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Ballistic and quasiballistic tunnel transit time oscillators for the terahertz
range: Linear admittance
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We have considered interactions between ballistic~or quasiballistic! electrons accelerated by a dc
electric field in an undoped transit space~T space! and a small ultrahigh frequency ac electric field
and have calculated the linear admittance of the T space. Electrons in the T space have a
conventional, nonparabolic dispersion relation. After consideration of the simplest specific case
when the current is limited by the space charge of the emitted electrons, we turned to an actual case
when the current is limited by a heterostructural tunnel barrier~B barrier! separating the heavily
doped cathode contact and the T space. We assumed that the B barrier is much thinner than the T
space and both dc and ac voltages drop mainly across the T space. The emission tunnel current
through the B barrier is determined by the electric fieldE(0) in the T space at the boundary B
barrier/T space. The more substantial is, the tunnel current limitation the higher the electric field
E(0) becomes. We have shown that for a space-charge limited current the change from parabolic
dispersion to the nonparabolic branch induces narrowing and closing of the frequency windows of
transit-time negative conductance starting with the lowest-frequency windows. These narrowing and
closing frequency windows become effective only for very high voltagesU across the T space:
U@mVS

2/2e, wherem is the effective mass for the parabolic branch andVS is the saturated velocity
for the nonparabolic branch. For moderate voltagesU, the effects of nonparabolicity are not very
substantial. The tunnel current limitation decreases the space-charge effects in the T space and
diminishes the role of the detailed electron dispersion relation. As a result, restoration of the
frequency windows of transit-time negative conductance and an increase in the value of this
negative conductance occur. The implementation of the considered tunnel injection transit time
oscillator diode promises to lead to efficient and powerful sources of terahertz range radiation.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1565496#
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I. INTRODUCTION

Tunnel injection transit-time oscillator diodes have be
suggested1–3 as the highest-speed transit-time devices
tended to dominate at the highest frequencies that are
reachable for ordinary IMPATT diodes. However, the pass
of time has shown4,5 that up to now solid-state tunnel injec
tion oscillators have not justified these expectations and t
yield to IMPATT diodes in all the measurable frequen
ranges.

Here, we consider and substantiate theoretically a
sion of tunnel injection transit-time diodes~TUNNETTs! that
differ noticeably from the traditional ones. As the tradition
version, which we use for comparison, we select one of
best GaAs TUNNETTs, which has been described in deta
Refs. 6–8. Below, we call this version the traditional dio
~TD!. The main peculiarities of the present diode~PD! in
comparison with the TD are as follows.

a!Author to whom correspondence should be addressed.
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~1! The PD is ann-type unipolar heterostructural diode
It does not contain any acceptor-doped regions nor
p-type contacts. The TD is a typicalp1n -type diode.6–8

~2! Electron injection into a transit space of the PD
realized by electron tunneling through a moderately h
square heterobarrier. It takes place in moderately strong e
tric fields (E<105 V/cm). In the TD, the analogous injectio
is realized by interband~Zener! tunneling. In the GaAs case
it requires electric fields that noticeably exceed 106 V/cm
and corresponding voltages across the diode of up to 9

~3! The PD has a very short transit space with a len
l<502100 nm. The material for this transit space is selec
to provide ballisticity or quasiballisticity for an electro
transported through this space at a velocity<108 cm/s. In
the TD, all the regions including the transit space are Ga
grown with low-lying electronL andX valleys. Therefore, in
a relatively short transit space of the TD withl'300 nm,6–8

there is diffusive electron transport with a drift veloci
;(122)3107 cm/s.
5 © 2003 American Institute of Physics
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Some elements of the proposed PD~such as unipolarity
and a heterobarrier electron injector! were realized in the
so-called HEBITT diode9 ~heterobarrier-injection transit
time diode!, but the selected parameters of the heterobar
as well as a transit space that was too long, allowed
writers of Ref. 9 to reach only a 60 GHz oscillation limit.

Below, we describe a schematic sketch of the PD des
including possible semiconductor materials for its implem
tation ~Sec. II!. Then, we describe the theoretical model a
the dc regime~Sec. III!. The central part of our article is
contained in Sec. IV, in which a linear theory of the intera
tion of an ultrahigh-frequency electric field with the electr
current is stated and a negative conductance for terahertz
superterahertz frequencies is predicted. Section V is dev
to a discussion followed by concluding remarks.

II. DESIGN SKETCH

We present a sketch of the PD design in Fig. 1. It sho
be implemented on the basis of four material regions
~cathode contact, C contact!, A ~anode contact, A contact!, B
~tunnel heterobarrier, B barrier!, and T ~transit space, T
space!. The last is the most critical part of the device: he
electrons gain all their kinetic energy and transform a cer
part of this gained energy into energy of ultrahigh-frequen
electric oscillations. We need to realize ballistic or quasib
listic high-energy electron transport just in the T space.
though most of the dc voltage drops across the T space
electric current is controlled by the electric field in the thin
barrier, across which only a small part of the voltage dro
and which should be an effective current injector~together
with the C contact!. The A contact also plays a very impo
tant role. It must accept the high-energy ballistic electro
coming from the T space both without quantum-mechan
reflection and without backscattering. This is necessary
cause backscattered electrons can substantially chang
transport characteristics of the ballistic device, transform
the ballistic transport into a quasidiffusive one. Therefo
the anode contact A should not be a typical material syst
Neither the C contact nor the A contact should absorb
ultrahigh-frequency radiation emitted by the traveling ele
trons.

