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We have considered interactions between balligiicquasiballisti¢ electrons accelerated by a dc
electric field in an undoped transit spadespacé and a small ultrahigh frequency ac electric field

and have calculated the linear admittance of the T space. Electrons in the T space have a
conventional, nonparabolic dispersion relation. After consideration of the simplest specific case
when the current is limited by the space charge of the emitted electrons, we turned to an actual case
when the current is limited by a heterostructural tunnel bafBebarriep separating the heavily

doped cathode contact and the T space. We assumed that the B barrier is much thinner than the T
space and both dc and ac voltages drop mainly across the T space. The emission tunnel current
through the B barrier is determined by the electric fielD) in the T space at the boundary B
barrier/T space. The more substantial is, the tunnel current limitation the higher the electric field
E(0) becomes. We have shown that for a space-charge limited current the change from parabolic
dispersion to the nonparabolic branch induces narrowing and closing of the frequency windows of
transit-time negative conductance starting with the lowest-frequency windows. These narrowing and
closing frequency windows become effective only for very high voltadeacross the T space:

us mVé/Ze, wherem s the effective mass for the parabolic branch &Rds the saturated velocity

for the nonparabolic branch. For moderate voltageshe effects of nonparabolicity are not very
substantial. The tunnel current limitation decreases the space-charge effects in the T space and
diminishes the role of the detailed electron dispersion relation. As a result, restoration of the
frequency windows of transit-time negative conductance and an increase in the value of this
negative conductance occur. The implementation of the considered tunnel injection transit time
oscillator diode promises to lead to efficient and powerful sources of terahertz range radiation.
© 2003 American Institute of Physic§DOI: 10.1063/1.1565496

I. INTRODUCTION (1) The PD is am-type unipolar heterostructural diode.
It does not contain any acceptor-doped regions nor any
Tunnel injection transit-time oscillator diodes have beeny.type contacts. The TD is a typical" n -type diode®=®
suggesteli® as the highest-speed transit-time devices in- ~ (2) Electron injection into a transit space of the PD is

tended to dominate at the highest frequencies that are upzgji-eq by electron tunneling through a moderately high

reachable for ordinary IMPATT diodes. However, the pass'ngsquare heterobarrier. It takes place in moderately strong elec-

of time has showh® that up to now solid-state tunnel injec- ;. | (E<10°V/cm). In the TD, the analogous injection
tion oscillators have not justified these expectations and the) . . .
realized by interban@@enep tunneling. In the GaAs case

ield to IMPATT diodes in all the measurable frequency. . L :
?l;nges I I . au ylt requires electric fields that noticeably exceed ¥ftm

Here, we consider and substantiate theoretically a vet"-ind corresponding voltages across th? diode of .up o9V
sion of tunnel injection transit-time diodéSUNNETTS) that (3) The PD has a very short transit space W't_h a length
differ noticeably from the traditional ones. As the traditional | =50~ 100 nm. The material for this transit space is selected
version, which we use for comparison, we select one of théo Provide ballisticity or quasiballisticity for an electron
best GaAs TUNNETTS, which has been described in detail ifransported through this space at a velositg@® cm/s. In
Refs. 6—8. Below, we call this version the traditional diodethe TD, all the regions including the transit space are GaAs
(TD). The main peculiarities of the present diotfeD) in grown with low-lying electrorL andX valleys. Therefore, in

comparison with the TD are as follows. a relatively short transit space of the TD witk 300 nm,°-8
there is diffusive electron transport with a drift velocity
3Author to whom correspondence should be addressed. ~(1-2)x10" cm/s.

0021-8979/2003/93(9)/5435/12/$20.00 5435 © 2003 American Institute of Physics



5436 J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Gribnikov et al.

of I"-electron scattering into them. Let us list several such
T B materials: InP, IgsGaysAs (on an InP substrate
S INPy goShy 31 (0N an InAs substrajelnAs, and InSb. The first
! is the most attractive. In this case,valleys have the most
%@7 reliable separatiofl (¢, =0.6eV above thel-valley bot-
‘51@5/ tom). There are several other more optimistic estimates for
f £.:0.7,10.832, and 0.86 e¥? X valleys always lie higher
C in accordance with all the estimatéfor example'® &y

=0.96 eV). As the B barrier for the PD with the InP T space,
FIG. 1. Structure of the present tunnel injection transit-time digeB). one of the following materials can be usétl) Ing 5,Al 5 4gAS
C—a heavily doped cathode contact; B—a tunnel emitter heterostructur . - . ) .
barrier; T—a transit space; A—a heavily doped anode contact. aé”qy’ V_VhICh IS |somorph|c to InA2) AIASO~54SQ)-_46 alloy,
which is also isomorphic to InP and forms a higher heter-
obarrier.(3) Since the B barrier is supposed to be very thin,

Some elements of the proposed Riich as unipolarity it is possible to use tensile—stra}ineq(ml__xAs alloy with _
and a heterobarrier electron injectovere realized in the x<0.52(up to X= 0) as the'bamer matengl. Such a barrlgr
so-called HEBITT diod® (heterobarrier-injection transit- €@n be much higher and thinner than an isomorphic barrier.
time diode, but the selected parameters of the heterobarrier, AS @ material for the C contact that is much more
as well as a transit space that was too long, allowed thd®avily doped than the T space, we could use an
writers of Ref. 9 to reach only a 60 GHz oscillation limit.  Nos&Ga.4As alloy forming the conduction band offsét

Below, we describe a schematic sketch of the PD desigis= 91— 62=0.2€V (see Fig. 1 or any quaternary alloy
including possible semiconductor materials for its implemen{INP)(INo.53G&.4AS), -, that is also isomorphic to InP.

