
4248 C. LIFSHITZ AND M. SHAPIRO 

calculated values for CaHs are higher by about an 
order of magnitude than those obtained by Vestal.6 

Although the rate constants themselves may be in 
error, the computed isotope effects on the rate con­
stants should be fairly accurate, since any errors in 
the assumed models (frequencies, moments of inertia, 
etc.) should partly cancel out for the two isotopic 
molecules. The computed isotope effects are the 
following; 

where kA,c,Iis denotes the rate constant of Reaction (A) 
in CaHs, kA,caDs the rate constant of Reaction (A) in 
C3Ds with similar notations for the rate constants of 
Reaction (B), and where the isotope effects are com­
puted for the threshold energies. The reaction rate 
constants increase very rapidly with energy above 

threshold,6 the isotope effects remammg, however, 
fairly constant in the range of metastable rate constants. 

Although Reaction (B) is 15 times faster for C3Hs 
than for CaDs at threshold, both molecules will give 
metastable ions due to this reaction, since at threshold 
the rate constants are lower than 104 secl and they 
reach the metastable range at ~.OI eV above thresh­
old. We propose, however, that Reaction (A) con­
tributes strongly to the metastable peak only in CaDs 
and not in CaHs. This explains the isotope effect on 
the yield of the metastable ion as well as the occurrence 
of two rate constants in CaDs, while the high rate 
constant is missing in CaHs. 

We plan to study isotope effects on parent-ion 
metastable transitions in the molecules CHaCD2CHa 
and CDaCH2CDa. In these molecules, Reactions (A) 
and (B) should give metastable ions of different 
masses which could, therefore, be studied separately. 
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The ground states of the first four members of the helium isoelectronic series and the 22S and 22P states 
of lithium are calculated using a configuration-interaction expansion in a complete denumerable set of single­
particle functions, with one adjustable scale parameter. The best energies for the two-electron systems, 
obtained with 120-term expansions, are E(H-) = -0.52748, J~(He) = -2,90335, T:(Li+) = -7.27945, 
and E(Be+ +) = -13.65504, in units of e2/ao. The energies for all but He are lower than any heretofore 
obtained with a configuration-interaction approach. The dependence of energy on scale factor is found to be 
very pronounced, in contrast to the corresponding behavior for wavefunctions which contain the interparticle 
coordinates explicitly. The best energies for the lithium states, obtained with 208-term expansions, are 
J~(22S) = -7.47369 and E(22P) = -7.40366. The 22S energy is not as good as has been obtained with 
either expansions in terms of interparticle coordinates or configuration interaction with many nonlinear 
parameters. The 22P energy is of approximately the same accuracy but is lower than any previously pub­
lished. 

INTRODUCTION 

THE Hartree-Fock solutions to the wave equation 
for a many-electron atom can never be more than 

approximations to the exact solution because the inter­
electron repulsion, or correlation, is not correctly 
represented. An exact solution to the Schrodinger 
equation, with the Hamiltonian given by 

tion by a trial function 'lr which is then varied until 
the total energy, given by 

E= ('lr I JC I 'lr)/ ('lr I 'lr), (2) 

is a minimum. If the trial function IS of the form 

(3) 

JC= L[ -tv?- (Z/ri)]+ L)I/r;j) , 
i i<i 

(1) then this variational principle leads to the matrix eigen­
value equation 

can in principle be obtained by representing the solu-
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L(Hi;- ESii) Cj=O, 
j 

H ij= (1/;; I JC I if;i) 

Sij= (1/;; I 1/;j). 

(4) 

(5) 
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'fhe lowest eigenvalue of the matrix equation (4) gives 
t?e energy E, and the components of the corresponding 
eigenVe?tor are the expansion coefficients Ci. Thus, 
the choICe of a trial function in the form (3) gives a 
straightforward way of minimizing the energy with 
respect to a large number of parameters. 

