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This paper advances a novel mechanism to explain the dissipation of then AVewees that carry

much of the energy in heliospheric and astrophysical turbulence, with specific applications to solar
wind heating. The essential point is that the nonlinear beating of relatively low-frequencynAlfve
waves, which are abundant in the heliosphere, drives a compressible magnetosonic response whose
damping can dissipate significant energy. This mechanism involves both kinetic and
magnetohydrodynami¢MHD) processes. The damping of the magnetosonic waves is a kinetic
process. The nonlinear beating of Alfvevaves, which produces the magnetosonic waves, is best
described by MHD theory. This mechanism complements and may compete with the well-known
alternative mechanism in which the cascade of turbulent energy to small-scale, high-frequency
Alfvén waves dissipates by ion-cyclotron damping. The MHD analysis in this paper reveals that the
fast magnetosonic mode dominates the dissipation when the plasma beta is near unity, and that the
timescale of dissipation in the heliosphere can vary from hours to a year depending upon the
direction of the driven wave and the plasma parameters where it is driven. The damping of the
driven magnetosonic waves may also contribute to the observed high-energy particle
distributions. © 2003 American Institute of PhysiddDOIl: 10.1063/1.1619975

I. INTRODUCTION such as hot particles or MHD waves, must be sustained in
) order for an acceleration mechanism to take effect over large
Alfven waves have long been known to contribute sig-distances.
nificantly to the turbulence observed in interplanetdrgnd The medium surrounding the sun, the heliosphere, has
astrophysicalflows. However, it is not quite understood how long been known to undergo considerable heating as turbu-
the energy associated with these waves transmits itself in thence propagates outward to increasing heliocentric dis-
form of dissipation due to large-scale interactions. This docutances. Subsequent adiabatic cooling results in the outward
ment examines a wave interaction mechanism wherebgxpansion of the plasma and the acceleration of the solar
Alfvénic turbulence can dissipatayith a particular focus on  wind. In particular, the plasma temperature increases from
issues related to solar wind heating and acceleration. 5000 K at the surface of the sun to millions of degrees
Understanding the coronal expansion of matter, first adKelvin in the corona and the solar widdThough this heat-
dressed thoroughly by Parker, requires one or more mechang is known to occur, it is not understood precisely how the
nisms that can both account for the initial transition fromheat in the corona is dissipated on time scales of tens of
subsonic to supersonic flow near 2 solar radii and explain theninutes or how the subsequent heating occurs. For example,
subsequent supersonic expansion that takes place at greafie¢ critical points in the fast and slow solar winds are located
distances from the SuhRegardless of how the energy de- at 2 and 5 solar radii, respectively. Thus, some of the energy
posited in the corona and the solar wind is dissipated, it ishat is produced in the transition layer between the photo-
believed to originate in the solar convection zone. As thissphere and the corona is dissipated within these distances
energy is transported radially outward, it is subject to certairfrom the sun. Yet, Parker found that no bound oscillatory
constraints. For one, in a flow that is assumed to be steadyplutions exist inside the corona.
and in which viscosity is assumed to be negligible, the sum  Within the corona, this heating has been attributed to
of the bulk flow energy, enthalpy, gravitational potential en-atomic emissions, thermal bremsstrahlung, magnetohydrody-
ergy, thermal conduction flux and magnetohydrodynamimamic instabilities and interactions between AHvevaves
(MHD) wave flux is constarft.Second, the source of the and the sun’s current sheet. Beyond the corona, various in-
flow energy associated with coronal or solar wind expansionieractions among magnetohydrodynamic waves and ionized
particles are believed to be responsible for the heating. Most
dpresent address: Department of Physics, University of Alberta, Edmonton(,:urrent models of solar wind heating are based on the con-
Alberta T6G 2J1, Canada. Electronic mail: chalutz@umich.edu cept of turbulent cascades from ordinary hydrodynamic
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theory. The cascade paradigm, whose description requires z
numerical simulation, describes the transmission of energy to k
increasing wave number. When a critical wave number is ‘_' g';‘t'e"
reached, that corresponding to the ion cyclotron frequency, v slow
the energy in the Alfve waves is dissipated to the medium : fast +
through resonant interactiohd. This type of cascade fol- v, — fast-
lowed by a resonant interaction has been explored thor- : ; ::zx+
oughly by members of the space physics community.

In the present paper, we examine analytically an alterna-
. . . . . . 7
tive model, in which the nonlinear beating of relatively low-
frequency Alfvan waves, which are abundant in the helio-
sphere, drives a compressible magnetosonic response whose c
damping dissipates significant energy. Magnetosonic waves
are, after all, present in any MHD plasma and damp readily. >

_ 2+ )P
Even though they are not observed at large amplitude, they v .
may be the important pgthway for energy d|35|pat|0n-FlG. 1. Polar representation of Affaeand magnetosonigast, furthest from
Though both this mechanism and the cascade mechanistie axis, and slow, closest to the axiispersion relations.v(a>cs) The
should contribute to the heating of the solar wind, it is im-dashed lines reflect resonance broadening due to the presence of damping.
portant to determine which mechanism is dominant and® the direction of the mean magnetic field.

whether all of the heating observed in the heliosphere can be

accounted for on theoretical grounds. pared to the Alfve wave interaction and magnetosonic wave
~ Some prior work is specifically relevant to the presentyamping and that the shape, phase, and amplitude of the
discussion. Gravity damping of Alfvewaves in regions sjgnal or driven wave does not change drastically over the

where the Alfve speed is low was used to explain the heat-correlation time of the longest Alfvewavelength considered
ing of protons in the solar corona to several million degreesy, this calculationt?