Restricting the list of materials for the T space to on
the zinc blendeAIIIBV structures, only the ones with In as th
anion~that is,AIII 5In) are suitable since all the others ha
low-energy positionedL and ~or! X valleys with a high rate

FIG. 1. Structure of the present tunnel injection transit-time diode~PD!.
C—a heavily doped cathode contact; B—a tunnel emitter heterostruc
barrier; T—a transit space; A—a heavily doped anode contact.
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of G-electron scattering into them. Let us list several su
materials: InP, In0.53Ga0.47As ~on an InP substrate!,
InP0.69Sb0.31 ~on an InAs substrate!, InAs, and InSb. The first
is the most attractive. In this case,L valleys have the mos
reliable separation10 («L>0.6 eV above theG-valley bot-
tom!. There are several other more optimistic estimates
«L :0.7, 11 0.832, and 0.86 eV.12 X valleys always lie higher
in accordance with all the estimates~for example,10 «X

>0.96 eV). As the B barrier for the PD with the InP T spac
one of the following materials can be used.~1! In0.52Al0.48As
alloy, which is isomorphic to InP.~2! AlAs0.54Sb0.46 alloy,
which is also isomorphic to InP and forms a higher het
obarrier.~3! Since the B barrier is supposed to be very th
it is possible to use tensile-strained InxAl12xAs alloy with
x,0.52 ~up to x50) as the barrier material. Such a barri
can be much higher and thinner than an isomorphic barr

As a material for the C contact that is much mo
heavily doped than the T space, we could use
In0.53Ga0.47As alloy forming the conduction band offset13

d35d12d2>0.2 eV ~see Fig. 1! or any quaternary alloy
(InP)z(In0.53Ga0.47As)12z that is also isomorphic to InP
Since the C contact is heavily doped, the B barrier can
reverse biased for small values ofz. In this case, an excessiv
voltage drop across this barrier occurs for a normal work
regime.

It would seem that the same material as used for th
contact could be applied also for the A contact. But this is
the case since we need to avoid a return of reflected or b
scattered high-energy electrons into the T space. The m
effective method to mitigate such behavior is to fabricate
A contact using a multivalley semiconductor with electronL
and ~or! X valleys that have a much larger density of sta
than theG valleys. The other method is to use a heav
doped superlattice as a material for the A contact, which w
be discussed in Sec. V. To avoid quantum electron reflect
the T space/A contact junction should be sufficien
smoothly graded.

The maximum scattering rate12,14 for G electrons in InP
at T5300 K and«,«L has a valuen>1.831013s21. This
scattering is determined completely by the emission and
sorption of polar optical phonons. Since such scattering
small angle and since the optical phonon energy is sma
comparison to the mean electron energy~in the energy range
0–0.7 eV!, the real electron free-path timetFP must be much
larger thann21. Therefore, we can write for the mean fre
path

l FP>VS /n, ~1!

whereVS is the saturated ballistic velocity, determined in
linear branch of theG-electron dispersion relation. The sat
rated ballistic velocity must be distinguished from the sa
rated drift velocity, which is determined by scattering pr
cesses. It is simple to check on the basis of a real disper
relation12,14 that in most of the above-indicated energy ran
the electron velocity is saturated. In InP,VS>1.33108 cm/s
and l FP>(1.33108 cm/s)/(1.831013s21)>70 nm. The
length l FP limits the length of the ballistic T space where th
electron velocity is determined byVS . If l . l FP, for ex-
ample,l ,2l FP, the electron transport can be considered

al
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quasiballistic. Such electrons move in a sufficiently narr
beam of thekW space with approximately the same quasib
listic velocity VQB, but this velocity is smaller thanVS . The
small-angle character of the polar optical phonon scatte
together with a comparatively high electron concentration
the T space promotes the development of such a pict
Electron-electron collisions result in a certain combined
locity VQB.

The other In-anion zinc blende semiconductors~InGaAs,
InPSb, InAs, and InSb! which are suitable as T-space mat
rials have parameter sets that are still more favorable t
InP. They have higher energies«L and«X , higher velocities
VS , and smaller scattering ratesv. It is probable thatl FP

.100 nm can be reached in them. These materials have
row band gaps, but we do not fear an avalanche breakd
since the T-space lengthl can always be selected shorter th
the dead space size for the considered voltages. The unso
problem for these T-space materials is the material selec
for the A contact. This problem is one of the central proble
for the proposed devices and needs separate considerat

III. THEORETICAL MODEL FOR ELECTRON
TRANSPORT IN THE T SPACE

The proposed model is based on calculations of elec
concentrationn(x) and electron momentump(x) in the T
space (0,x, l ). We assume that a B-barrier tunnel electr
injector atx50 emits an electron beam with a small mome
tum and energy spread~compared to the momentum and th
energy obtained as a result of electron transport across t
space!. Therefore, we can consider this beam as monodi
tional and monokinetic. Together withn(x) and p(x), we
calculate an electric fieldE(x). The right boundary of the T
space (x5 l ) is assumed to be nonreflecting and nonscat
ing. Concerning the left boundary (x50), we assume tha
~1! the tunnel electron injector emits electrons with a sm
initial momentump(0)!p( l ) and we can neglect this value
p(0)>0, and~2! this tunnel injector has been designed
that the electric field at the left boundary of the T spa
E05E(0), completely defines the emitted electron curre
density:

j 5 j 0~E0!. ~2!

In order to satisfy Eq.~2!, we actually need the voltag
drop across the B barrier,UB , to be negligible in comparison
with the voltage drop across the T space,UT>U, whereU is
the total voltage across the device:

UB!UT>U. ~3!

Equation~2! can be inverted as

E05E~x50!5E~ j !, ~4!

and this dependence is actually independent of theU j char-
acteristic

U5U~ j !. ~5!