tation (Sec. 1). Then, we describe the theoretical model andSince the C contact is heavily doped, the B barrier can be
the dc regime(Sec. Il The central part of our article is reverse biased for small valuesain this case, an excessive

contained in Sec. IV, in which a linear theory of the interac-VOltage drop across this barrier occurs for a normal working

tion of an ultrahigh-frequency electric field with the electron "€9ime- _
current is stated and a negative conductance for terahertz and 't Would seem that the same material as used for the C

superterahertz frequencies is predicted. Section V is devotégPntact could be applied also for the A contact. But this is not
to a discussion followed by concluding remarks. the case since we need to avoid a return of reflected or back-

scattered high-energy electrons into the T space. The most
effective method to mitigate such behavior is to fabricate the
Il. DESIGN SKETCH A contact using a multivalley semiconductor with electton

We present a sketch of the PD design in Fig. 1. It should@nd (or) X valleys that have a much larger density of states

be implemented on the basis of four material regions; chan thel” valleys. The other method is to use a heavily

(cathode contact, C contac (anode contact, A contaciB dopgd superlgttlce asa materlgl for the A contact, which W|II

(tunnel heterobarrier, B barrierand T (transit space, T be discussed in Sec. V. To 'av0|c'i quantum electron reﬂechon,
space. The last is the most critical part of the device: heret’® T space/A contact junction should be sufficiently

electrons gain all their kinetic energy and transform a certair?M0thly graded. _ . _

part of this gained energy into energy of ultrahigh-frequency _1N€ maximum scattering rdfe' for T electrons in InP

— —~ 31 H
electric oscillations. We need to realize ballistic or quasibal-&t T=300K ande<e, has a valuey=1.8x 10"s™%. This

listic high-energy electron transport just in the T space. Al-Scattering is determined completely by the emission and ab-
though most of the dc voltage drops across the T space, tRP"Ption of polar optical phonons. Since such scattering is
electric current is controlled by the electric field in the thin B SMall @ngle and since the optical phonon energy is small in
barrier, across which only a small part of the voltage dropsCOmpParison to the mean electron enefmythe energy range
and which should be an effective current injectmgether 0-0.7 eV, th_elreal electron free-path timep must be much
with the C contadt The A contact also plays a very impor- larger thany™*. Therefore, we can write for the mean free
tant role. It must accept the high-energy ballistic electrondath
coming from the T space both without quantum-mechanical lep= Ve v, 1)
reflection and without backscattering. This is necessary be-
cause backscattered electrons can substantially change tiwhereVs is the saturated ballistic velocity, determined in a
transport characteristics of the ballistic device, transformindinear branch of thd'-electron dispersion relation. The satu-
the ballistic transport into a quasidiffusive one. Thereforerated ballistic velocity must be distinguished from the satu-
the anode contact A should not be a typical material systenrated drift velocity, which is determined by scattering pro-
Neither the C contact nor the A contact should absorb theesses. It is simple to check on the basis of a real dispersion
ultrahigh-frequency radiation emitted by the traveling elec-relationt?*#that in most of the above-indicated energy range
trons. the electron velocity is saturated. In INR=1.3x 1% cm/s
Restricting the list of materials for the T space to onlyand |gp=(1.3x10® cm/s)/(1.8<10*s 1)=70 nm. The
the zinc blend&\; B, structures, only the ones with In as the lengthl s limits the length of the ballistic T space where the
anion(that is, A, =In) are suitable since all the others have electron velocity is determined bys. If 1>Igp, for ex-
low-energy positioned. and (or) X valleys with a high rate ample,l<2lp, the electron transport can be considered as
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quasiballistic. Such electrons move in a sufficiently narrow  j=eV(p)n, (6)
beam of thek space with approximately the same quasibal-
listic velocity Vg, but this velocity is smaller thaxs. The the Newton law
small-angle character of the polar optical phonon scattering dp ap
together with a comparatively high electron concentration in g + V(P) 7, =€E @)
the T space promotes the development of such a picture. o )
Electron-electron collisions result in a certain combined ven€ electron current continuity equation
|0City VQB' (gj an

The other In-anion zinc blende semiconductdn&GaAs, X +eE =
INPSb, InAs, and InSbwhich are suitable as T-space mate-
rials have parameter sets that are still more favorable thaihe Poisson equation
InP. They have higher energies andey, higher velocities

. . JE
Vg, and smaller scattering rates It is probable that gp Kp— =en, 9)
>100 nm can be reached in them. These materials have nar- X
row band gaps, but we do not fear an avalanche breakdowghere «, is the dielectric constant in the T space, and the
since the T-space lengtitan always be selected shorter thanelectron dispersion relatiofin the I" valley)
the dead space size for the considered voltages. The unsolved
problem for these T-space materials is the material selection e=e(p), (10
for the A contact. This problem is one of the central problemsrom which we obtain the electron group veloci(p)
for the proposed devices and needs separate consideration=dg(p)/dp that appears in Eqg6) and (7). We have as-
sumed in Eq(9) that the T space does not contain any ion-

Ill. THEORETICAL MODEL FOR ELECTRON ized impurity concentration; that is, this concentration is ac-
TRANSPORT IN THE T SPACE tually small in comparison witm(x). In the stationary case

The proposed model is based on calculations of electrof? 7t=0), we havej=const, and Eqsi6)—(10) can be re-
concentratiom(x) and electron momentum(x) in the T ~ duced to the equation

