EFFECT OF IRRADIATION ON HOLE LIFETIME

The change in lifetime for a given change in charge
carrier concentration is much larger for neutron than
for 4 irradiation. Hall effect measurements at 77°K
following irradiation at near 300°K indicate a removal
rate of 2.5% 1072 electron per incident photon in these
measurements. Since the position of the various defect
levels is expected to be essentially the same for either
neutron or y-ray exposures, the analysis for recombina-
tion above the middle of the gap leads to a hole capture
cross section o,=35X1071 cm?, This value is nearly an
order of magnitude less than the value obtained for
neutron irradiation. Although the reason for the large
difference is not clearly understood, this may be
associated with the difference in the defect distribution
for the two types of radiation. A large variation in local
defect concentration is expected in the vicinity of the
primary neutron collision while the defect distribution
after y-ray irradiation should be uniform. It seems
reasonable, therefore, that the neutron produced
effective capture cross sections would be larger because
the region of recombination is more perturbed, allowing
transitions to occur with greater ease.
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Consideration of the recombination center above
the middle of the forbidden energy gap (~0.23 ev below
the conduction band) accounts reasonably well for the
experimental results. However, the analysis given here
does not rule out the alternative situation. If the low-
lying state S is associated with a vacancy then appreci-
able recombination may be taking place at this level.
Annealing studies, measurements on p-type material,
and studies of lifetime as a function of temperature are
underway and are expected to throw more light on the
problem of recombination in irradiated germanium.

In summary, the minority carrier lifetime in »-type
germanium is extremely sensitive to irradiation by fast
neutrons and vy rays. This fact is of great importance
to those who desire to use semiconductor devices in the
presence of radiation. The simple dependence of the
recombination rate upon irradiation received permits
a prediction of the expected decrease in lifetime in a
known radiation field. For the same change in carrier
concentration, the change in lifetime produced by
« irradiation is much smaller than that produced by fast
neutrons.
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Homogeneous turbulence in which (1?)={(w?) # (4?) was produced experimentally, where {?), (), and
{(w?) are the mean-square turbulent velocities in «, y, and s direction, respectively. The decay of turbulence
and the energy transfer between (#?) and ((s®)+{(#?)) were measured, and it was found that the larger com-
ponents ((?) and (?)) are losing more energy due to viscosity than by transfer to the smaller component
({(u®)). However, (#?) is receiving enough energy by transfer to compensate for its decay and is in fact
slowly increasing. The measurement of mean-square vorticity components shows that the turbulence is
becoming locally isotropic at a faster rate than the equipartition of energy is taking place.

In another set of experiments it was found that when approximately isotropic turbulence is subjected to de-
formation, the three components of turbulent energy become widely different in magnitude and that the tur-
bulence is not locally isotropic. This indicates that even at high Reynolds number the deformation in a shear
flow may cause anisotropy. The data on the turbulent shear flow near a solid wall confirm this conjecture.

The connection of this investigation to turbulent flows in general is discussed. In particular, it follows
that neither the turbulent energy nor the small-scale structure of turbulence rapidly settles down statistically

to quasi-equilibrium.

1. INTRODUCTION

HE motion of an incompressible viscous fluid is

governed by the Navier-Stokes equations. In
principle these equations may be solved, although in
practice this may prove to be a formidable task. In the
case of turbulent motion we are not interested in
detailed motion, but only in certain statistical averages
of the motion. Accordingly, we take the appropriate
averages of the equations. Irrespective of the particular
averages and the mode of taking these averages, the
averaged equations become indeterminate; that is, we

have more unknowns than the equations relating them.
We must complement these equations by one or more
hypotheses relating the unknowns. In the case of homo-
geneous turbulence the proper average to consider is
the energy spectrum or its Fourier transform, the cor-
relation of velocities at two points. Using the equations
of motion von Kdrmén and Howarth derived an equa-
tion governing this correlation. The equation involves
a triple velocity correlation which is unknown. There
are two types of hypotheses which are used to comple-
ment this averaged equation of motion.
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The first type was put forward by Millionshtchikov.!
From the equation of motion he derived a governing
equation for triple correlation. The equation involves
yet another unknown, the quadruple velocity correla-
tion. The above two equations involve three unknowns
and in order to make the system determinate Million-
shtchikov postulated a relation between quadruple and
double velocity correlations. The equations are now
determinate and may be solved. There are some errors
in Millionshtchikov’s work. Recently Proudman and
Reid? and Chandrasekhar® have done work along these
lines. The present author* has measured most of the
quadruple correlations and these satisfy Million-
shtchikov’s hypothesis. However, it is the differences
among the quadruple correlations which enter in the
final averaged equations of motion and these differences
have not been measured with any accuracy which would
justify the use of the hypothesis without any reservation.