Equation ~4! @or ~2!# together with the conditionp(0)>0
serve as boundary conditions for the equations that de
mine n(x), p(x), andE(x) in the T space. These equation
have the traditional quasiclassical form:
-
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j 5eV~p!n, ~6!

the Newton law

]p

]t
1V~p!

]p

]x
5eE, ~7!

the electron current continuity equation

] j

]x
1e

]n

]t
50, ~8!

the Poisson equation

kD

]E

]x
5en, ~9!

wherekD is the dielectric constant in the T space, and t
electron dispersion relation~in the G valley!

«5«~p!, ~10!

from which we obtain the electron group velocityV(p)
5d«(p)/dp that appears in Eqs.~6! and ~7!. We have as-
sumed in Eq.~9! that the T space does not contain any io
ized impurity concentration; that is, this concentration is a
tually small in comparison withn(x). In the stationary case
(]/]t50), we havej 5const, and Eqs.~6!–~10! can be re-
duced to the equation

kDV~p!
d2«~p!

dx2
5e j. ~11!

Multiplying both sides of Eq.~11! by d«(p)/dx and tak-
ing into account thatd«(p)/dx5V(p)(dp/dx)5eE, we ob-
tain as a result of integration onp from 0 to p(eU)

~2e j/kD!1/2l 5E
0

p(eU) V~p!dp

@p1p0~ j !#1/2
. ~12!

In Eq. ~12!, p(eU) is the electron momentum atx5 l @where
«(p)>eU] andp0( j )5e2E2( j )kD/2e j. Equation~12! gives
us the stationaryU j characteristic of the T space with th
boundary conditions Eq.~4! andp(0)>0 at x50 and for a
nonreflecting boundary atx5 l .

Let us select in Eq.~12! an isotropic form of the
G-electron dispersion relation:

«~p!5VS~ApS
21p22pS!, ~13!

whereVS is the saturatedG-electron velocity,pS5mVS , and
m is the effective mass atp→0. This selection allows us to
transfer from the parabolic dispersion relation

«~p!5p2/2m ~14!

justified for small momentum values (p2!m2VS
2) to the lin-

ear law

«~p!5VS~p2mVS! ~15!

for p2@m2VS
2 .

Assuming that the distribution of ballistic or quasiballi
tic electrons in the T space is localized around some ave
electron, we can write

«~p!5eU~x! ~16!
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with p5p(x) whereU(x) is the potential in the planex of
the T space relating to the B barrier, andp(x) is the average
electron momentum in this plane. Then we can write

«~u!5mVS
2u, p~u!5mVSAu~u12!, V~u!

5VS

Au~u12!

u11
, m21~u!5m21~u11!23, ~17!

and

x~u!5tSVSE
0

u du

@u1/2~u12!1/21A0
2#1/2

, ~18!

with

A05
eE~ j !tS

mVS
~19a!

and

tS5S kDmVS

2e j D 1/2

. ~19b!

Since the dependencej 5 j 0(E0) in Eq. ~2! describes an
exponentially sharp increase inj with an increase inE0

5E(0) for the actual area of values ofj andE, the behavior
of the function A05A0( j ) is defined mainly not by the
slowly increasing inverted functionE( j ) but by the function
tS( j ) from Eq. ~19b!. Realistic actual values ofA0 are
around 1–3 and do not usually exceed 10~see below in Sec
IV C!.

For a particular value of current densityj a planex(u) in
the T space can be characterized by a dimensionless tr
time u(u) along with a dimensionless potentialu(x):

u~u!5tS
21E

0

x(u)

dx8/V~x8!5E
0

u

du8/B~u8!

52$@u1/2~u12!1/21A0
2#1/22A0% ~20!

with B(u)5u1/2(u12)1/2@u1/2(u12)1/21A0
2#1/2/(u11).

Considering the form of theU j characteristic defined by
Eq. ~12! for the selected dispersion relation~13! yields

l 5tSVSE
0

ul du

@u1/2~u12!1/21A0
2#1/2

, ~21!

where ul5eU( l )/mVS
2 . If A0

250 and eU( l )!mVS
2 , Eq.

~21! leads to

j 5~8/9!~kD / l 2!~e/2m!1/2U3/2~ l !. ~22!

This is the well-known Child-Langmuir law correspondin
to a parabolic electron dispersion relation and a space-ch
limited current (A0

250). If, as above, A0
250 but ul

5eU( l )/mVS
2 in Eq. ~21! is arbitrarily large, theU j charac-

teristic is described by the formula

j / j S5S E
0

ul
du/A4 u~u12! D 2

~23!

with an elliptic integral on the right hand side andj S

5kDmVS
3/2el2. The dependencej / j S5F(ul) presented by

Eq. ~23! is shown in Fig. 2, where we can also see the
sit

ge

-

pendencej / j S5(8A2)ul
3/2/9 @that is, Eq. ~22! coinciding

with Eq. ~23! for ul<1] and the dependencej / j S54(ul

2A2ul) nearing Eq.~23! for very largeul . As is seen, the
last dependence is very far from the linear dependence
sented by only the first component in the parentheses. A s
stantial deviation from the results of Eq.~21! occurs if ul

.2.5, which is unreachable in the structures considered.
At large values ofA0 ~when A0

2.1), Eq. ~21! leads to
the approximate formula

U~ l !5E~ j !l 1~ j l 2/2kD VS!. ~24!

The first component on the right hand side of Eq.~24! cor-
responds to a homogeneous electric fieldE(x)5E( j ) in the
whole T space. The second component takes into accoun
contribution of the electron space charge. The role of t
charge increases with an increase in the lengthl of the T
space.