0, ()

space (6<x<I). We assume that a B-barrier tunnel electron d2e(p)
injector atx=0 emits an electron beam with a small momen-  «,V(p) o —¢€j. (11
tum and energy spreddompared to the momentum and the dx

energy obtained as a result of electron transport across the T Multiplying both sides of Eq(11) by de(p)/dx and tak-
space. Therefore, we can consider this beam as monodirecrng into account thatls (p)/dx=V(p)(dp/dx)=eE, we ob-

tional and monokinetic. Together with(x) and p(x), We  t5in as a result of integration gnfrom 0 to p(eU)
calculate an electric fiel&(x). The right boundary of the T

space x=1) is assumed to be nonreflecting and nonscatter- ) o peV)  V(p)dp
ing. Concerning the left boundark€0), we assume that (2ej/xp) I=f0 [_I_—()]l/z
(1) the tunnel electron injector emits electrons with a small PPl
initial momentump(0)<p(l) and we can neglect this value, In Eg.(12), p(eV) is the electron momentum &t=1 [where
p(0)=0, and(2) this tunnel injector has been designed soe(p)=eU] and po(j) =e?E*(j) kp/2e]. Equation(12) gives
that the electric field at the left boundary of the T spaceus the stationaryJj characteristic of the T space with the
Eo=E(0), completely defines the emitted electron currentboundary conditions Eq4) andp(0)=0 atx=0 and for a
density: nonreflecting boundary at=1.
. Let us select in EQ.12) an isotropic form of the
J=lo(Eo)- @ T.electron dispersion relation:
In order to satisfy Eq(2), we actually need the voltage
drop across the B barriedg , to be negligible in comparison 2(p) =Vs(\Vps+p*~py), (13

with the voltage drop across the T spade~=U, whereUis  whereVy is the saturatedf-electron velocityps=mVs, and

(12

the total voltage across the device: mis the effective mass gi— 0. This selection allows us to
Ug<U;=U. (3y  transfer from the parabolic dispersion relation

Equation(2) can be inverted as &(p)=p?/2m (14)
Eo=E(x=0)=E(j), (4) justified for small momentum value$)¥< m2V§) to the lin-

ear law

and this dependence is actually independent oftithechar-

acteristic e(p)=Vs(p—mVs) (15
U=ug(j). (5)  for p>>m?V3.

Assuming that the distribution of ballistic or quasiballis-

Equation(4) [or (2)] togther with the cond|t_|orp(0)50 tic electrons in the T space is localized around some average
serve as boundary conditions for the equations that deter-

mine n(x), p(x), andE(x) in the T space. These equations electron, we can write
have the traditional quasiclassical form: e(p)=eU(x) (16)
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with p=p(x) whereU(x) is the potential in the plane of 60 ———
the T space relating to the B barrier, ap(k) is the average /
electron momentum in this plane. Then we can write 50| 3,’ J
3
/
e(u)=mV2u, p(u)=mVgyu(u+2), V(u) ;
40+ .
Ju(u+2) /
=Vg———— m Yu)=m Yu+1)3, 1 g ’
ST (W=m-*u+1) (17 <.l 7. _
and ™ /
20l 4 // 2 1
(w=revs” a (18 ’ i
x(u)=r ,
SVsS 0 [u1/2(u+2)1/2+Ag]1/2 10l /// 1
with /
=0 % 5 10 5 20
eE())7s
YA (199 !
and FIG. 2. dcUj characteristic§/js=F(u,) for T space in the case of the
space-charge limited current presented by &9 (curve 1, and by ap-
kpmVsg) 12 proximate formulag/js=4(u,— \2u,) (curve 2, j/js=(8/9)y2 u?’? (curve
TS= 26] (19b) 3), andj/js=4u, (curve 4.

Since the dependenge=j,(E,) in Eq. (2) describes an
exponentially sharp increase inwith an increase ingg
=E(0) for the actual area of values pandE, the behavior
of the function Ag=Ay(j) is defined mainly not by the

slowly increasing inverted functioB(j) but by the function Bu ) :
7(j) from Eq. (19b. Realistic actual values oA, are _ V24) nearing Eq.(23) for very largeu;. As is seen, the

around 1-3 and do not usually exceed(é6e below in Sec. last dependence is very far from the linear dependence pre-
IV C). sented by only the first component in the parentheses. A sub-

stantial deviation from the results of E(R1) occurs ifu,
Sit2-5, which is unreachable in the structures considered.

At large values ofA, (whenA3>1), Eq.(21) leads to
the approximate formula

— x(u) ’ ’ . ’ ’
0(U):7'Slfo dx /V(X ):fodu /B(U ) U(l):E(j)|+(j|2/2KDVS) (24)

=2{[u¥q(u+2)Y2+ A2]V2— A} (200  The first component on the right hand side of E2¢4) cor-
responds to a homogeneous electric fielck) =E(j) in the
whole T space. The second component takes into account the
contribution of the electron space charge. The role of this
charge increases with an increase in the lerigth the T

pendencej/js=(8y2)u?%9 [that is, Eq.(22) coinciding
with Eqg. (23) for u;<1] and the dependencgjs=4(u,

For a particular value of current densjta planex(u) in
the T space can be characterized by a dimensionless tran
time #(u) along with a dimensionless potentia(x):

with B(u)=uY3u+2)Yq u¥¥u+2)Y?+ A31¥%(u+1).
Considering the form of th&Jj characteristic defined by
Eq. (12) for the selected dispersion relatiobd) yields

" du space.