Methods of applying the variational principle to 
a many-electron atom fall into two general classes 
depending on the type of functions used in the ex~ 
pansion (3). In application, the most straightforward 
method is the method of configuration interaction, in 
which the solution is represented as a superposition 
of antisymmetrized products of single-particle func­
tions. Then, if these functions are members of a com­
plete set, the exact solution can be approximated as 
closely as desired by the inclusion of enough terms. 
However, this method is found to provide very slow 
convergence to the exact solution, the reason being 
that functions of single-particle coordinates provide a 
very poor means of representing an effect which de­
pends on the interparticle coordinates.1 The other 
variation method, in which the interparticle coordinates 
r;j are explicitly included in the trial function does . ' gIve much faster convergence but extreme computa-
tional difficulties arise in the calculation of the matrix 
elements (5). Thus, the choice is between working with 
a very large matrix containing elements which are 
relatively easy to calculate, or quite a small matrix 
with elements which are extremely difficult to cal­
culate. For states with zero angular momentum, the 
solution in terms of interparticle coordinates depends 
only on the relative coordinates of the particles, and 
even though this form is still more difficult to work 
with than a product of single-particle functions, quite 
accurate results were obtained (long before the advent 
of electronic computers) by Hylleraas2 for the ground 
state of helium and by James and Coolidge3 for the 
ground state of lithium. In recent years, the ground­
state energies of two-electron atoms have been deter­
mined with extreme accuracy by this method.4 •5 The 
ground-state energy of lithium has also been deter­
mined very accurately.6 For P states of two-electron 
atoms the method is still tractable,1 and very good 
results have been obtained for the 2P states of helium. 8.9 

However, for larger atoms in higher angular momentum 
states it is important to investigate the applicability of 
configuration interaction before attempting to use the 
more complicated method. In addition, the use of 

.1 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Co., Inc., New York, 1960), Vol. 2, p. 48. 

2 E. A. Hylleraas, Z. Physik 54, 347 (1929). 
3 H. M. Jam~s and A. S. Coolidge, Phys. Rev. 49, 688 (1936). 
• C. L. Pekens, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959). 
6 Charles Schwartz, Phys. Rev. 128, 1146 (1962). 
6 E. A. Burke, Phys. Rev. 130, 1871 (1963). 
7 G. Breit, Phys. Rev. 35, 569 (1930). 
8 C. L. Pekeris, B. Schiff, and H. Lifson Phys. Rev. 126, 

1057 (1962). ' 
a C. Schwartz, Phys. Rev. 134, A1181 (1964). 

product configurations provides a wavefunction in a 
more usable form for the calculation of expectation 
values of operators other than the nonrelativistic 
energy, such as fine-structure and hyperfine-structure 
splittings. 

The purpose of this investigation is the application 
of configuration interaction to the 22P state of lithium 
with preliminary calculations, for comparison purposes, 
of the ground states of two-electron atoms and the 
22S state of lithium. A secondary purpose, which 
developed during the course of the research, is an 
investigation of the effect of a varying scale parameter 
on the calculated ground-state energies of two-electron 
atoms. 

CHOICE OF FUNCTIONS 

In addition to the coefficients Cj in the expansion 
(3), variational parameters may also be included in 
the configurations themselves. However, this inclusion 
of nonlinear parameters requires that a new linear 
variational problem be set up and solved for each new 
choice of these parameters. This was done by Weiss,lo 
for S states of two-, three- and four-electron atoms 
with the single-particle functions in the form of Slate; 
orbitals, but containing up to 12 nonlinear parameters. 
The simplicity of the functions in this case makes it 
feasible to recalculate the matrix elements every time 
the parameters are varied. Results of comparable 
accuracy have been obtained by Nesbet and Watson ,11 

who used a truncated complete set of polynomials 
containing four nonlinear parameters. With this type 
of function, the calculation of matrix elements is 
much more complicated and any continuation in this 
direction would be quite difficult. Another possibility 
is to use such a complete set, including as many terms 
as possible, with one nonlinear parameter which is 
the same for each member of the set. This was done 
by Tycho, Thomas, and King12 for the llS and 23 S 
states of helium, but without a complete minimiza­
tion of the energy. With only one nonlinear parameter, 
the building up of the total function 'l1 from the set 
can be done in a straightforward way, and there is 
little or no question of the uniqueness of the mini­
mization. Another advantage of this method is that 
with the single nonlinear parameter chosen as a scale 
factor, the Hamiltonian (1) can be written in terms 
of the scaled variables, ~i= 2kr;, as 