The second type of hypothesis is based on a physical
picture of turbulence. According to Kolmogoroff,® at
sufficiently high Reynolds number the turbulence is
made up of a hierarchy of eddies. Itisassumed that there
is a transfer of energy from larger to smaller eddies, in
the same way as the transfer of energy from the mean
to the turbulent motion in a shear flow. The large scale
eddies dissipate little energy by viscosity and pass on
most of it to eddies of next smaller scale, and so on to
the smallest scale eddies which are responsible for most
of the viscous dissipation. Various investigators® have
given expressions for the energy transfer based on this
cascade process. This amounts to postulating a relation
between triple and double velocity correlations.

If this picture is correct and if we deform a fluid in
isotropic turbulent motion then it should become
rapidly isotropic once the deformation has ceased. It is
also a natural consequence of the cascade process that
small eddies in a shear flow are locally isotropic. We have
conducted experiments which throw some light on the
mechanism of turbulence and afford a check on some
of these predictions.

Before discussing the experiments, it is appropriate
to make a few remarks of general nature. The first type
of approach to the turbulence problem is quite anal-
ogous to that used in nonequilibrium statistical me-
chanics.” We start out with a determinate system of
of equations for N particles and by appropriately
averaging these equations we get a set of equations.
The first equation relates the probability of finding two
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particles with specified positions and momenta with
the probability of finding three particles. The second
equation relates the probability of finding three
particles with that of finding four particles. It is clear
that this is as far as we can go with the use of equations
of motions and the probability theory. In order to solve
an actual problem it is necessary to terminate the series
of equations at some point and to make the truncated
set of equations determinate by postulating a relation
between the probability involving # particles with that
involving (n-+1) particles. In the two cases of kinetic
theories of gases and liquids, it has been possible to find
hypotheses which are supposedly valid quite generally.
On the other hand, we require one hypothesis for iso-
tropic turbulence, another for shear flow near a wall,
still another for free turbulent flows. Our understanding
of the mechanics of turbulent flow is so meager that we
cannot cover all types of turbulent flow with a single
hypothesis. In the case of turbulence merely setting up
equations involving correlations offers no difficulty and
the procedure may be easily extended to compressible
gases, conducting gases, etc. Hopf® has made an un-
successful effort to obtain a determinate system by
using the equation of motion and functional calculus.
He derives a governing equation for the characteristic
functional or the Fourier transform of the phase dis-
tribution which is completely equivalent to an infinite
system of partial differential equations expressing
n-velocity correlation in terms of (n-+1)-velocity cor-
relation. In effect Hopf’s procedure is quite similar to
that of Millionshtchikov and Chandrasekhar. It
appears that even the most advanced methods of
functional calculus and stochastic processes cannot
make the averaged equations determinate. Actually, we
should not expect the averaged equations to be deter-
minate. We declare our ignorance of the detailed motion
by averaging the equations and this lack of information
has to be made up by one or more hypotheses about
the properties of average motion. Most profitable
research in turbulence will involve theoretical and
experimental work on the mechanics of turbulence
which will in the end lead to one or more hypotheses
making the system of equations determinate.

II. EQUIPARTITION OF TURBULENT ENERGY

Approximately homogeneous and isotropic turbulence
was produced by placing a square mesh grid in a uniform
flow. This turbulence is passed through a 4:1 axisym-
metric contraction followed by a duct of constant cross
section. Schematic diagram of the arrangement is shown
in Fig. 1. Measurements show that after the contraction
the turbulent field is statistically homogeneous and
()= (w?)> (u?), where u is the turbulent velocity com-
ponent along the mean flow or the contraction axis
and v and w are the components perpendicular to it.