| = Tsvsf , (21) In the general case, the calculation of ti¢ character-

o [uYu+2)Y2+AG]? istic from Eq. (21) requires detailed knowledge &(j) in
where uj=eU(1)/mV2. If AZ=0 and eU(l)<m\2, Eq. Eg. (193. Calculation of such functions for specific B barri-
(21) leads to s 0 ers is very important but is not addressed in this article.

j=(819)(kp /1%)(el2m)¥2u31). (22)

This is the well-known Child-Langmuir law corresponding
to a parabolic electron dispersion relation and a space-char
limited current @2=0). If, as above,A3=0 but u,
=eU(I)/mV§ in EqQ. (21) is arbitrarily large, théJ| charac-

e
9v. HIGH-FREQUENCY ADMITTANCE OF THE T
SPACE (SMALL-SIGNAL APPROXIMATION )

teristic is described by the formula A. General formulas
oo 2 A small-signal high-frequency admittance can be calcu-
j/js:( fo du/Yu(u+2) (23)  J|ated after transition from the stationary valjep, andE to
the sumsj—j+j'(x)expiwt), p—p+p’(X)explwt), E
with an elliptic integral on the right hand side arjd = —E+E’exp(wt), wherew is the frequency of a small har-
=KDmV§/2eI2. The dependencg/js=F(u;) presented by monic signal, and the amplitudgs(x), p’(x), E'(x), etc.
Eq. (23 is shown in Fig. 2, where we can also see the desatisfy the system of equations
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j’=evn' +enm Y(p)p’, (25)  where
de’ | Ao+ 612
Ko gy — €N’ 200 s,(0)=Y,(u)= 0 5 >0 (378
" O(Ag+ 01D [ 1+ 62(Ay+ 014)2]
i
Ty Hiwen' =0, (27) S =Y.(W) AZ+3A36%(Ag+ 014)°+26%(Ag+ 014)°
= u)=
_ dp’ . dp 2 02(Ag+ 018)[ 1+ 6%(Ag+ 014)2]2
pr’-l—VW‘f'm (p)p’&ZEE', (28) (370

Equations(35) and (36) [or (33) and(34)] should be solved
with the boundary conditions a#=0 [or u=0; see Egs.
(313 and(31b)]

where V=V(p)=de(p)/dp and m~(p)=d?e(p)/dp? as
above. We can see from Eq26) and(27) that instead of the
electron current density’ (x) only the total current density

3= (0 +iwrpE' (X) (29 A(0)=0, ) 28
is constant thoughout the T space. By taking this condition, a0 = B(u)d—'[j =a(0)=(Qo+iQ) L (39
into account we obtain an equation that determipg): =0 u=0

d d d e2n where Qo=0g(MmVy/2ejkp)? The value of Qy(j) in-
(Vd—+iw (Vd_+iw+ m‘l(p)d— p'+—m (p)p’ creases comparatively rapidly with increasej iand E. As

X X X Kb shown below, this increase {y(j) can substantially control

el the frequency range of negative conductance.
D

This equation should be solved with boundary conditions aB. Space-charge limited case

x=0; they are The simplest case occurs when the tunnel emitter B bar-

p’(0)=0 (319  rier does not limit electron injection, and it is limited by only
the electron space charge. The&p=0 andog—, that is,
(dB/d#)| y—o=@(0)=0. In this space-charge limited case

S1(0)=2/0[ 1+ (012)*], S,(0)= 0212[ 1+ (6/2)*]. (40)

The second components in the square brackets in the de-
nominators ofS; 5(6) [Egs.(40)], which are equal tod/2)*,
are the result of nonparabolicity and should be excluded for
J'=(ogtiwkp)E’(0). (32 the parabolic limit <2) as well as the whole small com-
ponent—S,(6)B in Eqg. (36).

In the parabolic case, the desired solution of EGS)
and (36) can be presented in the form

B(O)=—Q 1+2ixy *+(1-2iy Hexp—ix)], (41

and
j"(0)=0gE'(0), (31b

where we introduce the “conductivity” of the tunnel emitter:
os=dj/dE|,—o. The boundary conditiori31b) can be re-
written in the form

Replacing in Eq(30) the independent variablewith the
new variableu=u(x), we can present this equation in the
form of two equations of the first degree:

d
B(u) g, T [B—a=0, (33  wherey=0Q4. It allows us to calculate the high-frequency
q electric field distribution in the T space:
B(u) g T et Ya(uwa—Yy(u)s-1=0, (34 E'(0)=—(\rs/Q)[i(1+2x 2)+2x YN1—ix ™)
whereB=p’'/\73, a=[B(u)d/du+iQ]8, Q=wrs, B(u) Xexp(—ix)] (42)
is defined at Eq(20), and the impedance of the T space:
Y1(u)=[uM(u+2)Y+ AT UM U+ 2) YU+ 1)2, Z=R+iX=Rg{2(1—cosy,) — xiSiny —i[ xi(1—cosy,)
and —2siny, + x%/6]}, (43)
2Ju(u+2) | 2 1 wherey,=Q6,= w(6mxkpl/ej)*3, 6,=6(u)=6(x=1), and
Ya(u)= Ao + : Ro=ej/ kZmo*
(u+1)* (U+1)*  u(u+2)(u+1)? o=ej/kpmo®. o
_ _ We can see that the active impedance comporient
A simpler and more convenient form of I_Ec{§3) and =Ry [2(1-cosy)—yxsiny] contains wide negative resis-
(34) appears as a result of transfer to the variad{le) [see  tance windows fory that are in the intervals (2,3),
Eq. (20)]: (47,57), and so on. Evidently, Benhdrfirst paid attention
d to this important result. There were several successful tries at
@HQ)B—a:O, (35 exciting high-frequency oscillations in the firéhe lowest

frequency of these windows. For example, oscillations with
the wavelength~11.5cm were generat&din vacuum di-
odes with thermionic electron emission.