and the acceleration of the solar wihdStatistical accelera- Prior to entering into any detailed discussion of the

tion has been used in order to explain the presence of ubignechanism at hand, it is worthwhile to understand how para-
uitous high energy tails in the solar witlExamination of  metric beating, the nonlinear beating of specified amplitudes
compressible MHD interactions in one dimension leads t0 &yhich drive a third amplitude, can lead to robust power loss
kinetic nonlinear Schringer equation, which includes i, the presence of strong damping. Driven waves involved in
damped nonlinear Alfwgic turbulence that interacts with 5 three-wave parametric interaction satisfy the following fre-
sound waves. Dissipative structures emerge due to the COMduency, w, and wave vectork, matching conditions. The
petition between the nonlinear steepening of the wave spegpantities bearing indices are associated with the pump

.. - 11-13 . . . . .
trum and collisionless dampirtg=** The effects of broad- aves, whereas those without indices are associated with the
band forcing due to a turbulent energy spectrum have beegriven waves:

investigated using a simple MHD model. It was demon-
strated that appropriate choices of plasma beta can recover ©=* @i 0;=(*kz*Kz)va=Kva @)
the Kolmogorov and Kraichnan dissipation scadfe¥ Most  and
recently, it was demonstrated numerically that a turbulent
cascade of fast magnetosonic waves occurs on shorter times k==kizk;. @
scales than one involving Alfve or slow magnetosonic This is known as phase matching. At resonance, the driven
waves, which are weakly couplé®’’ Previous work has waves are prescribed by the matching conditions in accor-
also been done in the development of a wave coupling fordance with the wave numbers and frequencies of the driving
malism for MHD waves and the study of instabilities involv- normal modes. When the pump modes are expressed in terms
ing large-amplitude Alfva waves'® of wave packets, a range of pump wave vectors and frequen-
cies may excite a broad spectrum of driven waves. However,
the strongest response always occurs when the driven wave
vectors and frequencies nearly satisfy the resonant dispersion
relation for a naturally occurring mode in the plasma. In
other words, the strongest driven mode has a phase velocity
The nonlinear problem of interest is an example of acorresponding to the group velocity of the wave packet.
parametric process, whose first-order signal waves, th&/hen damping is present, the domain over which the driven
driven magnetosonic response, are coupled to a pair of intewaves are nearly resonant is broadened.
acting Alfven pump waves. As parametric beating takes  Figure 1 shows, in the form of phase speed versus propa-
place, the damping of magnetosonic waves leads to thgation angle, the dispersion relations of the Atfiwgave and
depletion of the Alfve waves, altering their amplitudes and the fast and slow magnetosonic waves. It can be used to
characteristics. Furthermore, the first-order signal is, in realidlustrate the interactions that are possible between two
ity, coupled to processes of even higher order. Our approachlfven pump waves and a magnetosonic signal wave. For
assumes that the higher-order processes are negligible cotire present case when both driving waves are Alfveit

Il. THE PHYSICAL BASIS FOR THE NONLINEAR
MECHANISM
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turns out that Eq(1) is redundant with the parallel compo- waves. The left-hand side of this equation represents first-
nent of Eq.(2). This has the implication that waves that are and second-order fluctuations associated with the kinetic en-
driven at resonance must satisfy the dispersion relation foergy of the particles. These are coupled to compressional and
torsional Alfven waves. Thus, the Alfwewaves interact most magnetic fluctuations on the right-hand side of the equation.
strongly with the magnetosonic waves when the thick solidVioreover, the first term on the right-hand side, associated
curve in Fig. 1 approaches one of the magnetosonic curvesvith compressible fluctuations, drives fluctuations in the
Damping of the magnetosonic waves, first addressed bffuid velocity, which are purely longitudinal to first order. On
Barnes? leads to an effective broadening of the domain,the other hand, the second term, associated with magnetic
shown by dashed lines, over which interacting waves arductuations, drives first-order fluid-velocity fluctuations that
nearly resonant. For illustrative purposes, the damping coefare orthogonal to both the magnetic field and the current
ficient, I'/w, is chosen to be 0.3 in Fig. 1 for both the slow density.
and fast modes. The effect of the presence of damping in any The calculation has been carried out in Fourier space in
model of a plasma on the phase speeds of the normal modesder to avoid the usual complications associated with solv-
will be addressed in Sec. IV. It is precisely this off-resonanting a system of differential equations of high order. Begin-
beating that allows a large number of begt) (products to  ning with the ideal magnetohydrodynamic equations describ-
contribute to the overall magnetosonic response. As can hieg a plasma, the second- and higher-order couplings of two
seen in the figure, the fast magnetosonic mode beats effpump waves, either Alfue or magnetosonic, to first-order
ciently with Alfven waves when its phase speed approachedriven waves are considered. Upon identifying the relevant
the Alfven speed. This occurs when the fast mode propagatedriving and driven terms in the resulting equation, the solu-
in a direction that is nearly parallel to the mean magnetidion for the first-order driven velocity is obtained in terms of
field. Interactions involving this wave experience somethe higher-order quantities. Subsequently, energy densities
broadening due to a small associated damping coefficienand energy extraction rates can be calculated.
On the other hand, the slow mode is far from the Affve The couplings can be observed upon making the follow-
resonance except when it propagates in a direction that isig perturbative expansion about the dynamical quantities in
perpendicular to the mean magnetic field or when the plasmthe ideal MHD equations. Terms with the subscript O are
beta approaches unity. Unfortunately, there is no wave erdefined as the average quantities in the expansion, whereas
ergy associated with the zero-frequency amplitude. Thall others are first-order perturbative quantities representing
strong damping associated with the slow mode permits soméae sum of all Alfvaic (A) and magnetosonid) fluctua-
nearly perpendicular waves to beat with the Aivpump  tions present in the physical system under consideration:
waves. However, the response is relatively weak. Therefore,
most of the energy associated with the mechanism described
in this work is derived from the fast magnetosonic response, P~=Po™ P1, 6)
except when the plasma beta approaches unity. The effective
rate at which this energy is dissipated to the solar wind par- _
ticles is quantified in the following sections. U=Uat Uy, @)

