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Excitation transfer in finite molecular aggregates is analyzed in the context of the Haken-Strobl model. 
Explicit solutions are presented for a trimer and a rectangular tetramer. Special emphasis is placed upon 
population transfer among subunits (monomers, dimers) and its relationship to energy transfer, and upon the 
problems associated with coherence of this transfer process. These aggregates serve as models for the problem 
of excitation transfer in disordered media, where partial coherence resulting from short-range interactions has 
been largely ignored. Our most intriguing result is the greatly diminished effectiveness of the longer-ranged 
transfer in the presence of short-range clusters. Under some conditions the ensuing energetic mismatches may 
well dominate the overall energy transport and render invalid the usual description in terms of hopping 
among individual sites. An application to triplet energy transport in isotopic mixed naphthalene crystals is 
given; it is seen that the reduced efficiency of non-nearest-neighbor transfer processes reinforces the two­
dimensional characteristics of the energy transport. 

I. INTRODUCTION 

The object of this investigation is to elucidate the 
nature of energy transfer in collections of molecules 
coupled by resonant interactions of varying strengths. 
Special emphasis is devoted to the circumstances under 
which the aggregate may be described as a collection 
of smaller aggregates (clusters) weakly coupled to one 
another. In this context arise such questions as whether 
the overall dynamics can be described in terms of micro­
scopic transfer rates, whether population transfer 
among the clusters (which can always be defined) can be 
identified with energy transfer (which is only well de­
fined in a weak-coupled limit) and whether the popula­
tion transfer shows oscillatory or overdamped behavior. 
These closely interrelated questions are usually sub­
sumed under the general topic of" transport coherence." 
In addition to their intrinsic Significance, these ques­
tions are relevant to the general problem of excitation 
transfer in disordered media, since current theoretical 
modelS of these processes usually assume incoherent 
hopping among individual sites, 1 and do not consider the 
possible role of partial coherence arising from strong 
short-ranged interactions. 

A popular phenomenological model due to Haken and 
Strobl2 is here applied to two systems: a pair of dimers, 
and a monomer coupled to a dimer. The limitations of 
this model have been frequently pointed out3

•
4

; it is 
probably seldom quantitatively applicable to experimen­
tally accessible systems. These defects-neglect of 
detailed correlations in the phonon-induced fluctuations, 
neglect of the finite correlation times associated with 
these fluctuations, and failure to obey the correct de­
tailed-balance requirements at finite temperatures-
are for present purposes outweighed by the tremendous 
simplifications which follow from these model assump­
tions. These simplifications make it possible to obtain 
qualitatively useful results by elementary calculations, 
without necessitating restrictions to weak-coupling 
cases or the use of poorly controlled approximations. 

a)Supported by NIH Grant No.2 ROl NSOS116-14. 

A straightforward application of this model yields re­
sults which, while expected from general considerations, 
do not seem to have been explicitly stated before, at 
least in this context. Only under very stringent (and 
not entirely obvious) conditions is it possible to ignore 
the internal dynamics of the clusters. When an inter­
cluster transfer rate is well defined, it is likely to be 
smaller than one would predict if one were to ignore the 
internal dynamics. This result can for the most part be 
ascribed to energy mismatches between clusters of dif­
ferent types, and leads us to conclude that energy trans­
port in spatially disordered systems dominated by short­
range interactions may be less efficient than one would 
predict from a hopping model, even at temperatures larger 
than the strongest interactions in the system. We also find 
that the distinction between coherent and incoherent in­
tercluster transfer is somewhat ambiguous; this is a 
typical manifestation of the complicated dynamics of 
multilevel systems and of few-body problems in general. 

II. SUMMARY OF THE HAKEN-STROBl STOCHASTIC 
MODEL 

The stochastic description of excitation dynamics 
pioneered by Haken and Strobl2 and extended by others 5 

assumes that the important effects of exciton-vibron 
and exciton-phonon coupling upon exciton dynamics can 
be taken into account by conSidering the matrix ele­
ments of the Frenkel Hamiltonian to be random func­
tions of time. Explicitly: 

(1) 

where a:. an are site creation and annihilation operators, 
En is the local energy of site n, and Jnn, is a resonant cou­
pling between sites nand n'. The matrix elements En(t) 
and J nn • (t) are considered to be Gaussian Markov pro­
cesses: 

(En(t))cO , 

(Jnn,(t))~Jnn' , 

(En(t) En (0) =Ynn exp(- aot) , 
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(2) 

All cross correlations of the form (En(t)J.",(t'» or 
(Jnn, (t) J".m' (t'» are ignored. This is done purely for the 
sake of convenience and has no other justification. 

