad
outward, the beating of the Alfve´n waves transfers energ
through magnetosonic waves to the particles, potentially
fecting the bulk flow velocity, the particle distributions, an
the Alfvén wave spectrum. As energy is transferred aw
from the fluctuations, their overall amplitude decay
Alfvénic turbulence is always present in the solar wind a
consequence of nearly incompressible MHD and, indeed,
total energy carried by Alfve´n waves is observed to decrea
as heliospheric distance increases.

As is discussed in the preceding sections, the nonlin
coupling of Alfvén pump waves with the slow magnetoson
mode results in a rather weak response with character
times on the order of a year for all driven-wave propagat
angles. On the other hand, interaction with the fast mo
results in very rapid dissipation on the order of hours
very particular angles of propagation, when optimal pairs
Alfvén waves having typical wave vector magnitudes bea
produce the driven wave and when the plasmab is near
unity. This occurs when the driven wave approaches a re
nance in the fast magnetosonic dispersion relation. T
strength of the response drops off very rapidly away fro
this resonance. All Alfve´n waves can beat with some oth
Alfvén waves to produce driven waves near the reson
angle, but the net damping is reduced in proportion to
magnitude of the driven wave vector and the Alfve´n wave
amplitudes. The work presented in this document can fo
the basis for calculations of the evolution of realistic Alfve´n
wave distributions and the heating that will result. A natu
extension of the present work would be to use kinetic the
to replace the approximate damping rates used here
more realistic damping rates for the driven modes. The
portant conclusion of this work is that the impact of magn
tosonic waves on the evolution and damping of the Alfv´n
waves cannot be ignored if the plasmab is near unity. This
potentially could have broad applications in the heliosph
and elsewhere in astrophysics.

This Alfvén-wave-beating mechanism might explain ce
tain local effects in particular spectra such as the preac
eration of superthermal particle populations, which a
present in the fast stream of the solar wind. Upon be
heated, these energetic tails can lead to the stochastic a
eration of the fast solar wind in regions where shocks for
This latter mechanism has a broad range of applicability
fast and slow streams. In order for a mechanism to cre
these high-energy tails, the characteristic time for dissipa
must be on the order of 105 s5. The dissipation rates de
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scribed in this paper suggest that the Alfve´n-wave-beating
mechanism may be a candidate for explaining the preac
eration.
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