and

Il. THE MHD EQUATIONS B=By&,+Ba+ By, ®

The ideal magnetohydrodynamic equations are the point
of departure for the detailed calculations: where &, is a unit vector along the static magnetic field,
which is chosen to lie along the axis. The zero-order ve-
locity, which would produce a Doppler shift in the resulting
equations, is ignored.

Alfvénic fluctuations in a hot magnetoplasma are defined
by the following incompressibility conditior¥ -u,= 0. Mag-
netosonic fluctuations are, on the other hand, compressible.
Both, however, share the property that particles move with
and the ripples in magnetic field lines. This property is a conse-
quence of Eq(5), which is often referred to as the frozen-in
law.

In order to solve the system of Eq&8)—(5), an addi-
tional time derivative is applied to Eq4). This allows the
where p, u, and B denote the mass density, velocity, and immediate substitution of Eq$3) and (5) into Eq. (4). The
magnetic field associated with the fluig,is a partial deriva- overall structure of the equation after making the above sub-
tive in time, ¢4 is the speed of sound, and, is the perme-  stitutions and eliminating the dynamical variables, Ba,
ability of free space. A cursory inspection of E¢) already and B,,, appearing in first-order terms among the three
yields some preliminary information about hydrodynamicequations, is as follows:

dp+V-(pu)=0, 3

1
p&tu+p(u~V)u=—C§Vp+M—(VXB)XB (4)
0

B=VXx (uxB), 6)
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wopo(Daua+ D2y -uy) =second- and third-order coupling terms

-V

Bo-( > ByVeuyt > X [(uf-V>Bg—<Bf-V>ug]>
g=AM f=AM g=AM

- B0‘92< 2
g=A

1
BVeuw+ 2 > [(uf-V>Bg—<Bf-V>ug])—§at 2 2 V(BB
f=AM g=AM f=A,M g=AM

M
+ 4y > (BeV)Bytug 2 [CEV(V+(pyug)) —di(prdiug)]
f=AM g=A,M g=AM
— HoPody > (UeVUg— modipr X > (upV)ug, 9)
f=AM g=AM f=A,M g=AM

whereD3 andD3, denote the dispersion operators for Alfve where
and magnetosonic waves, respectively. The summations are

2
over the Alfven and magnetosonic indices. It is worthwhile Ui: Bo (12)
to note that the continuity equation only enters into the com- MoPo
pressive magnetosonic wave dispersion relation to first order
. 8 . . . 5 Pg
and not into the first-order torsional Alfaewvave dispersion c2== —, (13
relation. 3 po

The development of Eq9) is similar to an earlier analy- , is the zero-order Alfve speed and®, is the zero-order
sis by Goldstein, except for the fact that first-order quantitiegressure.
are not assumed to vary only aloBg and the Alfver pump The usual dispersion relations for the fast and slow
waves are chosen to be linearly rather than circularlymodes, in addition to their coupling to Alfaewaves, is ob-
polarized” In addition, Eq.(9) includes higher-order INer- tained as follows. The entire expression consisting of first-
actions with magnetosonic waves. The limitation to a *slaborger driven quantities and higher-order driving terms, Eq.
geometry” is relaxed in subsequent papers in which monoyg) s Fourier transformed. The dispersion operators in Fou-

chromatic large-amplitude circularly polarized Alfvevaves rier space are as follows, whetsis the unit dyadic:
are coupled to electromagnetic daughter waves via the nu-

merical solution of a system of linearized equatiéh& Un- Da(k,0)=—w?+kva (14
like most past work, which has examined the behavior of

single, initial, large-amplitude wave, we consider here the

effects that may be produced through the interaction of many D (k,w) = —[ (w?— kZv3) 1+ V2k,(k2+ 2k)

waves of a more modest amplitude. The dispersion operators

2 2
are defined as follows: —(vatCcoKK]. (15
5 ) > 2 It is important to note that in this sectio,%,I operates as a
DA DU(X,t) = dfu—Vid;u (100 tensor, rather than a scalar. Upon choosing the following
and spherical representation for the wave number,
DZ,(x,t)-u(x,t) = d2u—VvadZu+viV(du,) K
—=sin# coS¢X+ sin 6 sin pY+ cosHZ, 16
028, (V-)~ (03 +CAV(V-U), K ? » (10