X=2k2L[V?+(Z/k)~i-1J+2kL~irl. (6) 
i kj 

The appearance of k as a multiplicative factor means 
that matrix elements need to be calculated only once 

10 A. W. Weiss, Phys. Rev. 122, 1826 (1961). 
~ R. K. Nesbet and R. E. Watson, Phys. Rev. 110, 1073 (1958). 

D. H. Tycko, L. H. Thomas, and K. M. King Phys. Rev 
109,369 (1958). ,. 
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for a given state of a system, and then a variation 
over a wide range of scale factors can be carried out 
quite easily. 

The choice of hydrogenic functions as the basis set 
in the expansion (3) has the disadvantages that both 
discrete and continuum states must be included, and 
that the appearance of the principal quantum number 
n in the argument of the functions leads to very slow 
convergence.13 The reason for the slow convergence 
is that with increasing n, the nodes of the function 
get shifted away from the origin, while the function 
to be represented is expected to be concentrated at 
small values of r. The functions which result when the 
n is removed from the argument of the hydrogenic 
radial functions do not have these disadvantages. They 
are denumerably complete, with no continuum states, 
and have nodes concentrated at small values of r.14 
The functions are 

4>.'m(l;, 8, ¢) = l[r(n-l)J!/[r(n+l+l)JJI~1 

X exp(-U2)Ln_l-121+1(~)Yr(8,4», (7) 

and satisfy the differential equation 

where n= 1, 2, 3, .•. ; 1=0, 1, 2, "', (n-l) and 
-l~m~l. This is not a Schrodinger equation, except 
for n= 1, the difference being that the energy is a 
constant while the strength of the potential is different 
for different eigenfunctions. Thus, higher eigenvalues 
of the matrix equation (4) do not correspond to excited 
states of a physical system represented by an expansion 
in these functions. 

The many-particle Hamiltonian (6) may be written 
as 

JC= 2k2H1+2kH2, (9) 
where 

H l =- L[v,?+(Z/k) (1/~i)J (to) 
i 

and 
H2= L(1/~ij). ( 11) 

i<i 

It follows immediately from (to) and the differential 
equation (8) that the matrix elements of the operator 
HI are given by 

(n'l'm' I HI Inlm) 

The integrals needed for the evaluation of this matrix 

13 Reference 1, Vol. 2, p. 45. 
14 M. Rotenberg, Ann. Phys. (N.Y.) 19,262 (1962\. 

element areIS 

and 

X 12non'n - On' ,n+l[ (n-l) (n+l+ 1) J! 

- on'.n_l[(n+l)(n-l-l) ]11. (14) 

The integral given by (14) is also required for the 
overlap matrix Sij. The functions (7) are therefore 
not orthonormal in the usual sense, but this presents 
no difficulty since both (13) and (14) are required 
anyway. While Sij is not the unit matrix, for the 
systems considered in this study it is approximately 
90% empty, and a scheme of matrix packing was used 
in order to make fullest possible use of the available 
computer storage. 

The matrix elements of the two-particle operator 
H2 are much more complicated than those of Hh 
but are independent of Z and k, so that they need 
be calculated only once. It is of course also possible 
to write the one-particle operator HI in the form of 
a sum of two terms each of which is independent of 
Z and k, but because of the extreme simplicity of the 
integrals (13) and (14) it was found that the matrix 
elements of HI could be calculated as needed faster 
than they could be read from cards. 

GROUND STATES OF TWO-ELECTRON ATOMS 

The general form of the configurations used for the 
ground states of heliumlike atoms is the linear com­
bination of Slater determinants16 

I/tLM= LC(l112L ; mlm~) 

X[I ¢nl1lml(1)a¢n212"'2(2)f31 

±l ¢n212m2(I)a¢nlllml(2)f3IJ, (15) 

where the plus and minus signs indicate singlet and 
triplet states, respectively. 