The inverse correlation times ann' provide a measure 
of the phonon bandwidth. In the original treatment of 
Haken and Strobl, the limit of very short correlation 
times (white noise limit) was taken: 

Y- e-al_y15(t) Y = L . 
a4~ , Q 
r-QO 

This considerably simplifies the final expressions, al­
though it is not necessary and restricts the applicability 
of the model. The consequences of retaining a finite 
correlation time have been investigated5 ; this extension 
is necessary in order to treat spectral phenomena such 
as homogeneous Gaussian line shapes, Urbach rule be­
havior, etc. For present purposes, the greater sim­
plicity of the original Haken-Strobl model justifies its 
use. 

The Hamiltonian prescribed above can be applied to 
various types of problems. For the study of energy 
transfer the appropriate procedure is to derive an equa­
tion of motion for the thermally averaged denSity ma­
trix p. To obtain such an expression, one averages the 
full density matrix a over the stochastic process: 

i ~~ = <[H, a]); p = (a) . (3) 

This averaging procedure has been carried out by sev­
eral different methods2

,5 all of which make use of the 
Gaussian nature of the process to sum an infinite-order 
moment expansion by expressing the higher moments in 
terms of the lower. The most direct of these methods5 (b) 

makes use of the generalized cumulant expansion of 
Kubos to bypass the higher moments entirely. (The op­
erator-ordering problems which frequently vitiate this 
procedure are absent in the white noise limit, and the 
exact solution is contained in the first two cumulants. 7) 

In the Haken-Strobl model, the reduced density ma­
trix equation takes the form 

(ddP
t ) = - i[if,pj- L: (Ynl +Y.' I) P •• ' + 215nn, L: Y.IPI! 

.~ I I 

(4) 

This equation falls naturally into three parts. The first 
term - i [if, P j has the same form as the full denSity ma­
trix equation for the entire system. It describes coher­
ent dynamics governed by a thermally averaged Hamil­
tonian if. For the case n = n', the remaining terms take 
the form of a master equation: 

(5) 

with the Y. I elements acting as transition rates between 
sites nand l. This describes an incoherent hopping 
process superposed on the coherent process. Finally, 
the off-diagonal terms beyond the first describe scatter­
ing or dephasing processes: 

(!PmL.) __ " ( ) at - L....- Y.I+YI.' p •• ' + 2')'"n' p.'. , 
incoherent l 

(n# n'l . 

(6) 

It may be noted that these terms are local: the incoher­
ent decay of a given off-diagonal element is related only 
to itself (and to its complex conjugate): 

(~ [Pnn' + Pn'. 1) = 2 [Yn"' - L: (Ynl + YI.')] r p.n' + P.'n 1· at Incoherent I 

(7) 
The presence of the coherent term in the complete equa­
tion destroys this independence and couples the dephasing 
processes to each other and to the population transfer 
processes. This is analogous to the exchange-dephasing 
processes that arise in spin relaxation. 8 

The Haken-Strobl equations form a linear first-order 
system with constant coefficients, so that their solution 
is entirely straightforward for any finite aggregate. 
However, only a few such aggregates, specifically 
dimers and finite chains, have been studied till now. 
Two small aggregates are conSidered here, a rectangu­
lar tetramer and a trimer. Both of these lack transla­
tional symmetry. The tetramer case is quite simple, 
and thus will be discussed first; the trimer case, which 
is much more complicated, will be the concern of the 
remainder of this work. 