Angular parentheses ( ) denote an average. The degree

8 E. Hopf, J. Rational Mech. Anal. 1, 87 (1952).
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of anistropy or the ratio (*)/(u?) depends on the amount
of contraction. The work on the effect of contraction on
free-stream turbulence is discussed elsewhere.? Here
we are not interested in this effect and we can regard
the grid and the contraction as a method of producing
homogeneous anisotropic turbulence. An insight of the
mechanism of turbulent motion can be gained by the
study of partition of turbulent energy among the three
velocity components. Measurements of turbulent
velocity fluctuations in the uniform section after the
contraction are shown in Fig. 2. (+?), the larger com-
ponent, is losing energy by transfer to (#*) and viscosity.
{u?), the smaller component, is gaining an equal amount
of energy from (#?) and (w?) and is losing some due to
viscosity. In the beginning the gain of (#?) is enough to
compensate for its decay and in fact it is slowly in-
creasing, After a while the transfer cannot keep up
with decay and (4*) decreases with time. In the absence
of transfer from (»*) and (¥?), (#*) would decrease
rapidly with time. Since there is no production of
energy the total energy (u?)-+2(+?) is decreasing due to
viscosity alone. Approximately one third of the energy

TURBULENCE GENERATING GRID

Fic. 1. Schematic diagram of the experimental arrangement.
The grid Reynolds number (MU /4)/v=210,000.

is left by the time {#?) and (2*) become nearly equal.
The time required for equipartition is of the same order
as the decay time; the latter is, of course, the natural
time scale for our problem.

The equations governing the decay and transfer may
be easily derived from the equations of motion?

These are
WHEE))

(xam) (decay)
a{v®)
=X XG)) @
(transfer) (decay)

where 8/ds is the gradient in the direction making
equal angles with all three axes, p, p, and » are the
pressure, density, and kinematic viscosity, respectively.
(@®), (*), and ((0u/ds)*) were measured at various
distances downstream from the contraction and other

% M. S. Uberoi, J. Aeronaut. Sci. 23, 754 (1956).
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F16. 2. Velocity fluctuations in axisymmetric turbulence.

quantities were calculated from Eqs. (1) and (2). The
distance downstream from the grid is proportional to
time, x=U{, since the mean velocity, U, is uniform.
The measured values for the ratios

/Ay e Ly /A(Z))

are shown in Fig. 3. Both of these ratios are less than
unity except in early stages; that is, energy transfer
is a small part of viscous loss. Townsend!® has noted
the weak tendency to isotropy although he did not
measure the rate of energy transfer.

III. LOCAL ISOTROPY IN HOMOGENEOUS
TURBULENCE

It is of interest to see if the small-scale motion is
becoming isotropic at a faster rate than the rate of
equipartition of energy. The velocity derivatives are
mainly determined by small-scale motion and for local
isotropy the ratios of their mean squares have a definite
value, as in the case of isotropic turbulence. The value
for the most commonly measured ratio
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Fi16. 3. Energy transfer in axisymmetric turbulence,

W A, A, Townsend, Quart. J. Mech. Appl. Math. 7, 104 (1954).
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Fi1c. 4. Local isotropy in axisymmetric turbulence.

is 2. Determination of this single ratio cannot provide
conclusive evidence for local isotropy. Local isotropy
requires that vorticity be isotropic even though the
over-all velocity field is anisotropic. In the present case
of homogeneous turbulence, the decay of total energy
is directly proportional to mean-square vorticity,

d
E((uz)'l-iz(v?)) =2 (()+2(r"), )

where (#2) and {(5?) are the mean-square vorticities in
x and y directions, respectively. Furthermore, in the
special case of homogeneous axisymmetric turbulence
it may be shown that (see Appendix)

3770\ 1 du\* Iv\?2
=G G IED) o

2 M\ ds 2 ox 0%
These equations are useful since they express the
vorticity in terms of easily and accurately measurable
quantities. All mean square derivatives appearing in
the last two equations have been measured and the
ratios (£2)/(s*) and {#*)/(u?) are shown in Fig. 4. The
results show that in the beginning the turbulence is not
locally isotropic but becomes so at a somewhat faster
rate than therate of equipartition of energy. Townsend’s
conjecture that even highly anisotropic turbulence is
locally isotropic is not borne out.

