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The Kuwabara solution for creeping fluid flow through periodic arrangement of cylinders is 
widely used in analytic and numerical studies of fibrous filters. Numerical solutions have shown 
that the Kuwabara solution has systematic errors, and when used for the particle trajectories in 
filters it results in some error in the predicted filter efficiency. The numerical solutions, although 
accurate, preclude further analytic treatments, and are not as compact and convenient to use as 
the Kuwabara solution. By reexamining the outer boundary conditions of the Kuwabara 
solution, a correction term to the Kuwabara solution has been derived to obtain an extended 
solution that is more accurate and improves prediction of the filter efficiency. By comparison 
with the numerical solutions, it is shown that the Kuwabara solution is the high porosity 
asymptote, and that the extended solution has an improved porosity dependence. A rectification 
is explained that can make particle collection less efficient for periodic, in-line arrangements of 
fibers with particle diffusion or body force. This rectification also results in the alignment of 
particles with inertia (i.e., high Stokes number particles). 

1. INTRODUCTION 

Studies of fibrous filters commonly use the idealization 
of the creeping fluid flow through a periodic arrangement 
of cylinders, as shown in Fig. 1 (a). The assumption of 
periodicity allows for the analysis of a single fiber with the 
appropriate boundary conditions. There is no exact ana- 
lytic, closed-form compact solution for this two- 
dimensional flow. The Kuwabara’ creeping fluid flow so- 
lution uses a cylindrical unit cell to approximate the local 
flow through arrangements of cylinders. When used in pe- 
riodic arrangements of cylinders such as an in-line and 
isotropic arrangement, the Kuwabara approximation to 
the square unit cells leads to errors, because the Kuwabara 
solution does not satisfy the periodic boundary conditions. 

The Kuwabara solution is widely used for studies of 
flow through fibrous filters (e.g., Banks,’ Banks and 
Kurowski,3 and Choo and Tien4>. Despite this shortcom- 
ing with the periodic boundary conditions, many useful 
results have been derived from the application of this so- 
lution to particle capturing in fibrous filters. The Kuwa- 
bara solution is compact and can be calculated with only a 
few operations, which is important, for example, in the 
Monte Carlo simulations, which require repeated calcula- 
tions. As will be shown, the Kuwabara solution is also 
valid as a high porosity asymptote. 

Accurate numerical solutions of the flow through 
equally spaced (i.e., isotropic), periodic arrangement of 
cylinders has been given by Sangani and Acrivo~.~ Even 
though their method can be used to obtain high accuracy, 
there are still some advantages in having an analytic solu- 
tion, as evidenced by the continued use of the Kuwabara 
solution. The Kuwabara solution is widely used because it 

is simple and allows for analytic treatment of the particle 
capture. However, as mentioned above, it assumes a circu- 
lar unit cell, and therefore lacks the accuracy in simulating 
the flow field in a square unit cell. Here improvement to 
the Kuwabara solution is sought by using an extension that 
will improve the solution for the square unit cell. This 
extension of the Kuwabara solution uses a geometric per- 
turbation in order to obtain the square unit cell from the 
circular unit cell. In order to access the accuracy of this 
approach, this extended analytic solution is compared with 
the numerical solutions of the fluid flow through the in-line 
arrangement of fibers shown in Fig. 1 (a). Then this im- 
proved analytic solution, the Kuwabara and the numerical 
solutions, are used to calculate the particle trajectories and 
the particle capture efficiency. The capture mechanisms 
considered here are impaction and sieving. Capture by im- 
paction occurs when the particle touches the fiber, and 
then it is assumed that the particle adheres to the surface. 
Capture by sieving occurs when the particle diameter is 
larger than the clearance between the fibers. Hence sieving 
is geometrical and occurs only in the entrance region of the 
filter. 