III. THE RECTANGULAR TETRAMER 

The aggregate studied is depicted in Fig. 1. The four 
sites form two pairs, (1,2) and (3,4), each of which is 

4 (a) 

--) 
'--

(b) 

J 
/ 

FIG. 1. Parameters for the rectangular tetramer (A) and the 
trimer (B). Numbers label sites. Straight lines indicate co­
herent (J,j) interactions, curved lines indicate incoherent ('Yj. 
I'll interactions. 
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coupled internally by a resonant coupling J. The pairs 
are connected by "weak" coupling elements j, j" . The 
aggregate is assumed to possess rectangular symmetry. 
The correlation amplitudes Ynn' which result from ap­
plying the Haken-Strobl model to the aggregate are de­
fined by the figure; the local correlations Ynn which are 
not shown, are referred to as Yo-

The Haken-Strobl equations for this system can be 
written: 

dp 
-=Lp 
dt 

(8) 

in which the Liouville superoperator L is represented 
by a 16x 16 matrix. The population transfer between 
the dimers (1,2) and (3,4) is described by the combina­
tion: 

- 2j 2'" - .1 

+ 2j - 2(1'0+1'1 +1'; + 2y~') 0 

(9) 

This variable (referred to henceforth as the transfer 
variable) can be obtained as a solution of a 4x 4 problem 
by defining the following linear combinations: 

(10) 

These combinations are chosen to be purely real and to 
exploit the spatial symmetry of the system. In this 
basis the above mentioned 4x 4 problem takes the form: 

0 (Re) 

+jll (IN) 

[ - 2(y" y, ,y['1 

2'" + !J 0 - 2(yo+Y~ + 21'1 +y~') ,i ] (IT) 

0 4'" - J -4j 

The important feature to be noted here is that the inter­
nal coupling J is entirely absent. This is a direct re­
sult of the symmetry of the aggregate and is independent 
of the relative values of the parameters. The internal 
dynamics of the dimers does not affect the energy trans­
fer between the dimers. 

An explicit solution can easily be obtained for the case 
(}" =0, y~' =0). The transfer variable n_ is then con­
tained in a 2X 2 submatrix, and the problem becomes 
isomorphic to that of a dimer. The eigenvalues of the 
submatrix are: 

A. = - (1'0+ 41', +YD±J(YO+yp2 - 4j2 • 

These are real for (Yo + I'D'?: 2j, giving rise to over­
damped, nonoscillatory transfer, which can be inter­
preted as" incoherent" dynamics. For the case j = 0, 
A_ = - 41'1' identifying it as the "transfer eigenvalue," 
that quantity which gives a transfer rate in the weak­
coupling limit. For small j one then gets aGoldenRule­
type result by expanding the square root: 

2.2 

A_"" -41'1-~( ')' (12) 
1'0+1'1 

It is interesting to note that the internal nonlocal scat­
tering 1'1 does enter the problem; every scattering event 
counts in the dephasing processes. Since 1', enters to-

[ -2(:"y,1 
0 -j 0 

- (21'0+1'1 +y~) J -;.;] +) -J - (21'0 + 51', +yD 

0 0 +..f6j - 61'1 

- 4(y~ + y~') (nJ (11) 

gether with the local term Yo, one can think of the com­
bination (Yo + I'D as an effective local scattering (local 
to the cluster). 

For 2j> (Yo+yD, the eigenvalues are complex, and 
oscillations appear in the transfer variable, giving rise 
to coherent behavior. 

The more general case j" = 0 can be solved numerical­
ly, but no new qualitative features are likely to appear 
so this has not been carried out. 

IV. THE TRIMER: FORMULATION AND 
APPROXIMATE ANALYSIS 

The parameters of the trimer problem are defined 
analogously to those of the tetramer; see Fig. l(b). 
The Liouville matrix is 9 x 9; a 4x 4 submatrix for the 
intercluster transfer can be isolated by taking the com­
binations: 

n_ = t (2P33 - Pu - P22) , 

II23 = ~ [;i (P13 - P3') + ;i (P23 - P32)] , 

R123 =t [t (P13 + P31) + t (P23 + P32) 1 , 
R I2 =i[PI2+P211 • 

The submatrix is then: 

(R 12 ) 

(R 123) 

(I123) 

(nJ 

(13) 

(14) 
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This matrix displays a complicated series of couplings: 
n_ is exchange coupled to a phase variable which is it­
self exchange coupled to other phase variables (the 
vacuOus term "phase variable" is used here to refer to 
combinations of off-diagonal elements). Of particular 
importance is the fact that the intracluster coupling J 
enters explicitly. 

Although a fourth-order secular equation can be solved 
algebraically, the method is too complicated to be of any 
practical use. Two approaches are presented here: a 
simple perturbative calculation in this section and a nu­
merical solution in the next. 