In the general case, the calculation of theU j character-
istic from Eq. ~21! requires detailed knowledge ofE( j ) in
Eq. ~19a!. Calculation of such functions for specific B barr
ers is very important but is not addressed in this article.

IV. HIGH-FREQUENCY ADMITTANCE OF THE T
SPACE „SMALL-SIGNAL APPROXIMATION …

A. General formulas

A small-signal high-frequency admittance can be cal
lated after transition from the stationary valuesj, p, andE to
the sums j→ j 1 j 8(x)exp(ivt), p→p1p8(x)exp(ivt), E
→E1E8exp(ivt), wherev is the frequency of a small har
monic signal, and the amplitudesj 8(x), p8(x), E8(x), etc.
satisfy the system of equations

FIG. 2. dc U j characteristicsj / j S5F(ul) for T space in the case of the
space-charge limited current presented by Eq.~23! ~curve 1!, and by ap-
proximate formulasj / j S54(ul2A2ul) ~curve 2!, j / j S5(8/9)A2 ul

3/2 ~curve
3!, and j / j S54ul ~curve 4!.
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j 85eVn81enm21~p!p8, ~25!

kD

dE8

dx
5en8, ~26!

d j8

dx
1 iven850, ~27!

ivp81V
dp8

dx
1m21~p!p8

dp

dx
5eE8, ~28!

where V5V(p)5d«(p)/dp and m21(p)5d2«(p)/dp2 as
above. We can see from Eqs.~26! and~27! that instead of the
electron current densityj 8(x) only the total current density

J85 j 8~x!1 ivkDE8~x! ~29!

is constant thoughout the T space. By taking this conditi
into account we obtain an equation that determinesp8(x):

S V
d

dx
1 iv D S V

d

dx
1 iv1m21~p!

dp

dxD p81
e2n

kD
m21~p!p8

5
eJ8

kD
[l. ~30!

This equation should be solved with boundary conditions
x50; they are

p8~0!50 ~31a!

and

j 8~0!5sSE8~0!, ~31b!

where we introduce the ‘‘conductivity’’ of the tunnel emitte
sS5d j /dEux50 . The boundary condition~31b! can be re-
written in the form

J85~sS1 ivkD!E8~0!. ~32!

Replacing in Eq.~30! the independent variablex with the
new variableu5u(x), we can present this equation in th
form of two equations of the first degree:

FB~u!
d

du
1 iVGb2a50, ~33!

FB~u!
d

du
1 iVGa1Y1~u!a2Y2~u!b2150, ~34!

whereb5p8/ltS
2 , a5@B(u)d/du1 iV#b, V5vtS , B(u)

is defined at Eq.~20!,

Y1~u!5@u1/2~u12!1/21A0
2#1/2/u1/2~u12!1/2~u11!2,

and

Y2~u!5
2Au~u12!

~u11!4
1A0

2F 2

~u11!4
1

1

u~u12!~u11!2G .

A simpler and more convenient form of Eqs.~33! and
~34! appears as a result of transfer to the variableu(u) @see
Eq. ~20!#:

S d

du
1 iV Db2a50, ~35!

S d

du
1 iV Da1S1~u!a2S2~u!b2150, ~36!
,

t

where

S1~u!5Y1~u!5
A01u/2

u~A01u/4!@11u2~A01u/4!2#
, ~37a!

S2~u!5Y2~u!5
A0

213A0
2u2~A01u/4!212u3~A01u/4!3

u2~A01u/4!2@11u2~A01u/4!2#2
.

~37b!

Equations~35! and ~36! @or ~33! and ~34!# should be solved
with the boundary conditions atu50 @or u50; see Eqs.
~31a! and ~31b!#

b~0!50, ~38!

db

du U
u50

5B~u!
db

duU
u50

5a~0!5~V01 iV!21, ~39!

where V05sS(mVS/2e jkD)1/2. The value of V0( j ) in-
creases comparatively rapidly with increase inj and E. As
shown below, this increase inV0( j ) can substantially contro
the frequency range of negative conductance.

B. Space-charge limited case

The simplest case occurs when the tunnel emitter B b
rier does not limit electron injection, and it is limited by on
the electron space charge. ThenA050 andsS→`, that is,
(db/du)uu505a(0)50. In this space-charge limited case

S1~u!52/u@11~u/2!4#, S2~u!5u2/2@11~u/2!4#2. ~40!

The second components in the square brackets in the
nominators ofS1,2(u) @Eqs.~40!#, which are equal to (u/2)4,
are the result of nonparabolicity and should be excluded
the parabolic limit (u!2) as well as the whole small com
ponent2S2(u)b in Eq. ~36!.

In the parabolic case, the desired solution of Eqs.~35!
and ~36! can be presented in the form

b~u!52V22@112ix211~122ix21!exp~2 ix!#, ~41!

wherex5Vu. It allows us to calculate the high-frequenc
electric field distribution in the T space:

E8~u!52~ltS /V!@ i ~112x22!12x21~12 ix21!

3exp~2 ix!# ~42!

and the impedance of the T space:

Z5R1 iX5R0$2~12cosx l !2x lsinx l2 i @x l~12cosx l !