IV. LOCAL ISOTROPY IN SHEAR FLOWS

If we picture the energy transfer from large-scale
to small-scale motion as a cascade process, then at high
Reynolds number there are enough of these cascades
so that the small-scale motion is not influenced by the
anisotropy of the over-all flow. Turbulence should be
locally isotropic in a shear flow or in the presence of
rate of deformation of the fluid. This prediction was
checked by measuring the ratio

(GG
ox dox
on the axis of the contraction used to produce aniso-

tropic turbulence (see Fig. 1). This ratio has a value of
two for local isotropy. Measurements of this ratio are
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shown in Fig. 5. Deviations from the value two show
that the turbulence is locally anisotropic in the presence
of rate of deformation of the fluid. This conjecture has
also been put forward by Townsend.® In view of this,
one has serious doubt that the turbulence is locally
isotropic in shear flows. The crucial test for local isotropy
is provided by measuring the mean-square vorticity
in the direction of the principal axes of the rate of de-
formation. For local anisotropy the vorticity should be
highest in the direction in which the fluid is being
stretched and lowest in the direction of contraction.
These directions are at £45° to the mean flow for
parallel or nearly parallel flows (channel, boundary
layer, etc.). Measurement of the ratio of mean-square
vorticities in the above two directions were made in
the boundary layer on the wall of a fourteen-inch
square duct. The location at which measurements were
made is not far enough downstream from the duct
entrance for the flow to become independent of x, but
is of no consequence here. Measurements are shown
in Fig. 6 where {(w?) and {ws?) are the mean-square
vorticities in the directions of the principal axes of the
rate of deformation. Near the wall the turbulence is
locally anisotropic; the mean-square vorticity is larger
in the direction of rate of elongation and smaller in the
direction of rate of contraction. Towards the center
the rate of deformation decreases and the ratio tends
to unity, that is, the turbulence becomes locally
isotropic. Six hot-wire anemometers, suitably grouped
together, had to be used for these measurements so
the absolute accuracy is rather low, but the trend can
be trusted. The ratio of vorticities has a value of 1.3
near the wall, but this value is of no significance. It is
greater than unity near the wall and tends to unity in
the center where the shear disappears. One might say
that the turbulence is at least locally isotropic in the
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F16. 5. Effect of 4:1 contraction on local isotropy.
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center of the channel. But in a shear flow the region
of high rate of deformation is of prime importance,
since it is here that maximum production and dissipa-
tion of energy is taking place. Recently Sandborn and
Braun! also concluded that there is no evidence for
local isotropy in the turbulent boundary layer.

The rate of deformation due to mean motion increases
the vorticity in a preferred direction while the deforma-
tion due to turbulence increases the vorticity more or
less equally in all directions. The degree of anisotropy
produced is determined by the ratio

au

2/ KGN
5 = G

are the representative velocity gradients due to mean
motion and turbulence, respectively. According to the
general argument based on the cascade process it is
claimed that all turbulent flows become locally isotropic
at sufficiently high Reynolds number, that is the above
ratio tends to zero. However, it can be shown that in the
important region of high-energy production this ratio
in some cases tends to a constant value independent of
Reynolds number while in others it tends to zero with
increasing Reynolds number. We illustrate this by
considering two typical flows.

In the case of boundary layer and channel flows most
of the production and dissipation of energy take place
near the wall. In this region all the properties of tur-
bulence depend only on the local shear which is approxi-
mately equal to the shear at the wall. The production
and the dissipation of energy are nearly in balance,
that is,

()
() (52

(dissipation)

du  Jw\? dv  du\?
GG o
dz  Ox dx dy
All terms in the dissipation function are of the same
order of magnitude and we may replace the function

by a representative velocity gradient squared, say
¢{(du/dy)?) where ¢ is a constant. The Reynolds stress

where

V. A. Sandborn and W. H. Braun, Natl. Advisory Comm,
Aeronautic. Tech. Notes No. 3761 (1956).
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F1G. 6. Effect of rate of deformation on local
isotropy in a shear flow.