In order to use perturbation theory one must specify 
a small parameter. In keeping with the discussion in 
the introduction, the dimer coupling J is considered to 
be large, and the monomer-to-dimer coupling j is 
treated as the perturbation: 

L=Lo+LI , 

L'{: 
0 -j 

0 0 

+} 0 0 

0 0 +l6j 

(15) 

The first-order correction to the transfer eigenvalue 
obviously vanishes. The second-order correction is 
obtained by transforming L to make L 0 diagonal, which 
is equivalent to choOSing a basis that is diagonal in the 
isolated dimer eigenstates. (Alternatively, one may 
express the second-order correction in terms of the 
right and left eigenvectors of L, remembering that L is 
not Hermitian and that its eigenvectors are therefore not 
orthogonal). The result is 

[ 
6l(2Yo+Yl-5y,) ] (.> ) 

A=- 6YI+ (2Yo+y~-5YI)(2y0+Y~-YI)+J2 , ) 21'1 • 

(16) 
A similar, but distinct, expression is obtained for the 
case jS 2yl' 

The second-order term has a Golden Rule structure, 
and is in accordance with the concept of a time-indepen­
dent transition rate between the monomer and dimer 
states. As expected, the transition rate is diminished 
by increasing the dimer splitting; this can be ascribed 
to an" energy-mismatch" effect. Indeed, the scattering 
parameters and the internal coupling J play analogous 
roles in this limit, as is apparent from the structure 
of the expression. Both J and the I' parameters tend to 
retard the transfer. A comparison of the second-order 
expression to the exact result is given in Fig. 2. One 
can see that the perturbative treatment works quite well 
for j < J, as expected. 

V. THE TRIMER: NUMERICAL RESULTS 

The principal virtue of the Haken-Strobl model is that 
it is not restricted to weak-coupling limits, but yields 
sensible results over the entire range of parameter 
values. Although the perturbative evaluation in the last 
section is interesting in that it elucidates the relation­
ship between the exact Haken-Strobl results and concepts 

-< 
I 

co 

I 
I 

I 

o +--~=-+----+-------+--.-------1 
-2.00 -1.00 0.00 1.00 2.00 

LOC J/J 

FIG. 2. Comparison of exact (solid line) and approximate 
dashed line) results for the transfer eigenvalue A.. In this ex­
ample, 1'1=1';=0.1 l'o=O.OlJ. A. is measured in units of 1'1' 

based upon weak-coupling theory, it does not exploit the 
full potential of the model. Moreover, within the weak 
coupling limit one can get more accurate results by us­
ing more sophisticated approaches in which the phonon 
bath is explicitly included. 9

•
10 The most interesting 

feature of the present work arises from a consideration 
of the numerical results. 

The eigenvalues and eigenvectors of the L matrix (by 
which we mean the 4x 4 submatrix) were obtained by 
standard methods, using a QR algorithm. The subrou­
tines used were provided by the University of Michigan 
Computing Center. Since the L matrix contains five in­
dependent parameters, some a priori restrictions are 
called for in order to simplify interpretation. We chose 
to set YI = y~ and Yo =: 10 YI, in accordance with the preva­
lent belief"· 12 that local scattering dominates. Since 
we did not study the separate effects of Yo and 1'1' we 
will refer to them in compoSite as "r." We then fol­
lowed the behavior of the transfer eigenvalue A, and of 
the eigenvector associated with that eigenvalue, as a 
function of j/J and r/J. 

One rather interesting result that emerges is that 
there is not a distinct transitio·n from OSCillatory to 
nonoscillatory behavior, such as was seen for the dimer 
and the rectangular tetramer. The L matrix always has 
two complex eigenvalues for small j with respect to J, in­
dependently of j. For arbitrarily small j/J, an oscilla­
tory component is present in the transfer due to the 
coupling of the transfer variable to those modes as­
sociated with complex eigenvalues. (For r large with 
respect to J, all eigenvalues are real, but it is natural 
to ascribe this to a loss of coherence in the internal dy­
namics of the dimer. The general criterion for this 
change in the number of eigenvalues has not been ob­
tained explicitly; for j = 0 it occurs at J = 2y I') One can 
interpret this phenomenon in various ways, depending 
upon one's choice of basis. Although, since n_ is not an 
observable, one should not ascribe too much Significance 
to the oscillations, they do provide an interesting exam­
pIe of exchange coupling in a three-level system. 