For IS states, the configurations are specified by 
only three quantum numbers, namely nl, n2, and l. 
The expansion of the trial function (3) may then be 
written in the form 

'¥IS=:t I: nf: A (nl' n2,1)if; ls(nl' nz,l), (16) 
RI=l n2=1 1=0 

15 P. R. Fontana, Phys. Rev. 123, 1871 (1961). This paper 
gives a more general expression for the matrix element of any 
power of r. 

18 Unless otherwise indicated, the notation for all angular­
momentum-coupling symbols is that of M. E. Rose, Elementary 
Theory of Angular Momentum (John Wiley & Sons, Inc., New 
York, 1957). 
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where n is the maximum principal quantum number 
in the expansion and the limits on the sums express 
the fact that A (nl' n2, 1) = A (n2, nl, 1). This particular 
form of the expansion gives a straightforward way 
of building up the total wavefunction'lt from the con­
figurations (15) for a two-electron atom. For a given 
maximum principal quantum number n, the number 
of terms N in the expansion is N = in(n+ 1) (n+2). 
However, there is no reason to assume that this is 
the best way of forming the total function 'It, given 
the maximum number of terms which can be included. 
It is quite possible that faster convergence might be 
obtained by specifying a maximum 1, thus allowing 
higher values of ni and n2 to be included. But if this 
is done there is the question of just how many values 
of n should go with a given 1, whereas if the configura­
tions are ordered by n there is no difficulty in including 
all possible values of 1. 

For the first application of this method, the pre­
liminary 20-term variational calculation of Tycho, 
Thomas, and KingI2 was repeated. It had originally 
been intended to do this only as a check of the matrix 
element and eigenvalue computer programs, since this 
part of their work uses a method completely equivalent 
to that used here. The preliminary results of Tycho 
et at. were reproduced, as expected. As an additional 
result, the energies obtained by Shull and LowdinI7 

with a 20-term expansion were also reproduced. In 
this latter case the configurations are specified by the 
same set of nand 1 values as those used here, but with 
different radial functions. Different eigenvectors are 
therefore obtained with the two expansions, the reason 
for the equal eigenvalues being that the two types of 
radial functions can be expressed as contiguous hyper­
geometric series and the two expansions are therefore 
linearly dependent. 

The results obtained with the 20-term expansion, 
shown in Table I, make it evident that the energy 
is not at all insensitive to variations in the scale param­
eter, but has a definite minimum near k= 2.20. There 

TABLE 1. Preliminary calculation of helium ground-state energy." 

n =3 (10 terms) n=4 (20 terms) 

k E k E 

1.80 -2.898176 1.90 -2.900750 
1.90 -2.898927 2.00 -2.900991 
1. 95 -2.899120 2.10 -2.901157 
2.00 -2.899185 2.20 -2.901230 
2.05 -2.899111 2.30 -2.901180 
2.10 -2.898888 2.40 -2.900960 
2.20 -2.897935 2.50 -2.900516 

• All energies are in uni ts of e' / fUJ. 

17 H. Shull and P.-O. L6wdin, J. Chern. Phys. 30, 617 (1959). 
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FIG. 1. Preliminary calculation of helium ground-state energy. 
+, Results of Shull and L6wdin; 0, results of Tycho, Thomas, 
and King; e, results of present calculation. 

remains the question of how the optimum scale param­
eter changes as the number of terms in the expansion 
is changed. It is of course obvious that there is some 
such dependence, since a one-term function gives the 
well-known result Emin(k) =E(Z--Ar)' which for 
helium means k= 1.6875. In order to investigate this, 
the next smaller set was used with n= 3 and, therefore, 
containing 10 terms. These results are also shown in 
Table 1. The minimum has moved to k=2.00. It is 
thus clear that variations in scale parameter can have 
an important effect, at least for small sets of con­
figurations. These results are shown even more clearly 
in Fig. 1, in which the energies for the two expansions 
are plotted as functions of the scale parameter. It 
should be noted that for n=4 the energy minimum 
occurs at a value of k which is greater than Z. Thus, 
the interpretation of this parameter as a "screened 
effective nuclear charge" is no longer valid. 