dia+iﬂ)a+81(0)a—82(0),8—1=0, (36)
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161 T T T r ™

@ 1

2.1

FIG. 3. FunctionsQ?8;(x) (& and Q?B,(x) (b) for four values of the
normalized frequency)=w75:Q=0.37 (curve 1, 0.57 (curve 2, 1.0m

(curve 3, 3.0 (curve 4, and in the parabolic case whet= xy/Q)<2

(dashed curves)5

2

Note that in both the specific parabolic case and the o 4 8 12 16 20 24
more general nonparabolic cd$&g. (13)] when only the full
expressions fo6; ,(6) in Egs.(40) are valid, our Eqs(35) FIG. 4. Normalized conductand®G (a),(b) and susceptand®sB (c) plot-
and(36) do not include any additional parameters apart fromted againsyy,=Q 6, for different values off, :0.5 (curve 3, 1.0 (curve 3,
the frequencyf) since3(0)=0 anda(0)=0. Therefore, the 2.0(curve 3, 3.0(curve 4, 4.0(curve 5, 7.0(curve 6§, and 100.0curve 7.
desi f . (a) and (b) differ from each other only in scale.

esired solutiorB(#) depends only on the single parameter
Q. The functionsB1(x) =ReB(x) andB>(x) =ImB(x) mul-
tiplied by Q2 for convenience and calculated as a result of 6
the numerical solution of qu{_35) _and (36) [with S; 5(6) 1,(Q,6,; A01QO):f [a+BS(0)]
from Eqgs.(40)] are presented in Fig. 3 for several values of 0

Q). In the same Fig. 3see the dashed curvey Bve can see X 0(Ag+ 014)d /[ 1+ 02(Ag+ 014)%]Y2.

also the functionsB; 5(x) calculated according to Eq41)

for the parabolic limit §<2). The high-frequency current (46)

J' generates in the T space standing waves'ofE’, V', |n the case of the space-charge limited current under consid-

and p’ due to the boundary conditions &t=u(x)=6(u)  eration, we should use the simplified expressionsl| ¢#),)
=0. These standing waves are not sensitive to the lengith  and|,(€,6,) with A;=0, «(0)=0 (Qy=), B(0)=0, and
the T space because of the lack of both electron reflectioe;lyz( 6) described by Eqg40). Note that in this case there is
and an electron backscattering at the boundary T space/A very simple connection between and 6, in the form 6,
contact. =2[u,(u;+2)]¥* The calculated function®sG(x,) and
The calculated functiong(6) allow us to calculate the RsB(x)) where  x,=0Q6,, RSZIZIVSKDu G(x)
impedanceZ of the T space. In the most general case it isz(sz)/|z|2, andB(y) = — (ImZ)/|Z|? for several different
defined by the formula values of §, are shown in Fig. 4. Sincg,=Q6,= w7,
these plots are in fact the real and imaginary compo-
nents of admittance Z/ plotted against the frequency

2
= l_ IZ(ZQ_H') (44)  for different voltagesu; across the T space. It can be seen
Vskp 17(6)) that the productrsf, is determined byu, since 756,
= (kpmVg/2e])*22ui™(u;+2)"* and j=j(u)=jsF(u) is
where presented in Fig. 2. For small values of(u;<2) when

F(u)=(8v2)u?¥9, we can obtainrsf,=3l/V(2u,)?
that is, 756, increases with a decreaseun. Foru;>2, we

6 ; - PR S
1106 Ag) = f la(A0+ 0/4)d0/[1+ 02(A0+ 0/4)2]1/2, (45) obtain 7'59|=|/V5, andX|—QH|—wTSH| IS Independent of
0 the voltage.
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We can observe in Fig. 4 the above-mentioned negative  g(9)=[2Y2Ay(Qo+iQ)]exp —iQ6)1(2Y%A,0)
conductance windows, which are maximally wide for small
values off, (6,<2) and narrow with an increase i) for + fae’de’exp:iﬂ(e’—e)]
large values of), . Their narrowing and subsequent practical 0
disappearance is a result of the nonparabolicity of the elec- 128 ot 12
tron dispersion relation fo#=2. This is the evident disad- X[K1(Z7A00")11(277A00)
vantage for ballistic transit-time oscillators with space- —K4(2Y28,6)1,(2Y28,6")]. (50)

charge limited current. . ) )
The impedance of the T space is determined as above by Eq.

C. Tunnel emitter control case: Specific description (44), but in the case under consideratiore2 and 2\, we
o . _can substitutea+ 8S;=dB/d6+iQ B+ B/6 and substan-

As we know, the_f|n.|te resistance pf_a tunnel emitteriially simplify the integrands in Eqs45) and (46): (A,

controlled by an electric fiel&(x=0)=E(j) introduces two 018)[[ 1+ 62(Ag+ 0/4)2]1/2EA06/(1+Agaz)l/z_

additional parameter&, and(),. Specifically, parametek, Equation(50) demonstrates tha? () can be presented

substantially complicates Eq87a and(37b), which deter- i, the form of the sum of two components:

mine the functionsS, ,(6). These formulas can be notice-

ably simplified in the parabolic limit if, along with a strong

— n1 2
inequality <2, an additional condition is satisfiedd B(O)=BD(0)+B(0), (52)
<2A,. In this case, Eq94373 and(37b) lead to where B(Y)(6) is the second component on the right hand
side of Eq.(50) and 8?)(#) is the first one. The function
S, (6)=1/0, 479  B(0) is the solution of Egs(35 and (36) for «(0)

=B(0)=0 and B?)(#) is the additional component intro-
1 duced by a finite value ofa(0)=dg/d6|,—o=1/(Qp
S,(0)= EJFZA%' (47 +iQ). It is convenient to write

Substitution of expression@7a and (47b) into Egs. (35
and (36) leads to a differential equation for the function
Bo(6)=B(0)exp(Qo) in the form

BP(6)="B @(6)/(Qe+iQ), (52

where B ?)(4) is the solution of the same E¢&5) and(36)

but without the component 1 on the left hand side of Eq.