Although a sharp transition does not exist, something 
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FIG. 3. The transfer eigenvalue A as a function of j/J for 5 

values of 'Yo: from left to right, 'Yo~O.OlJ, O.lJ, J, lOJ, and 
100J. (The curves for 'Yo = O. OlJ and O. lJ are barely distin­
guishable.) 'Yl ~ 'Yl ~ 0.1 'Yo. 

very like one can be seen in Figs. 3 and 4, which show 
the values obtained for the transfer eigenvalue A and 
one component of the associated eigenvector, u. The 
component chosen is that which tends to 1 as } tends to 
0; it thus describes the extent to which the eigenvector 
is dominated by the transfer variable. The results are 
represented as functions of .1/J for various r. It can 
be seen that over a short range of }/J (roughly one order 
of magnitude) the transfer eigenvalue increases rapidly, 
while the eigenvector component drops from 1 to 0.5, 
indicating extensive exchange coupling. One can also 
see that for }>J, the position of the transition is ap­
proximately independent of r. The transition can then 
be interpreted as a quasiresonance effect. An increase 
in r serves to sharpen the onset of the transition Slightly, 
as can be seen by comparing the values of A and u at 
.1/J= 0.1 in Figs. 3 and 4. From the same pOint of view, 
this can be ascribed to a damping of the quasiresonance 
by phonon scattering, so that the clusters need to be 
closer to resonance in order for quasiresonant enhance­
ment to occur. The perturbative expression in the last 

---+ -- -----; 

-I.UO 1.00 2.00 

FIG. 4. The "transfer component" u of the eigenvector asso­
ciated with the transfer eigenvalue as a function of .i/'] for 4 
values of 'Yo: from left to right, Yo~O.lJ, J, lOJ, and lOOJ. 
(If it were shown, the curve for Yo c (). 01J would superimpose 
upon that for O.lJ). 'Yl' Y1 = 0.1 Yo· 

ii, 

FIG. 5. Transfer eigenvalue A and eigenvector component If as 
functions ofi / J for Yo cO. IJ, Yl 0, y\. A is measured in units 
of 0.1 Yo' 

chapter also displays this effect, as is expected since 
it is quite accurate in this region. 

For Yo> 10J (or YI>J), the same qualitative features 
emerge, except for a pronounced shift in the transition 
region with increasing r. Indeed, under these conditions 
the transition occurs at a given value of }/r, rather than 
of J/J. r has now become the large parameter in the 
system, and a competition between} and r dominates 
the problem. Since all eigenvalues are real, the trans­
fer is necessarily incoherent in this regime of parame­
ter space. 

In Fig. 5, the results obtained for Yo<J and 1'1 =0 are 
displayed. Since the limiting value of A as i tends to 
zero is 61'1' it is obvious that A must drop to zero in 
this case. (In order to facilitate comparison to the 
other figures, A is measured here in units of 0.1 Yo' 

In the other figures it has units of 1'1' with Yo =' IOYI_') 
Otherwise, the qualitative form of the results does not 
differ much from the previous cases. Since the Haken­
Strobl model neglects cross correlations between local 
and nonlocal fluctuations, the separate effects of the 
local and nonlocal parameters may not have much genuine 
significance. 

As a final observation, one may note that although 
oscillations in the transfer persist below the transition 
region, their effects are extremely minor since the con­
tributions of the eigenvectors having complex eigenval­
ues to the transfer variable are very small. This 
agrees with the purely real form of the second-order 
result; the oscillations are a higher-order effect. One 
is reminded of a similar complicated oscillatory motion 
which appears in the Redfield equations for spin relaxa­
tion and which is usually neglected on physical 
grounds. 8 (b) 