(11 we obtain

D%, (k,w)=
w?—k?v% cog 0—k3(c2+v3)sir? fcod ¢ —k3(c2+v3)sir? §sing cosd —k2c2 cos# sin 6 cos¢
—k2(c2+v3)sir? 6 sin¢ cose w?—k?v4 cog O—k3(c2+v3)sir? sir? ¢ —k3c2 cosdsindsing
—k?c2 cosf sin 6 cos¢ —k?c2 cosf sindsing w?—k?cZcog 0

(17)
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At this point, we define);,=w|)—o/k, the usual phase ve- IV. THE DESCRIPTION OF THE DAMPED, DRIVEN
locities of the MHD modes, wherk denotes an eigenvalue MODES

of D, and &, ¥ and 2 are unit vectors in the Cartesian
coordinate system. The matrix in EQ.7) is symmetric and
is, therefore, orthogonally diagonalizable for all valuesfof
and ¢.2* The resulting eigenvalues are

We address here the specific example of the beating of
Alfvén waves, which results in the production of fast and
slow magnetosonic waves. The reasonable underlying as-
sumption is that the decay time of these driven waves is short
No= — w2+ kzvgcog 0, (18) compared to the correlation time of the Alfvavaves. In
particular, the energy density associated with each mode is

B , L, 5, computed using known expressions. Finally, the role of this
A=~ Ek [cstua mechanism in the process of solar wind heating is explored
by evaluating the effective damping rate associated with the

+(—1)NV(cZ+v2)2—4civ; cog ). (199 overall mechanism. For the purpose of this discussion, the

Alfvén wave turbulence is assumed to have a simple plane
Yave structure. This approach allows one to obtain a value
for the effective damping rate without resorting to numerical
integration. However, the turbulence encountered in the he-
liosphere, in fact, has a more complicated structure, which
might often be approximated as the sum of Gaussian wave
packets, on length scales that are greater than or equal to the
order of the correlation length of the turbulence.
(20) In order to allow for the broad spectrum of the Alfie
turbulence, we represent the pump waves as a sum of many
whereas those associated wily, uy, can be computed components, each of which is a plane wave. The complex
using either of the following equations: representation of a summation bif real plane waves with
constant complex root-mean-squat@ahs) amplitudeswy,,
frequenciesw,;,, and wave numbergk;,, is

Dispersion relations for all modes can be obtained by settin
A =0, with Eq. (18) giving the usual Alfve waves and Eq.
(19 the usual magnetosonic wav@sUpon invoking this
equality, we can determine the phase velocities for the tor,
sional Alfven and the fast and slow magnetosonic waves
respectively. The eigenvectary, associated witih o appears

in the following equation:

Uy — SiN ¢pX+ CoS ¢y,

2
Uph
S —cog 6
CS

Un o (cosgpX+singy)+sindcosbz (21)
1 H
or wixt)=—=2> > [ReWwy)+imim(wy)]
) 5 2\/ﬁh=1 m=+1
. " A Uph™ VA . o
Uy Sin 6 cos(cosex+sin ¢y) + pcz —sir’ 9|2 X exp(—imo{™t+imkyx)expimey).  (26)
S

(22
The factor in the denominator is due to the fact that the rms

Equations(21) and(22) are valid for both the fast and slow amplitude forH independent amplitudes scales as the rms
magnetosonic modes and can be shown to be mathematicaliytal amplitude divided by/ﬁ_ In the event thaw(x,t) hap-
equivalent. However, Eq21) is indeterminate in the limits pens to be a vectony,, is also associated with a direction.
of parallel and perpendicular propagation for the slow moderhe sum ovem accounts for complex conjugate pairs. The
and Eq.(22) is indeterminate in the same limits for the fast pracketed subscript above the omega is a convention used to
mode. Regardless, the application of 'Hopital’s rule recoversjenote conjugate pairs+) denotes a value that is not con-
the correct ratio between the parallel and perpendicular comugated. () denotes the conjugate of the former. The con-
ponents of the fluctuating velocities in all four cases. stant exponential term, exp{¢,), is an arbitrary phase.

The determination of the driven fluctuating magneto-  As Landau damping is absent from the fluid description
sonic and Alfvex velocities can be completed by eliminating of plasmas, it is necessary to incorporate such damping phe-

p1, Ba, andBy using the relations nomenologically. One standard way to reflect the rapid
damping of magnetosonic waves compared to that associated

P1_ k- Ll ) (23) Wit Alfvén waves is to add an artificial damping term to the

Po Uphm dispersion relation. The damping rate for magnetosonic

waves varies as a function of the phase speed. However, one
_ , (24) may be inclined to approximate the damping coefficient,
Bo VA I''w, using a constant or polynomial in analogy to collisional
damping. In either casd,/w must be evaluated or approxi-
mated outside the context of MHD theory. This is a standard
approach in problems involving fluid theories and is under-

M. Um
B—O=(zk—c0301)-m, (25 taken below. The inclusion of this damping in Egl) yields
p

and

where v,y is the phase velocity of magnetosonic waves,  DZ-u(x,t)=d2u+ 2l g,u—vad2u+vaV(d,u,)
and, ultimately, dividing by the appropriate dispersion rela- ). s
tion. +0v28,0,(V-u)—(vatcg)V(V-u). (27
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The undamped Alfveic dispersion operaton\, remains varies as a function df. Equations(32) and(33) reveal the
the same. The analogous expressionDﬁrin Fourier space usual fast N=2) and slow N\=1) modes, traveling forward
is (Zz=1) and backward £=2). In addition, the resistive
. . 4 damping introduced in Eq(27) appears not only to have
Dfy(k,@) = ~[(w[@+2T]=KvR) 1+ v3ky(k2+2K) added imaginary terms to the roots of the dispersion relation.
—(v2+c2)KK]. (28)  The respective phase velocities for the fast and slow magne-
tosonic waves have also been shifted downward. For ex-
Since Dy, is orthogonally diagonalizable, we can use theample, wherb=0.3, the phase velocities are reduced to 89%
eigenvectors obtained in Eq20)—(22) in order to construct  of their undamped values. As can be seen in the work of
an orthonormal basi$for R®. Therefore, any vectarin R®  Bames? the inclusion of Landau damping using kinetic
can be represented as a linear combination of this set of U”ﬂ'heory does indeed produce a shift in the real phase veloci-
vectors, denoted by the caret, according to the followingjes of the magnetosonic waves. However, in light of the