In view of the above results it was decided that an 
extensive investigation should be made of the varia­
tion of the ground-state energy of a two-electron atom 
both with respect to scale parameter k and nuclear 
charge Z. The energies of the first four members of 
the helium isoelectronic series were calculated, with 
systematically increasing expansion lengths, and with 
a range of k hopefully wide enough to exclude the 
possibility of multiple minima . 

The resulting energies are given in Table II and 
in Fig. 2 are shown all energies calculated for the 
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TABLE II. Ground-state energies of two-electron atoms. 

Z=1 Z=2 Z=3 Z=4 
n N 

k E k E k E k E 

2 4 0.75 -0.49970 1.77 -2.87544 2.78 -7.25049 3.79 -13.62548 
3 10 0.74 -0.52454 2.00 -2.89918 3.19 -7.27441 4.36 13.64951 
4 20 0.75 -0.52572 2.20 -2.90123 3.50 -7.27693 4.80 13.65229 
5 35 0.80 -0.52690 2.40 -2.90237 3.90 -7.27826 5.30 -13.65373 
6 56 0.90 -0.52718 2.70 -2.90292 4.30 -7.27891 5.90 -13.65444 
7 84 0.90 -0.52739 2.90 -2.90318 4.70 -7.27924 6.40 -13.65481 
8 120 0.95 -0.52748 3.20 -2.90335 5.10 -7.27945 6.90 -13.65504 
Exact" -0.52775 -2.90372 -7.27991 -13.65557 
error 0.00027 0.00037 0.00046 0.00053 

(0.05%) (0.013%) (0.006%) (0.004%) 

a The exact values are those of Pekeris, Ref. 4, which when corrected for relativistic effects and nuclear motion, predict the ionization energies withil' 
experimental error. 

helium ground state with wavefunction expansions 
ranging from 20 to 120 terms. Similar sets of curves 
were obtained for Z = 1, 3, and 4. Figure 2 also shows 
the results of Tycho et al., including their final cal­
culated energy obtained with a 680-term wavefunction, 
but with no variation in scale parameter. The solid 
curves through the points actually calculated do not 
represent numerical fitting, but are intended to be 
illustrative only. As can be seen from Table II, the 
scale parameter for minimum energy increases mono­
tonically with increasing n, and increases more rapidly 
with larger Z. If a complete set is used in the expansion, 
then in the limit it should make no difference what 
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FIG. 2. Energy of lIS He as a function of scale parameter and 
maximum principal quantum number in the expansion. The 
open circles are the results of Tycho, Thomas, and King.12 

scale parameter is used, since the same value of the 
energy would be obtained. However, in practice, where 
a truncated set must be used, the choice of an optimum 
scale parameter is very important. 

In Fig. 3 the optimum k is shown as a function of n. 
The values were obtained from curves such as those 
of Fig. 2, with uncertainties as indicated. No attempt 
was made to determine the optimum k with a finer 
variation near the minimum since in this region it is 
true that the energy is very insensitive to variations 
in k. The result is that the scale parameter for mini­
mum energy seems to increase linearly with increasing 
n, for n greater than 2 or 3. From the way the scale 
parameter appears in the argument, ~= 2kr, of the 
radial function, it can be seen that increasing k means 
decreasing r, or a shifting of the function toward the 
origin. As n is increased, the number of nodes in the 
function increases, and the effect of the increasing k 
is to keep the nodes at small values of r. 