(36) and for the boundary conditiong ¥(0)=0 and
= 0%exp(i0 ), 48 2@0)=d B @/dg|,_o=1.

which is an inhomogeneous modified Bessel equatide

fundamental solution of Eq48) is

62(d?By/d6?) + 6(dBo/d6) — (2A56%+1) By

D. Tunnel emitter control case: General description

0)=CK(2Y2A,60)+ DI ,(2Y?A,6
Bol0) il o) il o) It is not difficult to make sure that the solution structure

in the form of Egs(51) and(52) occurs in the most general
case for arbitrary values o, 6,, andA,. Therefore, in the
general case, the impedaricean be expressed as the sum of

7]
+f 0'de’expiQ8)
0

X[K1(2Y%A060")11(21%A0) two components
—K1(21%A00)11(2%A00")], (49 " o
_ 1 . ‘01502 .
wherel ;(x) andK,(x) are the modified Bessel functiohs. Z=Z(0,05 Ao) + (Do +1Q) 725D, 6 Ag). - (53)
Using the boundary condition88) and(39), we can obtain The impedanceZz®=RM+iX@) is generated by the
C=0,D=2YAy(Qo+iQ), and componeniBM(6):

6
2 fo '[(dﬁ(”/d 0)+iQ Y+ BYS (0)]0(Ay+ 014)d6I[ 1+ 62(Ay+ 614)%]Y?
AR

, 54
Vso 13061 Ao) 59

and the impedancg®=R®)+i X2 is generated bya?)(6): to obtain the appropriate formula, we should replgE8(6) in
the integrand in Eq(54) by B?)(6). Then, the real componefand imaginary componen of the total impedanc&=R
+iX are determined by the following formulas:
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FIG. 5. FunctionsQ28{M(x) [(@,(c),()] and Q?8%(x) [(b),(d),(f)] for
four values of the normalized frequenfy= wr5:Q=0.37 (curve 1, 0.57
(curve 2, 1.0 (curve 3, 3.0r (curve 4, and for three values of parameter
Ay:Ay=0.1(a),(b), 1.0(c),(d), and 10.0(e),(f).

R=R®+(Q,R@P+Q X@)/(Q3+0?), (559
X=XO+(Qy XD - R®)/(Q5+Q3?). (55b)

The calculated components in Eqg55a and (55b) allow
us to calculate the components of the admitta@y,)
=(ReZ)/|z|? andB(x,) = — (ImZ)/|Z|2.

Gribnikov et al.

0 4 8 12 16 20 24
X

FIG. 6. FunctionsQ? B{?(x) [(a),(0),(e)] and Q2 B (x) [(b),(d),(f)] for
four values of the normalized frequenfy= wr5:Q=0.37 (curve 1, 0.57
(curve 2, 1.0 (curve 3, 3.0r (curve 4, and for three values of parameter
Ay:As=0 (a),(b), Ag=1.0(c),(d), andA,=10.0(e),(f).

nected with the decreasing coefficiel@g ) and S,(6) in
Eq. (36) as a result of an increase Ay . Equationg35) and
(36) almost completely lose dependence Ay and can be
reduced to the equation

(d/do+iQ)?B—1=0. (56)

The real and imaginary components of the functionThis equation has for(0)=dg/d§|,—,=0 and 8(0)=0

BY(6) are shown in Fig. 5 foA,=0.1, 1, and 10 and for
the same values d® as in Fig. 3 forA;=0. We can see an

the solution B(x)=pB1(x)+iBz(x) with B;0%=—(1
—cosy—yxsiny) and B,0%= —(siny—xcosy), which is in

evident tendency of the curves to merge with one another gjood agreement with the curves in Figch As above,x

Ao=1 and become the same Aj=10. The latter is con-

=06.
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FIG. 7. Conductanc6 (a) and susceptand® (b) plotted against frequency

f for different values of) [ o= (curve 1), 10.0(curve 2, 3.0(curve 3,

1.0 (curve 4, 0.3 (curve 9, and O (curve 6] at the current density
=10* A/cm?. The inset in(b) demonstrates the appearance of different val-
ues of), at the same value k.

The real and imaginary components of the functions
B?)(6) are shown in Fig. 6 for the same values of the nor-
malized frequency) and forAy,=0, 1.0, and 10. Contrary to

the functionsQ28M)(6), the functionsQ? B3 (6) do not

f(THz)
Q__10 20 730 40
0.8

50 60
1 rT]

0 5 10 30
X4= 4
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T T T T
13
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FIG. 8. Conductancé (a) and susceptand® (b) plotted against frequency
f for different values of), [ Qy=c (curve 1), 10.0(curve 2, 3.0(curve 3,
1.0 (curve 4, 0.3 (curve 9, and O (curve 6] at the current density

=10° Alcm?.
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FIG. 9. Conductanc& plotted against frequendyfor different values of
Q4 [Qg=0 (curve 1, 10.0(curve 2, 3.0(curve 3, 1.0(curve 4, 0.3(curve
5), and O (curve 6] at the current densityj=10"A/cm? (@), 5

X 10* Alem? (b), 10° Alem? (c), 2X 10° Alcm? (d), and 16 A/cm? (e).

become closer to each other for laryg; some of them even
diverge. Such behavior is connected with an effect of the
boundary conditiona(?(0)=d 8®/d6|,_o=1. The solu-
tions of the equationd/d@+iQ)28=0 with this boundary
condition areB;Q%=Q ycosy and B,0°= — Q ysiny. They
are proportional td).