Galerkin method: earlier discussion of parametric beating, resistive damping
2 does not only broaden the resonances associated with these
u= E cnOn+ Colo. (29 interactions. It also shifts the frequencies at which phase
N=1

matching can occur downward, producing two effects. It al-
The amplitudescy andc,, represent the componentstoin ters the combinatiorls of Alfwewaves that most strongly
each orthogonal direction and add in quadrature. Upoﬁirlve a magnetosonic response as well as the strength of the
adopting this representation and acknowledging that all th&SPonse unless Alfvewave damping is introduced in a con-
dynamical variables can be expressed in terms,gfwhose ~ SiStent manner.

dispersion relation is prescribed B =0, anduy, Eq. (9) In addition, the introduction of a constant damping rate
can be written in the following manner, whe@g, andO,y, does not include the variation in the strength of the Landau
are nonlinear tensor operators: damping associated with the different magnetosonic modes.
In order to reflect the dependence of the energy density on

D |u)=Ozalua) + Ogp|up). (300 frequency and wave number, the variation in the strength of

the damping must be included in the calculation. On the
other hand, the dispersion relations appearing in(B#). are
not entirely useless. In regimes where collisional damping is
important, they may be used to calculate the heating in a
manner analogous to the one that follows.

The introduction of resistive damping does, however, in-
form us about how damping manifests itself in the dispersion

) ) ) . relation. Because Landau damping is different for the fast
Returning to the eigenvalues of E@8) associated with the and slow magnetosonic modes and the sign of the damping

magnet.osomc waves, these can be rewnttgn in the foIIowmgpati0 differs for modes propagating in opposite directions,
F:onvement and compact form upon factoring and rearrangEq_ (32) cannot be used to reflect damping that depends on
Ing: the angle of propagation simply by permittidg to vary.
Instead, the appropriate imaginary terms may be added di-
An=—(1+2ib) 1__[ (w+kap(Z,N)), (32 rectly to the roots of the dispersion relation. A suitable intro-
Zh2 duction of such terms into Ed32) in congruence with the
where distinctiveness of the fast and slow modes follows for the
(—1)2 perpendicular dispersion operator, wh&rbas been set to O:

The amplitudesc, and cy can immediately be calculated
from Eg. (30) by premultiplying it by the complex conju-
gates of the unit vector8, and y and dividing by the as-
sociated eigenvalue:

C:<Ui|02A|UA>+<0i|02M|UM>
' A A '

31

P(Z,N)= i
)\Nz—Zl:[”(w+k[1+|dZN(7])]p(Z,N)): (36)

k2
X \/c§+v,§+(—1)N \/(°5+”f\>2—4k—§c§vi, where 2 3
dzn(7)=dzno+dzna 7(6) +dzn277(0) +dznz 7 (023

(33
and
V1+V1+4b2—\1— 1+4p? -
a= , (6)=cog0). (38
VZ\1+4b? 77 . .
In this particular treatment, we have chosen to approximate
and the damping factord,\(7), using a third degree polyno-
r mial. In the above representatioaiy;n(7)p(Z,N)>0 is im-
b=—. (35 plicit in order to reflect the damping rather than the growth

of the driven waves. As long as the nearly resonant contri-
The expressionp, as written, is the phase velocity at which butions to the driven fluctuations are more important than
undriven and undamped magnetosonic waves propagate. those that are considerably off resonance, the damping factor
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TABLE |. Damping ratios for magnetosonic waves. The range of damping y4 H H
ratios for all angles of propagation is provided along with the rates corre- D2/ wul=— 2 wk exn(i(m
sponding to resonant peaks. MM 8 hgl 121 m=*1n==x1 F( (M
Plasma beta das day dy, (resonant +n¢j))83(k—mkh—nkj)5(w—mwh—nwj)
0.2 N/A 0.0001-0.03 0.0001 ;
X([Re(upp) +im Im(u [Re(up;
1 05-0.6 0.001-0.05 0.009 ([R&(Uan) (Uan) J-LReE(U,))
5 0.1-0.7 0.01-0.5 N/A +in |m(UAj)])- (39

The right-hand side of Eq39) is the net Alfven—Alfvén

may be approximated by its values at resonance. In modteraction term from Eq(9). The left-hand side of Eq39)

cases, this is the damping rate associated with the fast magontains the scalar product of the dispersion operay,

netosonic wave, which is resonant with the Alfveump for ~ obtained using the polynomial fit to the damping rate from

parallel angles of propagation. Since there are no threekinetic theory and the unknown magnetosonic respange,

Alfvén-wave interactions, the most robust response occurBy is defined in terms of the eigenvalues in E¢@9) and

very slightly away from this resonance. On the other hand(36) and the eigenvectors in Eq0)—(22) as follows:

when the plasma beta approaches unity, the slow mode also

participates strongly in the interaction. Once again, the most Di =P-D-P", (40

robust response occurs when there is a partial resonance. In

other words, the strongest response occurs when the reahere

parts of the phase velocities are matched.