may be replaced by 7o, the shear at the wall. Thus

To U du\?
LG
p Oy oy
It is an experimental fact that U/(ro/p)}=F(y*) where
y*=1y(7¢/pr?)? is the nondimensional distance from the

wall and F is a universal function independent of
Reynolds number. It follows that

(6)

aUu
(ro/pr)F'=—. )
dy
Substituting for 7 in Eq. (6) we get
aUu du\H
— — =[cF (y%)TH. 8
ay [<(ay) >] LeF ()] ®

Since the region of high production and dissipation of
energy depends on y* and not on v, therefore we want
to study the ratio

144 [<(au)2>]%

oy 9y

at a fixed value of y* instead of y. The above equation

shows that the ratio has a constant value independent

of Reynolds number. It has been experimentally shown

that the turbulence is locally anisotropic and the above

analysis shows that it will be so at all Reynolds numbers.
The situation is quite different for free turbulence,

say a jet issuing into open air. Consider the energy
equation

U
- (uv)g— = dissipation+diffusion+-convection,

9

where y is the distance from the jet axis. The value of
these terms depends on the location but at a fixed
position their ratios do not change with Reynolds
number and we may take ((du/dy)?) as representative
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of all three terms on the right side of the above equa-

tion, that is
ou
_ (uv)—— vcl<( ) >

where ¢; is a constant. It is an experimental fact that
—(uv)=coU? and aU/dy=¢3U/D or

(10)

C2 U
—{uy)y=—UD—,
C3 ay
where D is the half-width of the jet and ¢s and ¢; are

functions of position but are independent of Reynolds
number. Substituting this result in the above equation,

we have
AN L 7R cics \?}
KEN-CH) -C=)- o
dy cUD ¢ Re
The ratio tends to zero as UD/v=Re, the jet Reynolds
number, increases to infinity.

V. CONCLUDING REMARKS

The study of homogeneous and anisotropic turbulence
shows that neither the small-scale nor the large-scale
motion become isotropic in a time appreciably smaller
than the time required for the decay of total energy.
In homogeneous as well as shear flow turbulence the
energy containing eddies are more or less permanent
and their influence is felt directly by the small eddies.
This implies that hierarchy of eddies or the number of
cascades is quite limited. It is true that the entire
motion may be divided into two scales of motion; the
large, energy containing, eddies and small eddies which
dissipate the energy by direct action of viscosity. There
are not many intermediate sizes of eddies which are
required if (a) the small-scale motion is to be locally
isotropic or independent of large-scale motion; (b)
there is to exist at sufficiently high Reynolds number
an ‘‘inertial” subrange of eddies which is affected
neither by viscosity nor by the large-scale motion. The
increase in Reynolds number is expected to increase the
range of intermediate sizes of eddies provided the size of
large-scale eddies is kept fixed. However, it can happen
that with increase in Reynolds number both the large
and the small eddies decrease in size, their ratio re-
maining the same with no increase in the range of inter-
mediate size eddies. This is the case for the boundary
layer. In other words, whether a particular turbulent
flow becomes locally isotropic or not at large or infinite
Reynolds number depends on the ratio of the rate of
deformation due to mean motion to that due to tur-
bulence. If the ratio is small, that is, the rate of deforma-
tion of the fluid by the mean motion is high, then
turbulence is not locally isotropic.
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VII. APPENDIX

The mean-squared vorticities in y and 2 directions
are numerically equal; therefore,

z<n2>=<(g_ﬂ)> <(%—%)>
(NN
{ENHEN-E

In a homogeneous turbulence
<6u aw> <6u 6w> ov 6u> ou 6v>
and {(——)=(——).
dz Ox dx 9z dx dy dx dy

Furthermore for an incompressible fluid

ou  dw\? dv\?

(G=E)

dx 9z oy
or
(ER(EI(EIEN

dx 0Oz

Similarly
ou v v\ ?
Gl =(G-CENHE)
Substituting these results in the expression for (n*) we

(LI

LM
e @

for axisymmetric turbulence where 8/9s is the gradient
in a direction making equal angles with all three axes.