22sinx l1x l
3/6#%, ~43!

wherex l5Vu l5v(6mkDl /e j)1/3, u l5u(ul)5u(x5 l ), and
R05e j/kD

2 mv4.
We can see that the active impedance componenR

5R0@2(12cosxl)2xlsinxl# contains wide negative resis
tance windows forx that are in the intervals (2p,3p),
(4p,5p), and so on. Evidently, Benham15 first paid attention
to this important result. There were several successful trie
exciting high-frequency oscillations in the first~the lowest
frequency! of these windows. For example, oscillations wi
the wavelength;11.5 cm were generated16 in vacuum di-
odes with thermionic electron emission.
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Note that in both the specific parabolic case and
more general nonparabolic case@Eq. ~13!# when only the full
expressions forS1,2(u) in Eqs.~40! are valid, our Eqs.~35!
and~36! do not include any additional parameters apart fr
the frequencyV sinceb(0)50 anda(0)50. Therefore, the
desired solutionb(u) depends only on the single parame
V. The functionsb1(x)5Reb(x) andb2(x)5Imb(x) mul-
tiplied by V2 for convenience and calculated as a result
the numerical solution of Eqs.~35! and ~36! @with S1,2(u)
from Eqs.~40!# are presented in Fig. 3 for several values
V. In the same Fig. 3~see the dashed curves 5!, we can see
also the functionsb1,2(x) calculated according to Eq.~41!
for the parabolic limit (u!2). The high-frequency curren
J8 generates in the T space standing waves ofn8, E8, V8,
and p8 due to the boundary conditions atx5u (x)5u (u)
50. These standing waves are not sensitive to the lengthl of
the T space because of the lack of both electron reflec
and an electron backscattering at the boundary T spa
contact.

The calculated functionsb(u) allow us to calculate the
impedanceZ of the T space. In the most general case it
defined by the formula

Z5
l 2

VSkD

I 2~V,u l !

I 1
2~u l !

, ~44!

where

I 1~u l ; A0!5E
0

u l
u~A01u/4!du/@11u2~A01u/4!2#1/2, ~45!

FIG. 3. FunctionsV2b1(x) ~a! and V2b2(x) ~b! for four values of the
normalized frequencyV5vtS :V50.3p ~curve 1!, 0.5p ~curve 2!, 1.0p
~curve 3!, 3.0p ~curve 4!, and in the parabolic case whenu5x/V!2
~dashed curves 5!.
e

r

f

f

n
/A

s

I 2~V,u l ; A0,V0!5E
0

u l
@a1bS1~u!#

3u~A01u/4!du/@11u2~A01u/4!2#1/2.

~46!

In the case of the space-charge limited current under con
eration, we should use the simplified expressions forI 1(u l)
and I 2(V,u l) with A050, a(0)50 (V05`), b(0)50, and
S1,2(u) described by Eqs.~40!. Note that in this case there i
a very simple connection betweenul and u l in the form u l

52@ul(ul12)#1/4. The calculated functionsRSG(x l) and
RSB(x l) where x l5Vu l , RS5 l 2/VSkD , G(x)
5(ReZ)/uZu2, andB(x)52(ImZ)/uZu2 for several different
values ofu l are shown in Fig. 4. Sincex l5Vu l5vtSu l ,
these plots are in fact the real and imaginary com
nents of admittance 1/Z plotted against the frequencyv
for different voltagesul across the T space. It can be se
that the producttSu l is determined byul since tSu l

5(kDmVS/2e j)1/22ul
1/4(ul12)1/4 and j 5 j (ul)5 j SF(ul) is

presented in Fig. 2. For small values oful (ul!2) when
F(ul)5(8A2)ul

3/2/9, we can obtaintSu l>3l /Vs(2ul)
1/2,

that is,tSu l increases with a decrease inul . For ul@2, we
obtain tSu l> l /VS , and x l5Vu l5vtSu l is independent of
the voltage.

FIG. 4. Normalized conductanceRSG ~a!,~b! and susceptanceRSB ~c! plot-
ted againstx l5Vu l for different values ofu l :0.5 ~curve 1!, 1.0 ~curve 2!,
2.0 ~curve 3!, 3.0~curve 4!, 4.0~curve 5!, 7.0~curve 6!, and 100.0~curve 7!.
~a! and ~b! differ from each other only in scale.
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We can observe in Fig. 4 the above-mentioned nega
conductance windows, which are maximally wide for sm
values ofu l (u l,2) and narrow with an increase inu l for
large values ofu l . Their narrowing and subsequent practic
disappearance is a result of the nonparabolicity of the e
tron dispersion relation foru>2. This is the evident disad
vantage for ballistic transit-time oscillators with spac
charge limited current.

C. Tunnel emitter control case: Specific description

As we know, the finite resistance of a tunnel emit
controlled by an electric fieldE(x50)5E( j ) introduces two
additional parametersA0 andV0 . Specifically, parameterA0

substantially complicates Eqs.~37a! and ~37b!, which deter-
mine the functionsS1,2(u). These formulas can be notice
ably simplified in the parabolic limit if, along with a stron
inequality u!2, an additional condition is satisfied:u
!2A0 . In this case, Eqs.~37a! and ~37b! lead to

S1~u!>1/u, ~47a!

S2~u!>
1

u2
12A0

2 . ~47b!

Substitution of expressions~47a! and ~47b! into Eqs. ~35!
and ~36! leads to a differential equation for the functio
b0(u)5b(u)exp(iVu) in the form

u2~d2b0 /du2!1u~db0 /du!2~2A0
2u211!b0

5u2exp~ iVu!, ~48!

which is an inhomogeneous modified Bessel equation.17 The
fundamental solution of Eq.~48! is

b0~u!5CK1~21/2A0u!1DI 1~21/2A0u!

1E
0

u

u8du8exp~ iVu8!

3@K1~21/2A0u8!I 1~21/2A0u!