LITIDUM 22S AND 22P STATES 

The general form of the configurations used for 
the calculation of the lithium energies is complicated 
by the fact that there are two possibilities for coupling 
the spins of the electrons, giving a singlet or triplet 
intermediate state. If L-S coupling is assumed, then 
the most general form of a three-electron configura­
tion is given by the following linear combination of 
Slater determinants: 

1fLMLSMh «(lalb)2-rHj, Ie) 

L: C(lalbj; momb)C(jl.L; ma+mb, ML-m",-mb) 
mamb,l'ai'b 

In this representation the angular momenta ta and tb 
are coupled to form an intermediate state j, which is 
then coupled with le to form the final state L. The 
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FIG. 3. Optimum scale parameter 
for ground states of two-electron atoms k 
as a function of maximum principal 
quantum number. 
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intermediate spin quantum number 'Y has the value 
o for a singlet intermediate state and the value 1 
for a triplet intermediate state. The two cases can be 
considered separately, with the spin coupling written 
out explicitly, since only matrix elements of spin­
independent operators have to be calculated. The 
various types of spin coupling will then lead to dif­
ferent linear combinations of the same spatial integrals. 

The choice of configurations is not at all as straight­
forward as in the two-electron calculations, where 
there were only three quantum numbers to be specified. 
In that case, quite good results were obtained simply 
by increasing the maximum value of tZ and induding 
all possible values of t. However, for lithium there are 
eight quantum numbers to be specified, once the total 
L has been fixed. Of course not all combinations of 
the eight numbers are possible. There are triangle 
conditions on the angular-momentum quantum num­
bers 11, 12, and j and on j, l3, and L, and there is the 
condition that all configurations be of the same parity. 
Finally, there are configurations which are linearly 
dependent, but not in such an obvious manner as 
was the case in the two-electron calculations. There 
still remain many choices for the types of contlguration 
to be included. There is the question of whether the 
triplet-core configurations should be included on an 
equal basis with those with a singlet core, or whether 
they can be neglected. There is also the question of 
the relative importance of configurations with j,t.O, 
the open shell type. And, since this is a system of 
inequivalent particles, there is the question of the 
relative ranges of tZ and 1 values for the three electrons. 
Since the resulting energy is to be the criterion for the 
"goodness" of the wavefunction, it is a matter of 
trial and error to decide on the importance of various 

2 3 4 5 6 7 8 
n 

possible types of configurations, based on their rela­
tive contributions to the energy. It was found th?t, 
as expected, the most significant contribution to the 
energy for the two states comes from the closed-shell 
singlet configurations (nlln21) IS, tZaS and (111lnzl) IS, 
nzp. It was also found that with this type of con­
figuration a very wide range of 113 must be included 
for a given core (1t1hx.j). This is not too surprising 
since for these states the part of the solution describing 
the outer electron will be very different from that 
part describing the inner electrons. Therefore, the 
requirement that the scale factor be the same for all 
three electrons is quite unrealistic and it is only when 
very many terms are added to the expansion that one 
can expect that the rigidity of this requirement will 
be overcome and that the expansion in a complete 
set will begin to represent the true solution to the 
wave equation accurately. The triplet-core configura­
tions (tZrlnzl) 3S, 1ZSS and (nll1t21) 3S, nap were found 
to give small but not negligible contributions to the 
energies, but the open shell, the most general type of 
configuration possible, was found to give an insignifi­
cant contribution. 

In the final calculation of the lithium ground-state 
energy, configurations of the type (nlll1"21) 2r+1S, IlsS 
with a fixed I were added to the expansion until it 
became evident that a practical limit had been reached. 
The addition of terms with 1=0 was carried to 95 
terms and then cut back to 79 terms, because at this 
point it appeared that the improvement in energy 
with the addition of configurations had reached a 
very small but finite constant value of approximately 
0.00002 H.lI. per configuration, independent of the 
precise description of the configuration. Similar re­
sults were obtained for 1=1 terms and /=2 terms, 
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TABLE III. Energy of the 22S state of the Li atom. 