In Figs. 7-10, we compare the real and imaginary ad-
mittance component&(y,) andB(x;), x;=Q86,, for sev-
eral sets of parameters of the T space and the tunnel emitter.
All of these parameters are chosen for the single selected T
space with length =0.7x 10" °cm=70nm and with mate-
rial parameters that are appropriate to InRi=0.75
X 10 28g, kp=12.4/4r=1, Vg=1.3x10P cm/s, Rg=3.46
X107 Q cm?, andU(1)=0.6 V. The value oW is selected
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f(THz) value of E(0)=E(j). As a result, we can calculat&(j)
2 3 10 15 =eErg(j)/mVs [see Eq. (193] and 6,(j)=2{[u*¥y,
50} (a) 15 +2)Y2+ AZ1Y2— Ay} [see Eq(20)].
Ng For calculations ofG(x;) andB(x;), we also need to
Q 110G select the value of),, which can be different for the same
o"25) 3 = A,. Note that the parametefg,=eE(j) (xp/2ejmVs) ¥ and
4 105 & Qo=dj/dE|,_o(mVg/2ejkp)Y? have the same origin and
5 10 5 are determined mainly by the tunnel emitter properties. In
0.0 ' ; 0.0 this article, we do not investigate their interrelations and con-
5.0f (b) 15 sider them as self-consistent independent parameters. In real
2 Ng samples, different values &1, for the sameA, or different
S 1noG values ofA, for the same(}, can be provided both by the
~"25 4 = selection of materials for the B barriers and C contacts and
5 055 by the selection of the B-barrier form and thickness. For
example, we demonstrate in Fig.(See the insetthree pos-
0.0 P i 1200 sible functiong (E) crossing each other at the same point. At
50 (©) o this point, they have the same valueg,d, andA,. But the
£ values of() for these three cases are substantially different.
) Tea We have calculate®(x,) andB(y;) for five values of]
a25r 4 = (=10%, 5x10% 1P, 2x10°, and 16 A/cm?, as we saw
5 109 above, the last value is really invalid and considered to show

the trend and for comparispnand six values of(Q),

0.0 5 10 15 oo )
' ‘ ' (==, 10, 3,1,0.3,and 0). Five values & (=8.22, 3.68,
5.0¢ @ 5~ 2.60,1.84,and0.82) and five values of, (=0.175,
?, 0.384,0.53,0.717,and 1.279) correspond to the above-
q JRUS mentioned five values gf respectively. All the results ob-
257 4 % tained are presented in Figs. 7—10. We see that the pictures
g ° Pom presented in these figures are similar to each other and have
00 5 10 15 200, some characteri_stic peculiar.ities. _
' (e) ' _1'5 (1) There exist regular windows of negative conductance
501 e for all the considered values pfand Q. At Qo=c, these
I} 0§ windows are situated in thg, sections((2k—1/2), (2k
_ S +1/2)m), k=1, 2, 3,....They shift to the low-frequency
251 4 _05:/ side with a decrease ifl,. At );=0, the negative conduc-
5 o8 tance windows are approximately situated in the same sec-
0.0 0.0 tions where the positive conductance window$)gt=c are

o
N
»
ot
o)
N
o

placed.

(2) At Qy=0, the lowest-frequency negative conduc-
FIG. 10. Susceptand® plotted against frequendyfor different values of tance window has the left boundary)gt=0. This means that
Q4 [Qo=2 (curve 3, 10.0(curve 2, 3.0(curve 3, 1.0(curve 4, 0.3(curve  We can reach very low-frequency oscillatory regimes if we
5, and 0 (curve 6] at the current densityj =10° A/szz @, 5  are able to implement the required small value€)gf
X10° Alem” (b), 16° Alem? (<), 2 10° Alem” (d), and 16 Alem” (@) (3) The maximum negative conductance for small values
of Q) is reached in the first window ag = x, y=. It de-

in accordance with the data extracted from Ref. 12. Théréases with an increase in The real frequency value

value ofeU(l) is chosen to be equal to thevalley bottom 1S fm=ww/2m=Qy/2m7s=y\m/2m 756 =1/2756~5 THZ
energy in InP. since the products(j) 6,(j) weakly depends on thevalue.

This set of parameters allows us to calculate the normalFor large(l,, both the frequencyy and the negative con-
ized value of the voltage across the T spaag, ductanceGy=G(fy) increase, andfy=10THz at (),
=eU(I)/mV§=O.76, the average value of the electric field — .
in the T spaceE=0.86x 10° V/cm, the characteristic cur- (4) The relation|G|/B cannot be larger than 0.25-0.3 in
rent density in Eq. (23, js=kpmV¥2el?’=1.14 the first negative conductance window and becomes much
x 10° A/lcm?, and the value ofs(j) for any selected value smaller for the higher-frequency negative conductance win-
of j. If these selecteflare noticeably smaller than the value dows k>1).

0.83 5 defined by Eq.(23) for the above-mentioned) In Figs. 7-10, we have plotted both normalized values
=0.76, we are dealing with the tunnel emitter current limi- (y, =0 6,, RG, andRsB) and the same values in their
tation and can us&=0.86x 10°V/cm as an approximate “natural” units [f (THz), G (1/Q cm?), andB (1/Q cn?)].