2K1~21/2A0u!I 1~21/2A0u8!#, ~49!

whereI 1(x) andK1(x) are the modified Bessel functions.17

Using the boundary conditions~38! and ~39!, we can obtain
C50, D521/2/A0(V01 iV), and
e
l

l
c-

-

r

b~u!5@21/2/A0~V01 iV!#exp~2 iVu!I 1~21/2A0u!

1E
0

u

u8du8exp@ iV~u82u!#

3@K1~21/2A0u8!I 1~21/2A0u!

2K1~21/2A0u!I 1~21/2A0u8!#. ~50!

The impedance of the T space is determined as above by
~44!, but in the case under considerationu!2 and 2A0 we
can substitutea1bS15db/du1 iVb1b/u and substan-
tially simplify the integrands in Eqs.~45! and ~46!: u(A0

1u/4)/@11u2(A01u/4)2#1/2>A0u/(11A0
2u2)1/2.

Equation~50! demonstrates thatb ~u! can be presented
in the form of the sum of two components:

b~u!5b (1)~u!1b (2)~u!, ~51!

where b (1)(u) is the second component on the right ha
side of Eq.~50! and b (2)(u) is the first one. The function
b (1)(u) is the solution of Eqs.~35! and ~36! for a(0)
5b(0)50 and b (2)(u) is the additional component intro
duced by a finite value ofa(0)5db/duuu5051/(V0

1 iV). It is convenient to write

b (2)~u!5 b
_ (2)~u!/~V01 iV!, ~52!

whereb
_ (2)(u) is the solution of the same Eqs.~35! and~36!

but without the component21 on the left hand side of Eq

~36! and for the boundary conditionsb
_ (2)(0)50 and

a_ (2)(0)5d b
_ (2)/duuu5051.

D. Tunnel emitter control case: General description

It is not difficult to make sure that the solution structu
in the form of Eqs.~51! and~52! occurs in the most genera
case for arbitrary values ofu, u l , andA0 . Therefore, in the
general case, the impedanceZ can be expressed as the sum
two components

Z5Z(1)~V,u l ; A0!1~V01 iV!21 Z& (2)~V,u l ; A0!. ~53!

The impedanceZ(1)5R(1)1 iX (1) is generated by the
componentb (1)(u):
Z(1)5
l 2

VSkD

E
0

u l
@~db (1)/du!1 iVb (1)1b (1)S1~u!#u~A01u/4!du/@11u2~A01u/4!2#1/2

I 1
2~u l ; A0!

, ~54!

and the impedanceZ& (2)5R& (2)1 i X& (2) is generated byb& (2)(u): to obtain the appropriate formula, we should replaceb (1)(u) in

the integrand in Eq.~54! by b& (2)(u). Then, the real componentR and imaginary componentX of the total impedanceZ5R
1 iX are determined by the following formulas:
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R5R(1)1~V0 R& (2)1V X& (2)!/~V0
21V2!, ~55a!

X5X(1)1~V0 X& (2)2V R& (2)!/~V0
21V2!. ~55b!

The calculatedZ components in Eqs.~55a! and ~55b! allow
us to calculate the components of the admittanceG(x l)
5(ReZ)/uZu2 andB(x l)52(ImZ)/uZu2.

The real and imaginary components of the functi
b (1)(u) are shown in Fig. 5 forA050.1, 1, and 10 and for
the same values ofV as in Fig. 3 forA050. We can see an
evident tendency of the curves to merge with one anothe
A051 and become the same atA0510. The latter is con-

FIG. 5. FunctionsV2b1
(1)(x) @~a!,~c!,~e!# and V2b2

(1)(x) @~b!,~d!,~f!# for
four values of the normalized frequencyV5vtS :V50.3p ~curve 1!, 0.5p
~curve 2!, 1.0p ~curve 3!, 3.0p ~curve 4!, and for three values of paramete
A0 :A050.1 ~a!,~b!, 1.0 ~c!,~d!, and 10.0~e!,~f!.
at

nected with the decreasing coefficientsS1(u) and S2(u) in
Eq. ~36! as a result of an increase inA0 . Equations~35! and
~36! almost completely lose dependence onA0 and can be
reduced to the equation

~d/du1 iV!2b2150. ~56!

This equation has fora(0)5db/duuu5050 and b(0)50
the solution b(x)5b1(x)1 ib2(x) with b1V252(1
2cosx2xsinx) and b2V252(sinx2xcosx), which is in
good agreement with the curves in Fig. 5~c!. As above,x
5Vu.

FIG. 6. FunctionsV2 b& 1
(2)(x) @~a!,~c!,~e!# and V2 b& 2

(2)(x) @~b!,~d!,~f!# for
four values of the normalized frequencyV5vtS :V50.3p ~curve 1!, 0.5p
~curve 2!, 1.0p ~curve 3!, 3.0p ~curve 4!, and for three values of paramete
A0 :A050 ~a!,~b!, A051.0 ~c!,~d!, andA0510.0 ~e!,~f!.
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The real and imaginary components of the functio
b& (2)(u) are shown in Fig. 6 for the same values of the n
malized frequencyV and forA050, 1.0, and 10. Contrary to
the functionsV2b (1)(u), the functionsV2 b& (2)(u) do not

FIG. 7. ConductanceG ~a! and susceptanceB ~b! plotted against frequency
f for different values ofV0 @V05` ~curve 1!, 10.0~curve 2!, 3.0 ~curve 3!,
1.0 ~curve 4!, 0.3 ~curve 5!, and 0 ~curve 6!# at the current densityj
5104 A/cm2. The inset in~b! demonstrates the appearance of different v
ues ofV0 at the same value ofA0 .