N k E t1E 

S 79 2.95 -7.44722 
S+P 142 3.08 -7.47085 0.02341 
S+P+D 184 3.10 -7.47268 0.00183 
S+P+D+F 190 3.10 -7.47273 0.00005 
S+P+D 189 3.10 -7.47279 0.00194 
S+P+D+ Triplet 208 3.10 -7.47369 0.00090 

core 
Exact- -7.47805 
error 0.00436 

(0.058%) 

a See Ref. 18. 

but with decreasing improvement in the energy with 
increasing 1. Thus, no evidence was found for a "radial 
limit" or for "angular-correlation limits." For triplet­
core configurations, the behavior with respect to n3 
was found to be different from that of the singlet 
core in that the optimum range of n3 turned out to 
be quite small. The first few terms give a noticeable 
improvement in the energy, but the contribution de­
creases rapidly with increasing n3. The final results 
for the lithium ground state are shown in Table III, 
in which the notations S, S + P, etc., indicate the 
values of 1 included in the configurations. The exact 
energy is that of Scherr, Silverman, and Matsen.ls 

The building up of the 22 P function did not require 
quite as much trial and error as the ground state, 
since that calculation had provided some insight into 
the kind of behavior to be expected. The results for 
the 22P state are shown in Table IV. In this case the 
set labeled S contains both singlet and triplet cores. 
The contribution from triplet-core configurations with 
1 other than zero was found to be negligible. This is 
in contrast to the ground state, in which triplet cores 
with 1= 1 were found to be most important, with 
small but significant contributions from triplet cores 
with 1 = 0 and 1 = 2. As was the case for the ground 

TABLE IV. Energy of the 22P state of the Li atom. 

N k E AE 

S 79 3.00 -7.37962 
S+P 150 3.00 -7.40164 0.02202 
S+P+D 196 3.10 -7.40360 0.00196 
S+P+D+F 208 3.10 -7.40366 0.00006 

Exact" -7.41013 
error 0.00647 

(0.087%) 

a See text preceding Ref. 19. 

18 C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. 
Rev. 127,830 (1962). The exact energy is obtained by adding to 
the two-electron energy of Pekeris, Ref. 5, the experimental ion­
ization energy corrected for relativistic effects and nuclear 
motion. 

state, the open-shell configurations were found to give 
no significant contribution to the energy. The exact 
energy of the 22 P state was found by adding to the 
22 S energy the observed 22 S - 22 P energy difference.19 

No corrections were made because the accuracy of the 
calculation does not seem to warrant it. 

The change in optimum scale parameter k as the 
expansions are increased is seen from Tables III and IV 
to be very similar for the two states, and to be very 
small when compared with the corresponding behavior 
for two-electron atoms. However, the final optimum 
k is again greater than Z, so that k cannot be inter­
preted as a screened effective nuclear charge. At each 
point in the expansion at which energies were calcu-
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FIG. 4. Energy of 22 P Li as a function of scale parameter and 
expansion length. 

lated, four different values, of k, at most, were found 
to be sufficient for finding the energy minimum. There 
is the possibility, however, that this minimization is 
not unique and that multiple minima might occur. 
In order to investigate this possibility, the energy 
of the 22P state was calculated with a wide range of 
scale parameters and with expansions up to 32 terms. 
The result is shown in Fig. 4. The energy given by a 
one-term function is just a parabola similar to that 
obtained from a one-term calculation for helium. As 
the number of terms is increased, the curve flattens 
out as expected, passing through zero for zero k, 

10 Atomic Energy Le"lJels, C. E. Moore, Ed. (U.S. Government 
Printing Office, Washington, D.C., 1949) Nat!. Bur. Std. Cire. 
No. 467. 
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and in the limit of a complete set would be a step 
function with the exact value of the energy for any 
value of k greater than zero. 

CONCLUSIONS 

It is clear that the method of configuration inter­
action, with one scale parameter, does work quite 
well for the ground states of two-electron atoms. In 
fact, much better results are obtainable than would 
be expected from the work of Tycho Thomas and 
K· 12 Unf " mg. ortunately, from the results obtained for 
other systems, it appears that this is the only state 
for which this method will give good results, and that 
the gr?und state of helium is a singularly poor one 
on WhIC~ to test a method of calculating the energies 
of atomIC systems. The spatial equivalence of the two 
electrons just happens to allow a function with one 
scale parameter to represent the system quite well. 