Barnes first presented an accurate calculation of the Lan- P= [uo Uy u2] (41)

dau damping of resonant magnetosonic waves for all direc-

tions of propagation and polarizatioffswe fitd,y(7%) tothe  and

plots appearing in Fig. 3 of his paper for an isotropic plasma

with B=,LLOP0/B§= 1. The results are shown in Table I. The ¢ O O

real parts of the magnetosonic phase velocities could be cor- o x o

rected in a similar manner by fitting them to the plots appear- D= 1 : (42

ing in Fig. 4 of the Barnes paper using another polynomial. It 0 0 M\

can be seen immediately that the Vlasov theory predicts

phase velocities that are smaller than those obtained usirfgis @ matrix containing the eigenvectors obtained by diago-

MHD and Chew—Goldberger—LoWCGL) theory. Although  nalizing Dﬁ,l andD is a diagonal matrix containing the eigen-

this correction would yield a more accurate expression fovalues. It should be noted that E(B9) is the governing

the energy density, it is unnecessary as long as the Alfveequation that will be used in the remainder of this discussion.

and magnetosonic phase velocities are introduced into the Equation(39) clearly demonstrates that the second order

problem in the same manner, thereby reflecting phase matcAlfven—Alfven coupling drives a wave whose fluctuating ve-

ing in a physically consistent way. We, therefore, use the redpcity is in the direction defined b=k, =k; . All directions

phase velocities obtained from the MHD theory to describeof propagation with respect toy are possible for both fast

the waves. and slow magnetosonic waves. Helkecan designate either
wave. Howeverk andug are always perpendicular for Al-
fven waves. Thus, we deduce that the driven wave in Eq.

V. THE EVALUATION OF THE ENERGY DENSITY (39) is purely magnetosonic. No Alfve signal waves are
ASSOCIATED WITH ALEVE N—ALFVEN MODE driven as a result of Alfve—Alfven pump wave interactions
BEATING based upon the assumptions made in this paper.

Si thi dqd th ducti ¢ ; The resulting fluctuating velocity amplitudes of the

>ince nis dpapter ti ressesd Zpr(_) tuc 'Otr_' 0 r?%ci]fr\l/e Yriven magnetosonic waves in Fourier space can be calcu-
sonic waves due 1o the second-order interaction ot AV |4aq by dividing the orthogonal components on the right-
waves, attention is only directed to the relevant terms in Edhand side of Eq(39) by the set of eigenvalues represented in

(9). Moreover, the other terms are beat products involvingEq_ (36). The velocity in configuration space can be used to

maggetosr(])nﬁlfl:’llugtlilatlons,. whqse amplltLIJde is small g.oméalculate the total energy density resulting from the interac-
pared to the aic fluctuations In space plasmas accordingyj,, o« foliows upon summing over the fast and slow modes,

to nearly incompressible MHE®. In most cases, this condi- N, appearing below and the plane wavesindj, and com-

tion is, at the very least, marginally satlsfled. However, a,sblex conjugatesm andn, in Eq. (39):
suming that neither wave nor structure is monochromatic,
but is composed of many fluctuations with randomly distrib-

. 2mE M /2
uted wave numbers and phases, the small amplitude assump- ey = lim f dgkf do
T — /2

5.6 2~
tion for each single fluctuation should be satisfiédhere- e 27V
fore, the contributions of these terms are dwarfed by the 2
Alfvén—Alfvén interaction. The precise three-wave interac- % Cunl( 8 cn(k 2 43
tion that will be examined here is N§=:l un(6. 6 )len(k, @)% “3
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The amplitudesgy, are defined in Eq(31). Cyn(0, ) is the ratio of the total magnetosonic energy density to the kinetic
magnetosonic energy density and can be derived using(Bg45) in conjunction with the magnetosonic dispersion relations:

2(v4 sir? ap[cog 0+ sir? 6 co(p— By) ]+ c2[cosh cosay+ sin 6 sinay cog ¢— ,BN)]Z)

Cun(8,¢)=1+ ci+ovat(—1)N[(cZ+v3)%—4civi cos 012 44
where
UNz
an= arcco%—| (45
N
and
Uny
Bn=arctan— = ¢ (46)
Unx

are the polar and azimuthal angles describing the directiamofith respect toB,. Equation(41) is used to calculate the
effective coupling of energy from the Alfvewaves to the magnetosonic waves. The ratio of the driven energy density to that
of the pump waves defines a coupling efficiency. The desired dissipatiorégatés obtained by multiplying this efficiency

by the damping rate for magnetosonic waves at each coordinate in configuration space:

p°fd3kf doS, Tk Com(6.B)enk ol (7
— /2

&
where

I'n(k,w) =Im(w) = dan(7) R w)]. (48)

Upon invoking Eq.(47), we obtain the following, wherejm,=Mwp+ Nw; andkpjm,=mk,+nk; :