X =42
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V. DISCUSSION simplest solution to this problem is to use a heavily doped
multivalley semiconductor as the material for the A contact.

In this article, we considered first the small-signal theorySince the densities of states in thandX valleys usually are
of a semiconductor heterostructural transit-time oscillatormuch higher than the density of states in Thevalley, the
with ballistic (or quasiballisti¢ electron transport in the T energy scattering process across these valleys with the par-
space. We started with the simplest case when a current iicipation of both intravalley and intervalley phonons is
the T space is limited only by the electron space charge anchuch more intense than only across thealley. In addition,

a conventional nonparabolic dispersion relatisee Eq. L andX electrons cannot go directly fromandX valleys in
(13)] characterizes the electrons. Generally speaking, we exthe A contact to the T space where these valleys are emphati-
pect that this nonparabolicity will lead to the elimination of cally absent in the energy range considered.

the negative conductance windows. But we noticed that such  Unfortunately, InP and other materials that can be used
elimination takes place for very high values of the voltagein the T space have no ideal multivalley isomorphic counter-
u,=eU|/mV§. For moderate values af, (~3—6), which  parts to use for the A contacts. For such a role, an alloy
are the only ones possible in realistic material systems, thissomorphic to InP such as GafsSh, s (see Ref. 18 or,
negative conductance windows can be successfully realizethaybe, GapssShy g5, is most suitable for the InP T space,
and oscillators based on such regimes are possible. Note thayd an alloy such as GajsSh) o> is most suitable for the

in comparison with vacuum diodes, not only much simplerinP; goShy 31 T Space.

designs and more effective electron emission mechanisms One more method to use noncentral valleys is based on
but also substantially smaller electron effective masses chastrain-balanced superlatticéSL's). Such SL's should in-
acterize semiconductor transit-time devices. clude quantum wells, which contain noncentral valleys in the

On the basis of the space-charge limited regimes considiecessary energy range. For example, the InP/InAs hetero-
ered, we turned to the case of the tunnel electron emissiojinction has a very large conduction band off$€0.75 eV).
limited current. We assumed that the voltage drops mainly-or such energied, valleys exist in InAs. This means that
across the T space and the emission current is controlled Bye can hope to reach the necessary effect by using a heavily
the electric field value on the T-space side in the boundary Bloped strain-balanced GaAs/InAs SL as the A-contact mate-
barrier/T space. We did not consider in detail the tunnel curfial. One of the versions of the TUNNETT considered can be
rent characteristicg(E(0)) and assumed only that the char- obtained fors,=0, that is, 5,= J; (see Fig. 1 and the B
acteristics are known and we can calculate the introducebarrier does not exist. In this case, the triangle barrier formed
parametersh, and),, which depend on the direct current at the left edge of the T space serves as the tunnel barrier and
densityj and are determined bi(j) anddj/dE|,_o, re- the dependence=jo(E,) can be presented by the classic
spectively. Of course, such a description does not allow us tfowler-Nordheim formul&
calculate the detailet character?stics. But it has a]lowec! i/jn=(E/Ey)2 exf — Ey/E),
us to show that the correct selection of a tunnel emitter with
an appropriateE(j) dependence can substantially increaseéVhereéJy andEy are parameters that depend on the electron
the negative conductance of the T space for moderate arffféctive masses in the C contact and T space and alse on
high values ofu, . anq Oy T'he depgndencE(J) in Eq. (199 can be obtained

All of the above-stated results were obtained assuming &Y inversion of this formula.
nonreflecting and nonbackscattering T space/A contact
boundary ak=1. This boundary should absorb the hot elec-
trons coming from the T space entirely. Such a requiremen
is not unique for ballistic systems, which always need to ~ We have shown in this article that transit-time diodes
have similar collector boundaries. The specificity is in thewith ballistic electron transport in the T space are interesting
very high energy of the arriving electrons (6.8.6eV), as possible oscillators for the terahertz range. For a success-
which cannot dissipate in a short time. Therefore, these hdul implementation of such oscillators, several additional
electrons, after scattering their momentum, have a realistiproblems need to be addressed.
probability of coming back into the T space. We can imagine (1) To obtain explicit expressions for the parameters
two simple methods to avoid this situation. Ao(j) andQq(j) introduced in this article, which depend on

(1) The first method is to form a metallic contact with a the dc current density directly and the fieldE(x=0)
well-extended Fermi surface directly behind the T space/A=E(j), we need a correct theory of tunnel emitters with a
contact boundary in order that the hot electrons transfer theuetailed description of both C contact and B barrier.
energy to the Fermi electrons. This situation is analogous to  (2) To provide nonreflecting and nonbackscattering A
the situation in a metallic anode of a vacuum-tube device. Itontacts, we need to develop a more detailed A-contact de-
might be acceptable for single-transit-space oscillators, but isign and a more detailed theoretical description of these con-
unsuitable for cascading oscillators. tacts.

(2) In cascading oscillators, which are necessary to ob- (3) To solve the cascading oscillator problem, we need a
tain higher power and higher efficiency, each of the neximore detailed design of the intermediate A-C contacts.
C/BI/T/A cells should be grown over the previous C/B/T/A In the next stages, we need to develop a nonlinear de-
cells. This means that the A contact must be a semiconductacription of the oscillatory regimes and a theory of oscillator
and appropriate for the next growth of the C contact, etc. Theliodes in realistic resonators.

I. CONCLUDING REMARKS
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