A variational principle for resonances
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A stationary variational principle for calculation of the complex poles of Green functions is given.

1. INTRODUCTION

Consider the problem

(=V —kHu=0inf, ul, =0, )
where £2 is an exterior domain, I"is its closed smooth bound-
ary, D = R\ 2 is bounded. Problem (1) has nontrivial solu-
tion iff (= if and only if) k is a complex pole k, of the Green

function of the exterior Dirichlet problem. The nontrivial
solution has the following asymptotic near infinity

u=r'exp(ikr) 3 f(nk)r )
n=x/|x|, r=|x|,f;50.

If ¥ and v are of the form (2) with k = k, and k = k,, respec-
tively, Re(k, + k,)#0, 7 < argk; < 2m,j = 1,2, then the fol-
lowing limit exists

(u,p) = s}i.To f exp( — er InPu(x)v(x) dx, f = L ?3)

This will be proved in Sec. 2. From (1) and (3) it follows that
stK (u) = st{ (Vu,Vu)/{u,u)} = k?, ®

where st means the stationary value and the admissible func-
tions vanish on I" and are of the form (2) near infinity. The
stationary principle (4) looks like Rayleigh—Ritz quotient
but is actually different in the following respects: (i) the func-
tional (4) is complex-valued, the variational principle is a
stationary one and not an extremal as for the usual Ray-
leigh—Ritz functionals; (ii) the functions which give station-
ary values to K are growing exponentially at infinity.

The variational principle (4) can be used for calcula-
tions as follows:

(1) Take a test function of the form

Uy = r"l exp(ikr) i 2 r*ijm (n)ij (k ).g(x)’ (5)

j=0 my
where Y, (n) are the spherical harmonics, ¥, (n)
= P, ,,(cos8 )-exp(im¢ ), n = (0,4 ); P, ,,(cos@ ) are the asso-

ciated Legendre polynomials; ¢;,, (k ) do not depend on r,n; N
is a fixed number; g(x)>»0 is a fixed smooth function which is
equal to 1 outside of a ball which contains D and which is
equal to zeroon I'.

(2) Put (5) in (4) and use the necessary conditions for K
to be stationary: dK /dc;, = 0.

Because the numerator and denominator in (4) are qua-
dratic forms in c;,, we can write the above condition as

S [ag(k)— kb, )¢, (k) =0, 0<s<Q, ©
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where for brevity we denote by one index ¢ the double index
Jm and by @ the maximal value of ¢ which is defined by N.
We took into account also that the Lagrange multiplier is
equal to k > according to (4). The elements a, (k) and b, (k)
can be explicitly expressed in the form

a, (k)= (V{b(x.k)F (rn)}, Vib(xk)F, (r,n)}), M
b, (k) = (b (x,k)F.(r,n), b(x,k)F,(r,n)), (®
where

b(x,k)=gx)r" exp(tkr), F,(r,n)=r""Y, (n). )]

The elements (7), (8) are entire functions of & of expo-
nential type, i.e., the inequalities |a,, (k )| <c exp[4 |k |Jhold,
where ¢ = const >> 0 and A = const which depends on D but
does not depend on N. The system (6) has a nontrivial solu-
tion iff

det{a, (k) — k?b,(k)} =0. (10)
This equation has infinitely many roots k (¢, / = 1,2,-.., gen-
erally speaking, since its left-hand side is an entire function
of k.

(3) The mathematical question related to this numerical
scheme can be formulated as follows: is it true that k {¢’—k,
as O— oo, where k, are the complex poles of the Green
function?

2. EXISTENCE OF THE LIMIT (3)

First let us note that it is enough to prove that for suffi-
ciently large R > 0 the following limit exists
lim exp( — er InPHu(x)(x) dx.
€+ +0 Jix|»R
For |x|>R we can use series (2) representing u and v. These
series converge absolutely and uniformly in # and 7, r>R.
Therefore it is enough to prove existence of the limit

0

lim exp( — er Inr)r 7 exp(br + iar) dr,
e »+0 Jr

where

iz -2

b= —Im(k, + k;)>0,
Suppose that a > 0. Let
Cy ={zjz—R| =N, O<argz—R)<8{,
Coy = |zarg(z—R) =6, 0<|z—R|<N},
Cr = {zRCZKR+ N}, Cp=0Cp,., C=CyuChyuCy.
It is clear that

a = Re(k, + ky)#0.
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f exp( — er Inr)r ~/ exp(br + iar) dr—0
C.
as N—w, Ve>0. Thus

J exp( — €r Inr)r ~/ exp(br + iar) dr
R

= J exp( — er InP)r ~7 exp(br + iar) dr.
C(]

Let us take 0 < 8<#/2 such that a sinf > # cos6. Then the
integral over C, converges absolute for € > 0 and its limit as
€— +0 exists.

The case a < 0 can be considered similarly, with — @
instead of 6. This completes the proof.

Remark 1: The limit (3) was used by B. Vainberg' in
connection with the orthogonality of the generalized eigen
and root functions, corresponding to different complex poles
of the Green function, but our argument differs from the
argument in Ref. 1. In Ref. 2 the Green function of the
Schrddinger operator with a compactly supported potential
was considered and the limit with the weight function
exp( — €r?) instead of exp( — er Inr) was considered. There
is a mistake in calculation in Ref. 1: the authors claim that
the limit lim__ , §,, exp( — €7) uv dx exists for any k,, k,,
but this limit does not exist for 57/4 < arg(k, + k,) < 7m/4.
In Refs. 3 and 6 a method for calculation of the complex
poles of the Green functions in diffraction problems and in
the potential scattering problem was given and justified.
This method used Galerkin-type procedure. In Refs. 4, 5,
and 7 some facts about the location and properties of the
complex poles are given.
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Remark 2: Justification of the numerical approach sug-
gested in Sec. 1 is an open mathematical problem. For some
other variation principles in nonselfadjoint problems the im-
portance of the mathematical analysis of the situation was
mentioned in Ref. 9. In Refs. 3 and 6 the mathematical justi-
fication of the numerical approach described in Refs. 3 and 6
was based on the compactness of the integral operators in the
equations to which the problem of calculation of the com-
plex poles was reduced in Refs. 3 and 6. In the situation
described in this paper the operator is essentially — V2 — & 2
with Dirichlet boundary condition and it is noncompact.
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