H

H H 2
DI > Cun(Knjmn) X dan( 7L Knjmal) | @hjmnl®

h:1 j]=1k=11l=1m=*1n=*19g=*x1r=*x1N=1

gM 6

|GN'khjmn|25khjmn,kquréwhjmn,wqur
N2 =l @njma® [Knjmel [ 1+ 1020 7L Knjma) IP(ZN) |2
X ([Re&(Uan) +im Im(uap) J-[Re(UAj) +in Im(uaj) 1)
X ([Re(Uak) —im Im(ua) J-[Re(U) —in Im(up) ]). (49

Xexpli(mep+ng;—qdy—rde))

The expression for the Alfiepump wave energy density is

H
LY Sk, nk Omar, n; EXPI (M =N b)) X [REUpp) +im IM(Uap) J-[RE(Uj) — i IM(up))].
4H /=1 S mS1 0S5 i i
(50)

In Egs.(50) and(51), the well-known relation between the Dirac and Kronecker delta functions is used. Dividirgd dpy

Eq. (50) yields the desired rate of energy dissipationlJpon taking ensemble averages over the random phagesn each

term in the sums in the preceding equations, all cross terms vanish. Upon defining new quantities in terms of the driven modes,
Knjmn=mkp+nk;, and the anglesd,;mn, between these vectors aBg, we obtain Eq(51). A similar expression, E(52),

is obtained for the coupling efficiency, defined below, which depends only upon the ratio of the fluctuating amplitugle,

to the background Alfve speedp », the plasma betg3, and the angle of propagation of the driven Wallgimn:
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2
2: Cmn(Ohjmn)

H H

ea  1BHZ[ S0 .| Re(Uap) +mIm(uap)|?

don(7[ ah]mn])khjmnvAluN kh]mn|
1_[Z 1|UAcosethn+[l+|dZN 77[0hjmn] 1p(Z,N eh]mn)

+in Im(ua))]|? (51

2 X |[Re(Uap) +im Im(uap) J-{RE(U))

and

e 1 H 2
:_M: H 2 2 2 ahjmn)

en B2HE[L S oq|Re(Upp) +mIM(uap) 251 151 mSt1 n S0 i1

UA|UN I(hjmn|
1_[Z 1|UACOSGthn+[1+|dZN(77[0h]mn])]p(Z N ehjmn)

+inim(ua]l?. (52

2 X |[Re&(Uap) +im Im(uap) - [RE(UA))

Expressions for the dot products of the unit eigenvectorsmaginary part of the phase velocity of damped waves is
with k follow from Egs.(21) and (22): always negative, and that the plots in Figs. 2 and 3 are sym-
) 5 metric aboutsw/2.
(p™(2,1)—vj)cosh Figure 2 indicates that energy is most efficiently coupled
\/(p2(2,1)—vf\—c§sin2 0)2+c;‘sin2 9 co< 6 into driven fast magnetosonic modes that ,propagate ob-
(53 liquely and nearly alon@®,. For any given Alfvan wave of
fixed finite amplitude and direction, the matching conditions
in Sec. Il imply that nearly resonant magnetosonic waves
- p?(2,2)sin6 54 will be produced by the interaction with a second wave
Up K= > > > a1 : whose wave vector lies along a specific trajectory in Euclid-
\/(p (2,2)~¢ cos’9) TCs sir? 9 cos ean space. Each of the four matching conditions, two of
It is useful to observe howandv in Egs.(51) and(52) vary  which are redundant, produces a trajectory in Euclidean
with B and 6p;mn. For the sake of obtaining a simple graphi- space. Thus, a particular Alfaevave can be damped due to
cal result to illustrate the physics, only the beating of a pairan interaction with many different Alfwe waves, but only
of waves is considered here, leaving more complicated casesith those Alfven waves that lie within a specific region in
for future investigation. We show in Figs. 2 and 3 hew phase space. An interesting question for future work is how
depends upo#;, ., for several values of beta. Note thas  this will affect the evolution of some initial Alfve wave
independent ok;m,,, and that it is normalized by the di- spectrum over time.
mensionless total strength of the Alfvavaves,|u|?/v4. Furthermore, the energy dissipation rate can be inferred
The expressionCy~2,d, andp(Z,N) are defined in Eqs. by comparing Egs. (51) and (52). Hence, v
(42), (37), and(33), respectively. It should be noted that the ~2:d,\Knjmn v a COSbhjmn2tdonwhjmn. NOte thatwpjmn is
the frequency of the resonantly driven wave. It is also a good

Gl'lz:

and

Coupling Efficiency (fast mode)

350 Coupling Efficiency (slow mode)
o 300 - = = beta=0.2 0.014
i‘ beta=1 ~ beta=0.2
5 250 - A—cta=5 <2 0.012 F———
£ g 0.01 —) ot =5 .
%. 2 0.008 =
.5 ,Z,‘ 0.006 -
o
E :g 0.004
& 0.002
0+ T " {
0 0.5 1 1.5 2 0 0.5 1 15 2
Angle of Propagation (radians) Angle of Propagation (radians)