FIG. 8. ConductanceG ~a! and susceptanceB ~b! plotted against frequency
f for different values ofV0 @V05` ~curve 1!, 10.0~curve 2!, 3.0 ~curve 3!,
1.0 ~curve 4!, 0.3 ~curve 5!, and 0 ~curve 6!# at the current densityj
5106 A/cm2.
s
-

become closer to each other for largeA0 ; some of them even
diverge. Such behavior is connected with an effect of
boundary conditiona_ (2)(0)5d b& (2)/duuu5051. The solu-
tions of the equation (d/du1 iV)2b50 with this boundary
condition areb1V25Vxcosx andb2V252Vxsinx. They
are proportional toV.

In Figs. 7–10, we compare the real and imaginary
mittance componentsG(x l) and B(x l), x l5Vu l , for sev-
eral sets of parameters of the T space and the tunnel em
All of these parameters are chosen for the single selecte
space with lengthl 50.731025 cm570 nm and with mate-
rial parameters that are appropriate to InP:m50.75
310228g, kD512.4/4p>1, VS51.33108 cm/s, RS53.46
31027 V cm2, andU( l )50.6 V. The value ofVS is selected

-

FIG. 9. ConductanceG plotted against frequencyf for different values of
V0 @V05` ~curve 1!, 10.0~curve 2!, 3.0~curve 3!, 1.0~curve 4!, 0.3~curve
5!, and 0 ~curve 6!# at the current densityj 5104 A/cm2 ~a!, 5
3104 A/cm2 ~b!, 105 A/cm2 ~c!, 23105 A/cm2 ~d!, and 106 A/cm2 ~e!.
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in accordance with the data extracted from Ref. 12. T
value ofeU( l ) is chosen to be equal to theL-valley bottom
energy in InP.

This set of parameters allows us to calculate the norm
ized value of the voltage across the T space,ul

5eU( l )/mVS
250.76, the average value of the electric fie

in the T space,Ē50.863105 V/cm, the characteristic cur
rent density in Eq. ~23!, j S5kDmVS

3/2el251.14
3106 A/cm2, and the value oftS( j ) for any selected value
of j. If these selectedj are noticeably smaller than the valu
0.83j S defined by Eq.~23! for the above-mentionedul

50.76, we are dealing with the tunnel emitter current lim
tation and can useĒ50.863105 V/cm as an approximate

FIG. 10. SusceptanceB plotted against frequencyf for different values of
V0 @V05` ~curve 1!, 10.0~curve 2!, 3.0~curve 3!, 1.0~curve 4!, 0.3~curve
5!, and 0 ~curve 6!# at the current densityj 5104 A/cm2 ~a!, 5
3104 A/cm2 ~b!, 105 A/cm2 ~c!, 23105 A/cm2 ~d!, and 106 A/cm2 ~e!.
e

l-

value of E(0)5E( j ). As a result, we can calculateA0( j )

>eĒtS( j )/mVS @see Eq. ~19a!# and u l( j )52$@ul
1/2(ul

12)1/21A0
2#1/22A0% @see Eq.~20!#.

For calculations ofG(x l) and B(x l), we also need to
select the value ofV0 , which can be different for the sam
A0 . Note that the parametersA05eE( j )(kD/2e jmVS)1/2 and
V05d j /dEux50(mVS/2e jkD)1/2 have the same origin an
are determined mainly by the tunnel emitter properties.
this article, we do not investigate their interrelations and c
sider them as self-consistent independent parameters. In
samples, different values ofV0 for the sameA0 or different
values ofA0 for the sameV0 can be provided both by the
selection of materials for the B barriers and C contacts
by the selection of the B-barrier form and thickness. F
example, we demonstrate in Fig. 7~see the inset! three pos-
sible functionsj (E) crossing each other at the same point.
this point, they have the same values ofj, E, andA0 . But the
values ofV0 for these three cases are substantially differe

We have calculatedG(x l) andB(x l) for five values ofj
(5104, 53104, 105, 23105, and 106 A/cm2; as we saw
above, the last value is really invalid and considered to sh
the trend and for comparison! and six values ofV0

(5`, 10, 3, 1, 0.3, and 0). Five values ofA0 (58.22, 3.68,
2.60, 1.84, and 0.82) and five values ofu l (50.175,
0.384, 0.53, 0.717, and 1.279) correspond to the abo
mentioned five values ofj, respectively. All the results ob
tained are presented in Figs. 7–10. We see that the pict
presented in these figures are similar to each other and
some characteristic peculiarities.

~1! There exist regular windows of negative conductan
for all the considered values ofj andV0 . At V05`, these
windows are situated in thex l sections„(2k21/2)p, (2k
11/2)p…, k51, 2, 3, .... They shift to the low-frequency
side with a decrease inV0 . At V050, the negative conduc
tance windows are approximately situated in the same
tions where the positive conductance windows atV05` are
placed.

~2! At V050, the lowest-frequency negative condu
tance window has the left boundary atx l50. This means that
we can reach very low-frequency oscillatory regimes if w
are able to implement the required small values ofV0 .

~3! The maximum negative conductance for small valu
of V0 is reached in the first window atx l5x l M >p. It de-
creases with an increase inj. The real frequency value
is f M5vM/2p5VM/2ptS5x lM /2ptSu l>1/2tSu l'5 THz
since the producttS( j )u l( j ) weakly depends on thej value.
For largeV0 , both the frequencyf M and the negative con
ductance GM5G( f M) increase, andf M>10 THz at V0

→`.
~4! The relationuGu/B cannot be larger than 0.25–0.3

the first negative conductance window and becomes m
smaller for the higher-frequency negative conductance w
dows (k.1).