For a system of inequivalent particles such as 
lith~u~, one scale parameter does not all~w enough 
fleXIbilIty. There are two ways in which this might 
be overcome. The rapidly decreasing improvement in 
energy with increasing 1 in the core functions, as 
shown by Tables III and IV, indicates that an im­
proved result might be obtained by using different 
scale parameters for single-particle functions with dif­
ferent values of 1, as was done for the ground state 
of helium by Nesbet and Watson.ll However, the 
results obtained for helium in the present investiga­
tion make it appear likely that a more profitable 
method :"ould be the use of different scale parameters 
for the mner and outer electrons. Unfortunately in 
introducing more than one scale parameter, one l~ses 
the advantage of having to calculate the matrix ele­
ments for a given set of configurations only once. 
H se~eral scale parameters are used, assigned either 
to dIfferent functions or to different particles all 
matrix elements have to be recalculated for ever~ set 
?f val~es of the scale parameters for which the energy 
IS ~esired. Thus, for example, for higher states of 
helIum the calculation of the energy for each set of 
values of the scale parameters would take as much 
effort as is required for the entire ground-state cal­
culation. 

In order to investigate the improvement which might 
be expected, a trial calculation was made of the ground­
state energy of lithium using one- and two-term func­
tions with different scale parameters for the inner 
and outer electrons. The trial functions are then of the 
form (1s1s) IS, 2s' and A (1s1s) IS, 1s'+B(1s1s) IS 
2s', where the prime indicates the different seal; 
parameter. The results are compared in Table V with 
~hat can be obtained from an expansion in configura­
tIOns o~ the form (1s1s) IS, ns. The expansion must 
be earned to 17 terms, or through the configuration 
(1s1s) IS, 18s before the rigidity imposed by the single 
scale parameter is overcome. This gives some indica-

N 

TABLE v. Impr~vement in lithium ground-state energy 
WIth two scale parameters. 

ka E Error 

1 

2 

2.68 

2.70 

0.94 

0.70 

-7.3935 0.084(1.1%) 

-7.4190 0.059(0.8%) 

-7.4191 0.058(0.8%) 

tion both of the improvement which might be ob­
tained by the use of two scale parameters, and the 
size of the expansion which would be necessary with 
one scale parameter in order to get results comparable 
to those of other methods. 

Finally, it is clear that when a solution is approxi­
mat~d by an .expansion in a complete set of single­
partlcle functions, the effect of scaling is very im­
p.ort.ant, and that the optimum scale parameter changes 
sIgmficantiy when the expansion is increased. This has 
also been noted by Shull and Lowdin17 for truncated 
complete sets containing up to 20 terms. They drew 
the conclusion that no physical significance should be 
attached to the scale parameter; that it is merely a 
mathematical parameter which is to be adjusted so 
a~ to provide the best result. However, physical sig­
mficance is often attached to scale parameters. For 
instance, Pekeris4 required that the scale factor be 
equal to (- E)i, so that the solution to the helium 
wav.e equation would have the same asymptotic be­
haVIOr as a product of hydrogen functions. But when . ... . ' a mimmizatlOn WIth respect to scale parameter is 
~ncluded in this type of calculation, the optimum value 
IS generally found to be greater than (- E)i.20-22 

Ignoring the possible effect of a changing scale param­
eter does seem to work much better in calculations 
with rii functions than in configuration-interaction 
calculations. Davidson21 and Schwartz22 have noted 
some dependence of optimum scale parameter on 
expansion length when Yii functions are used, but the 
type of dependence does not seem to be the same as 
that found with configuration interaction. When 
single-particle configurations are used, the optimum 
scale parameter for two-electron ground states ap­
pears to tend to a large value as the exact solution is 
approached. On the other hand, the results of Davidson 
and Schwartz seem to show that with rii functions 
the scale parameter rises slowly, with an optimum 
value somewhere in the vicinity of Z, but not necessarily 
less than Z. Thus, the two types of expansion seem to 
be fundamentally different, but in neither case can 
the effect of scaling be ignored or given a simple 
physical interpretation. 

:0 T. Kinoshita, Phys. Rev. lOS, 1490 (1957) 
21 E. R. Davidson, J. Chem. Phys. 39, 875 (i963). 
22 H. M. Schwartz, Phys. Rev. 130, 1029 (1963). 