VI. DISCUSSION 

Although the calculations presented here are entirely 
straightforward and the results intuitively reasonable, 
to our knowledge nothing quite like them has been pre­
sented before. Indeed, with few exceptions (notably thc 
interesting finite-chain calculations of Aslangul and 
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Kottis I3), the Haken-Strobl model has not been applied 
to finite systems other than the dimer. This is rather 
surprising, since it is an extremely useful tool for ex­
ploring the qualitative features of relatively complicated 
systems. Indeed, it may be better suited to this task 
than to the quantitative interpretation of experimental 
data, for which is has often been used, since the experi­
mental systems rarely conform to the rather stringent 
hypotheses of the model. For this reason we have not 
attempted to calculate such experimental observables 
as the optical line shape, although this can readily be 
done (it requires a somewhat different approach, spe­
cifically a different subset of density matrix elements) • 

Since we have not dealt with experimental observables, 
we have used somewhat imprecise language in several 
places. For instance, we have referred to a certain 
combination of diagonal density matrix elements as a 
"transfer variable," implying that the evolution in time 
of this quantity reflects the flow of energy in the system. 
This is only true for weak coupling. For j =J, the en­
ergy should be regarded as delocalized over the aggre­
gate, and the oscillations in population have little direct 
significance. We have also suggested, implicitly, an 
initial condition in which the excitation is completely 
confined to a portion of the aggregate. This is also only 
appropriate for weak coupling; it is difficult to conceive 
of an experiment that would allow such an initial condi­
tion when the coupling is strong. Our language, as well 
as our choice of basis, arises from weak-coupling con­
cepts and is inappropriate outside that regime; this has 
no bearing on our explicit results, which are of course 
independent of basis or interpretation. In this context, 
we remark that the choice of a transfer variable is in­
dependent of the basis used for the dimer portion of the 
aggregate, since all dimer states are summed over; one 
could also write: 

n_=t(2P33-P .. -P_J, 

(17) 

The perturbative calculation in Sec. IV involves an 
implicit transformation to this basis. 

With regard to interpretation, perhaps the most rele­
vant quantities are the eigenstates of the L matrix, 
since they display the extent to which the population 
changes are coupled to the phase variables, and thus 
provide an intrinsic measure of the coherence of the 
aggregate. A complete interpretation, of course, can 
only be made in the context of a physical observable. 

Finally, we point out that the very different behavior 
of the tetramer and the trimer has a simple physical 
interpretation. In the former case, there is no mis­
match between the zero-order U = 0) energies of the 
two clusters, so that the transfer is resonant. In the latter 
case, there is such a mismatch, and the transfer is reso­
nant or nonresonant depending upon the relative sizes 
of j and J. This interpretation, while fruitful (and prob­
ably valid for a much wider range of circumstances than 
our model itself is) is not quite general since one can 
produce cases in which the intracluster interactions 
enter into the equation of motion for the transfer vari-

able even though the clusters are energetically equiva­
lent when the intercluster interaction is neglected. A 
simple example of this can be obtained by taking the 
rectangular tetramer in Sec. III and modifying it so that 
H 14 '* H 23 (so that it becomes a trapezoid). A general 
discussion of these points is provided in the Appendix. 

We now speculate upon the implications of these re­
sults for energy transport in disordered media. Our 
analysis confirms the intuitively reasonable idea that 
if the intercluster interactions are much weaker than 
the intracluster ones, then the overall transport of en­
ergy in the system may be well described by incoherent 
hopping among clusters within which the excitation is 
delocalized. The varying intracluster interaction 
strengths, arising from the various types of clusters 
in the medium, produce an effective energetic inhomo­
geneity in the system. Thus, in a random lattice in 
which intermolecular interactions vary very strongly 
with distance (e. g., high-order multipole or exchange 
interactions) the formation of localized or pseudolocal­
ized cluster states can produce an element of random­
ness, in addition to the spatial disorder itself, which 
should be considered when constructing a model for 
transport in such a system. At low temperatures 
(kT < J) one may expect additional effects of this general 
character to arise from detailed-balance and phonon 
structure effects; these are of course absent in our 
model, which is restricted to the high temperature 
limit. 