FIG. 2. Fast mode coupling efficiency as a function of the direction of FIG. 3. Slow mode coupling efficiency as a function of the direction of
driven waves. driven waves.
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approximation to the frequency of nearly resonant drivenAlfvénic turbulence. The damping will heat the plasma just
waves. As the wave number and, thus, the frequency inenough to keep above 1 and drive down the damping rate.
crease, damping occurs more rapidly in absolute terms. Iithis feedback process could control the temperature of plas-
addition, the damping rate is proportional to the square of thenas that are attempting to cool by expansion or radiation. It
Alfvén wave amplitude, so that the damping slows down asould also mean that plasmas that begin as figystems
the waves dissipate. and then expand or radiate actively will effectively burn up
We now consider some specific examples. In the solatheir Alfvenic turbulence in the process.
wind, the largest wave number in the energy-containing part
of thg sp(_ectrum, the region where the obs_erved wave gmplk—/l_ CONCLUSION
tude is fairly constant, decreases substantially as the distance
from the sun increases. For heliocentric distances less than 1 In this paper, the Alfve wave population has been sug-
a.u., it is typically?® on the order of 10° m™%. At5 a.u., this gested as a possible source of energy for solar wind heating
critical wave number is already smaflethan 10°m~1.  and acceleration. In particular, as plasma expands radially
The typical ratio,|ua|/va~]|8B|/By, is 0.55. Using these outward, the beating of the Alfvewaves transfers energy
parameters and Figs. 2 and Bcan be evaluated for some through magnetosonic waves to the particles, potentially af-
value of 8. fecting the bulk flow velocity, the particle distributions, and
It is not uncommon to fingd~1 in the solar wind. This the Alfven wave spectrum. As energy is transferred away
is known to occur in the sunspot region in the photospherérom the fluctuations, their overall amplitude decays.
and lower chromosphere, in the plage region in the lower andlfvénic turbulence is always present in the solar wind as a
middle corona1.2 solar radiji and in significant portions of consequence of nearly incompressible MHD and, indeed, the
the upper corona and solar wiliwhen 8~ 1, the resonant total energy carried by Alfue waves is observed to decrease
value ofd,,, corresponding to the fast magnetosonic modeas heliospheric distance increases.
is no greater than 1. As mentioned before, the resonance As is discussed in the preceding sections, the nonlinear
seen in Fig. 2 occurs for driven waves that propagate nearlgoupling of Alfven pump waves with the slow magnetosonic
along By. For these numbersy/wpjmn~1, Which corre- mode results in a rather weak response with characteristic
sponds to a damping time of a few hours for waves With times on the order of a year for all driven-wave propagation
~10"° m, wherev ,~50 km/s(as is is typical for the corona angles. On the other hand, interaction with the fast mode
and the solar wind within 1 a.u.As the distance from the results in very rapid dissipation on the order of hours for
Sun increases, this damping time will tend to increase s very particular angles of propagation, when optimal pairs of
decreases and as the maximinin the energy-containing Alfvén waves having typical wave vector magnitudes beat to
part of the Alfven-wave spectrum decreases, but it will tend produce the driven wave and when the plasfpas near
to decrease if 5B|/B, increases a8, decreases. Even so, unity. This occurs when the driven wave approaches a reso-
whereverS~1 one would expect the spectrum of Alfie  nance in the fast magnetosonic dispersion relation. The
turbulence will evolve quite rapidly, with corresponding strength of the response drops off very rapidly away from

plasma heating. The existence of very strong Atfweave this resonance. All Alfve waves can beat with some other
damping for 3~1 could also be very important in other Alfvén waves to produce driven waves near the resonant
astrophysical contexts. angle, but the net damping is reduced in proportion to the

However, 8 does not have to drop much below 1 before magnitude of the driven wave vector and the Ativeave
the damping by the mechanism described here becomesnplitudes. The work presented in this document can form
much smaller and probably unimportant. In particular, it isthe basis for calculations of the evolution of realistic Alive
also not uncommon to encountgr-0.2 in the solar wind, wave distributions and the heating that will result. A natural
particularly at heliocentric distances of 5—20 solar radii. Forextension of the present work would be to use kinetic theory
this case, the resonant value @f, is 10 %. In this case to replace the approximate damping rates used here with
vl w~3x10 3, which corresponds to a damping time on themore realistic damping rates for the driven modes. The im-
order of a year for waves wittk~10"° m, wherev,  portant conclusion of this work is that the impact of magne-
~50 km/s. Thus, for such “lows” regions of the solar tosonic waves on the evolution and damping of the Aifve
wind, this process would be expected to contribute only marwaves cannot be ignored if the plasigas near unity. This
ginally to the evolution of turbulence. It could limit the in- potentially could have broad applications in the heliosphere
crease ofl 5B|/B, at a few a.u., where timescales are daysand elsewhere in astrophysics.

and whereB, may be decreasing more rapidly thaiB|/B. This Alfvén-wave-beating mechanism might explain cer-
Nonetheless, it might contribute to ion heating in the outertain local effects in particular spectra such as the preaccel-
regions of the heliosphere. eration of superthermal particle populations, which are

The damping decreases strongly again when the plasnyaresent in the fast stream of the solar wind. Upon being
beta exceeds unity, although it is not clear that this has diredieated, these energetic tails can lead to the stochastic accel-
relevance to the solar wind. For example, wher 5, the  eration of the fast solar wind in regions where shocks form.
partially resonant slow mode dominates the interactibp,  This latter mechanism has a broad range of applicability in
which is approximately 0.5, can be used in the placdgf  fast and slow streams. In order for a mechanism to create
In this caser/w~3X10 3. This suggests a potential feed- these high-energy tails, the characteristic time for dissipation
back mechanism irB~1 plasmas that contain significant must be on the order of $&°. The dissipation rates de-
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scribed in this paper suggest that the Aliwvsave-beating Mobius, and T. A. ZurbucheriAmerican Institute of Physics, Melville,

mechanism may be a candidate for explaining the preaccel-NY. 2000, p. 229.
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