In Figs. 7–10, we have plotted both normalized valu
(x l5Vu l , RSG, andRSB) and the same values in the
‘‘natural’’ units @ f (THz), G (1/V cm2), andB (1/V cm2)#.
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V. DISCUSSION

In this article, we considered first the small-signal theo
of a semiconductor heterostructural transit-time oscilla
with ballistic ~or quasiballistic! electron transport in the T
space. We started with the simplest case when a curren
the T space is limited only by the electron space charge
a conventional nonparabolic dispersion relation@see Eq.
~13!# characterizes the electrons. Generally speaking, we
pect that this nonparabolicity will lead to the elimination
the negative conductance windows. But we noticed that s
elimination takes place for very high values of the volta
ul5eUl /mVS

2 . For moderate values oful (;326), which
are the only ones possible in realistic material systems,
negative conductance windows can be successfully reali
and oscillators based on such regimes are possible. Note
in comparison with vacuum diodes, not only much simp
designs and more effective electron emission mechani
but also substantially smaller electron effective masses c
acterize semiconductor transit-time devices.

On the basis of the space-charge limited regimes con
ered, we turned to the case of the tunnel electron emis
limited current. We assumed that the voltage drops ma
across the T space and the emission current is controlle
the electric field value on the T-space side in the boundar
barrier/T space. We did not consider in detail the tunnel c
rent characteristicsj „E(0)… and assumed only that the cha
acteristics are known and we can calculate the introdu
parametersA0 and V0 , which depend on the direct curren
density j and are determined byE( j ) and d j /dEux50 , re-
spectively. Of course, such a description does not allow u
calculate the detailedU j characteristics. But it has allowe
us to show that the correct selection of a tunnel emitter w
an appropriateE( j ) dependence can substantially increa
the negative conductance of the T space for moderate
high values oful .

All of the above-stated results were obtained assumin
nonreflecting and nonbackscattering T space/A con
boundary atx5 l . This boundary should absorb the hot ele
trons coming from the T space entirely. Such a requirem
is not unique for ballistic systems, which always need
have similar collector boundaries. The specificity is in t
very high energy of the arriving electrons (0.520.6 eV),
which cannot dissipate in a short time. Therefore, these
electrons, after scattering their momentum, have a real
probability of coming back into the T space. We can imag
two simple methods to avoid this situation.

~1! The first method is to form a metallic contact with
well-extended Fermi surface directly behind the T spac
contact boundary in order that the hot electrons transfer t
energy to the Fermi electrons. This situation is analogou
the situation in a metallic anode of a vacuum-tube device
might be acceptable for single-transit-space oscillators, b
unsuitable for cascading oscillators.

~2! In cascading oscillators, which are necessary to
tain higher power and higher efficiency, each of the n
C/B/T/A cells should be grown over the previous C/B/T
cells. This means that the A contact must be a semicondu
and appropriate for the next growth of the C contact, etc. T
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simplest solution to this problem is to use a heavily dop
multivalley semiconductor as the material for the A conta
Since the densities of states in theL andX valleys usually are
much higher than the density of states in theG valley, the
energy scattering process across these valleys with the
ticipation of both intravalley and intervalley phonons
much more intense than only across theG valley. In addition,
L andX electrons cannot go directly fromL andX valleys in
the A contact to the T space where these valleys are emp
cally absent in the energy range considered.

Unfortunately, InP and other materials that can be u
in the T space have no ideal multivalley isomorphic count
parts to use for the A contacts. For such a role, an a
isomorphic to InP such as GaAs0.5Sb0.5 ~see Ref. 18! or,
maybe, GaP0.35Sb0.65, is most suitable for the InP T spac
and an alloy such as GaAs0.08Sb0.92 is most suitable for the
InP0.69Sb0.31 T space.

One more method to use noncentral valleys is based
strain-balanced superlattices~SL’s!. Such SL’s should in-
clude quantum wells, which contain noncentral valleys in
necessary energy range. For example, the InP/InAs het
junction has a very large conduction band offset10 (0.75 eV).
For such energies,L valleys exist in InAs. This means tha
we can hope to reach the necessary effect by using a he
doped strain-balanced GaAs/InAs SL as the A-contact m
rial. One of the versions of the TUNNETT considered can
obtained ford250, that is,d15d3 ~see Fig. 1! and the B
barrier does not exist. In this case, the triangle barrier form
at the left edge of the T space serves as the tunnel barrier
the dependencej 5 j 0(E0) can be presented by the class
Fowler-Nordheim formula19

j / j N5~E/EN!2 exp~2EN /E!,

whereJN andEN are parameters that depend on the elect
effective masses in the C contact and T space and also o«F

andd1 . The dependenceE( j ) in Eq. ~19a! can be obtained
by inversion of this formula.

VI. CONCLUDING REMARKS

We have shown in this article that transit-time diod
with ballistic electron transport in the T space are interest
as possible oscillators for the terahertz range. For a succ
ful implementation of such oscillators, several addition
problems need to be addressed.

~1! To obtain explicit expressions for the paramete
A0( j ) andV0( j ) introduced in this article, which depend o
the dc current densityj directly and the fieldE(x50)
5E( j ), we need a correct theory of tunnel emitters with
detailed description of both C contact and B barrier.

~2! To provide nonreflecting and nonbackscattering
contacts, we need to develop a more detailed A-contact
sign and a more detailed theoretical description of these c
tacts.

~3! To solve the cascading oscillator problem, we nee
more detailed design of the intermediate A-C contacts.

In the next stages, we need to develop a nonlinear
scription of the oscillatory regimes and a theory of oscilla
diodes in realistic resonators.
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