As an example of this situation, we consider the well­
studied first triplet exciton of naphthalene, for which 
the nearest-neighbor dimer interaction is 1. 25 cm -1.14 
This is small compared to the optical phonon bandwidth, 
so that we may expect the Haken-Strobl model to be use­
ful at temperatures considerably greater than 2J = 3.5 K. 
We take j to be the out-of-plane near-neighbor interac­
tion; this quantity is not known precisely but is known 
to be less than 0.1 cm-I.14 This particular interaction 
is very important since it determines the extent to which 
the excitation migration can be treated as two dimension­
al. If we take j = O. 03 cm- I

, then using data from Refs. 
12 and 14 for the parameters Yo = 0.11 cm-I, yf = O. 01 
cm-I , (YI is not known but we may neglect it as being 
at least as much smaller than j as yf is smaller than 
J) we find from our perturbative expression [Eq. (16) I: 
- A = 7.7 X 10-4 cm-I, which agrees within experimental 
accuracy with the result from the numerical calcula­
tion: - A = 7. 66x 10-4 cm-I. Thus the transfer from a 
closely coupled dimer to an out-of-plane monomer is 
considerably smaller than the transfer rate from a hy­
pothetical noninteracting dimer to the monomer; the 
latter would be given by the perturbation expression 
with J = 0: - A = 3//yo = 2. 4X 10-2 cm- I • 

At low temperatures one expects such effects to be­
come more severe. We are presently investigating the 
incorporation of energetic disorder into models de­
scribing transport in spatially disordered systems. 

APPENDIX 

We consider here the conditions under which the 
evolution of the intercluster populations can be de-
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coupled from the intracluster dynamics, i. e., under 
which the equation of motion of n_(t) does not involve ele­
ments of the site-basis Hamiltonian which only couple 
sites belonging to a single cluster. This discussion is 
far from complete, but does provide some insight. 

It is sufficient to consider only the coherent dynam­
ics' since the incoherent terms connect a nondiagonal 
density matrix element only to itself and to its complex 
conjugate. This is a result of a model assumption (ab­
sence of cross correlations) whose validity has not been 
well established; in particular, one may intuitively ex­
pect it to fail at low temperatures. 

The coherent equations of motion for the real and 
imaginary parts of the density matrix take the form: 

~~ =[H,Rl ( 

~! = [H,Il , 

, p =R + if , (AI) 

where Hand R are symmetric, while I is antisymmetric. 
The equations for the populations are: 

dRnn = 2(H • I) . 
dt nn 

(A2) 

Partition the set of site indices S = {n} into sets corre­
sponding to two clusters: S =A U B, and write the equa­
tion of motion for the difference in populations between 
the clusters (henceforth, unprimed indices denote mem­
bers of A and primed indices members of B): 

(A3) 

+ L (A4) 
n,l,n' , " 

Since (HI) is antisymmetric, the first two sums, which 
can be written as traces of (HI) over the two subsets, 
vanish identically. Equation (A4) then becomes (using 
the antisymmetry of I): 

dn_ = 2 2:; Hnn' In' n • 
dt nn 

(A5) 

We now write the equation of motion for In'n: 

dIn'n = 1: Hn,R'n' - L Hn'" R"n + L (Hn" R"., -Hn"R'n)' 
dt, /' '," 

(AB) 
which displays the intracluster elements explicitly. It 
is clear that in order for the intracluster elements to 
disappear, some of the H elements must be equal to one 
another (if one omits the trivial cases of all Hnn' or all 
Hnl , Hn'" being equal to zero). 

To formulate this point explicitly, we consider sets 
containing pairs of site indices, i. e., direct product 
sets: 

Define the following partitions on these sets: 

AX =AE1UAE 2U'" UAl;nUAN 

BX = aE' 1 U aE' 2U ... U aE' n U BN 

The sets A E, rr are defined by the property: 

(AB) 

V(n,m),-AE
; and V(n',m')(~rr;, Hnm"Hn''''' =nEi. 

Thus, we pair up equivalent bonds in the separate clus­
ters. The sets AN, BN contain all those elements which 
cannot be paired up in this way. The set of intercluster 
pairs C is also partitioned: 

V(n,n')cC e
; , 

(A9) 

so that equivalent bonds connecting the clusters are col­
lected together. 

Now rewrite Eqs. (A5) and (A6): 

(AlG) 

~ = L HE; L' (R ,n, -RI'n) + (intercluster terms) 
dt E; 1,1' 

(A11) 

where primes on the sums indicate restrictions to mem­
bers of the set denoted by e or E. Then for a given C, 
One can write: 

~ L (Inn') = L HE; L" (Ria' -RI'n) 
dt ",n'ECei Ei ",n'.l,t' 

j (terms in AN, EN) + (intercluster terms) (A12) 

where the" indicates the restriction: Hnn' =Hei and 
H In = H I' n' = HE; . The sum runs over all values of the 
four indices which satisfy these restrictions. 

Now clearly, if the combination (R 'n' - Rn' I) appears, 
then the combination (Rn I' - Rn' I) is also allowed by the 
restriction. But, since R is symmetric, this term is 
the negative of the other. The entire sum then vanishes 
by pairwise cancellation. 

Thus, if all inter cluster and intracluster bonds can be 
paired up in this way, i. e., if the residual sets (denoted 
by superscript N) are empty, then the contribution of thE 
intracluster bonds to the dynamics of the intercluster 
transfer disappears. There is no guarantee, however, 
that these bonds will not reappear when the next set of 
equations in the hierarchy is written, i. e., the equation 
of motion of the R'n' R /'n' which appear in the last sum 
in Eq. (A6). When the intercluster coupling is small, 
this truncation of the hierarchy amounts to retaining 
terms up to second order in the inter cluster interac­
tion. 

A similar criterion to this can be derived by working 
in a basis in which the intracluster Hamiltonians are 
diagonal. The condition on intracluster terms becomes 
a condition that the clusters have the same energy level 
structure (when the inter cluster terms are set equal to 
zero) and the condition on inter cluster terms becomes 
a requirement that matrix elements connecting levels 
in the two clusters which are not isoenergetic should 
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vanish. It appears, then, that in general it is not suf­
ficient to assume that the clusters are structurally and 
environmentally identical in order to guarantee the ab­
sence of intracluster terms from the dynamics of the 
intercluster transfer. One expects, however, that when 
the intracluster coupling is strong, the effects of the 
coupling between nondegenerate levels will be much less 
important than those of couplings between degenerate 
levels. 

The effect of the incoherent terms in the equation of 
motion is to cause the various phase variables to decay 
in time. If this damping is very strong for some ele­
ments, then modes which are coherently coupled may 
become effectively decoupled for all but very short 
times, and the overall dynamics will be simplified. 

IC. R. Gochanour, H. C. Andersen, and M. D. Fayer, J. 
Chern. Phys. 70, 4254 (1979); A. Blumen, J. Klafter, and 
R. Silbey, ibid. 72, 5320 (1980); K. Godzik and J. Jortner, 
ibid. 72, 4471 (1980). 

2H. Haken and G. Strobl, Z. Phys. 262, 135 (1973); P. 
Reineker, in Exciton Dynamics in Molecular Crystals and 
Aggregates (Springer, Berlin, 1982). 

3R. Silbey, Annu. Rev. Phys. Chern. 27, 203 (1976). 
'R. Wertheimer and R. Silbey, J. Chern. Phys. 74, 686 (1981). 
5(a) H. Sumi, J. Chern. Phys. 67, 2943 (1977); (b) A. Blumen 

and R. Silbey, ibid. 69, 3589 (1978); B. Jackson and R. 
Silbey, ibid. 75, 3293 (1981). 

6R. Kubo, J. Math. Phys. 4, 174 (1963). 
71. B. Rips and V. Capek, Phys. Status Solidi B 100, 451 

(1980). 
8(a) P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954); (b) C. 

P. Slichter, PrinCiples of Magnetic Resonance, 2nd ed. 
(Springer, Berlin, 1980), Chap. 5. 

s-r. F. Soules and C. B. Duke, Phys. Rev. B 3, 262 (1972); 
S. Rackovsky and R. Silbey, Mol. Phys. 25, 61 (1973). 

lOT. Holstein, S. Lyo, and R. Orbach, in Laser Spectroscopy 
of Solids, edited by W. Yen and P. Selzer (Springer, Berlin, 
1981), Chap. 2. 

IIV. Ern, A. Suna, Y. Tomkiewicz, P. Avakian, and R. P. 
Groff, Phys. Rev. B 5, 3222 (1972). 

12H. Port and H. C. Wolf, Z. Naturforsch. Teil A 30, 1290 
(1975) . 

13C . Aslangul and P. Kottis, Adv. Chern. Phys. 41, 321 
(1980) . 

I'H. PortandD. Rund. J. Mol. Struct. 45,455 (1978). 

J. Chern. Phys., Vol. 79, No.3, 1 August 1983 