In Sec. II we introduce the numerical solution for iso- 
tropic and anisotropic, in-line arrangements of cylinders. 
In Sec. III the analytic correction terms are derived. In 
Sec. IV the local velocity, the streamfunction solutions and 
the errors are examined. In Sec. V we show the compari- 
sons of the impaction efficiencies. In Sec. VI we evaluate 
the derived and the numerical inertial collection efficien- 
cies. In Sec. VII we examine particle rectification effects 
found in this study. 
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FIG. 1. (a) Periodic arrangement of cylinders with a square unit cell. (b) 
Boundary conditions used for the numerical solution. (c) Solution do- 
main for the analytic solutions. 

II. NUMERICAL SOLUTION 

Sahraoui and Kaviany6 solved the Navier-Stokes equa- 
tion for the fluid flow in in-line and staggered arrange- 
ments of cylinders. Here the same numerical method is 
used to solve for the Stokesian flow through an in-line 
arrangement of fibers. The periodic arrangement of fibers 
can be represented by the unit cell shown in Fig. 1 (b) . Due 
to the presence of the fiber within the square unit cell, the 
Cartesian coordinates are not accurate for mapping the 
fiber, unless a very large number of grid points is used. 
Accurate results can be obtained by using a domain de- 
composition, where a cylindrical grid net is used near the 
fiber and a Cartesian grid net is used away from the fiber. 
Iteration for the solution is performed in both grid nets and 
a bilinear interpolation is used to communicate between 
them. In the case where multiple fibers are used, the same 
procedure is repeated for every fiber. More details about 
the domain decomposition can be found in Sahraoui and 
Kaviany” and Prata and Sparrow.’ The equations are non- 
dimensionalized using the length scale 4 the linear dimen- 
sion of an isotropic unit cell. For anisotropic unit cells, we 
use the length scale L = m where 4 and t’y are the 
dimensions of the unit cell in the x and y directions, re- 
spectively. The volume-averaged, x component of the ve 
locity (or Darcean velocity) is used as the velocity scale, 
and is given by 

s 

0.5 
u~=(u>= u dy. 

-0.5 
(1) 

The governing equations for the fluid flow in the Cartesian 
coordinates are 

au a0 
-&+;i;‘o, (2) 

ap a% a224 
-~+g+&T=Q (3) 

ap a% azv 
-dy+Q+g=o’ (4) 

and in the cylindrical coordinates, the radial and tangential 
components of velocity (v, and vO) are given by 

at-v, au0 
-p--#=Q (5) 

-g+[i$(rg)+f$ (ig)]+S,=O, (6) 

-~$+[~$(rt$)+~~ (f$)]+So=O, (7) 

where the source terms S, and Se are 

Sr=( -2$+$$+i$ (r$)+-$ [$(s)l), 

(8) 

(9) 

The above equations are solved by using the no-slip bound- 
ary condition on the surface of the fiber and the periodic 
boundary conditions at the boundaries of the unit cell, as 
shown in Fig. 1 (b) . 

The momentum equations are solved using the finite- 
volume method and the pressure correction method, as 
suggested by Patankar.8 As will be shown, for low poros- 
ities the numerical solutions are more accurate than the 
Kuwabara solution for the fluid flow in periodic arrange- 
ments of cylinders. The numerical integration also allows 
examination of the flow field in the entrance region of the 
filter (e.g., Kaviany’). In this region the condition of pe- 
riodicity is not valid. For the study of the particle capture 
this entrance effect can be important. In Sec. VI E we ex- 
amine the results of the numerical simulations of the flow 
in the entrance region for the in-line arrangement of cyl- 
inders. For these entrance simulations, we use three fibers 
aligned in the direction of the flow (i.e., the x direction). 
Since the fluid flow is not periodic at the inlet, then differ- 
ent boundary conditions are used. At the inlet (i.e., x=0), 
we use 

u=l, u=o, x=0. (10) 
At the exit (i.e., x= L), we use the periodic boundary 
condition 

u(L,y)=u(L-ly), zJ(Lry)=u(L-l,y), x=L. 
(11) 

A. Two-dimensional anisotropy 

In modeling the flow through fibrous filters, the in-line 
arrangements of cylinders are usually used. In these mod- 
els, the periodic unit cell is chosen to have the same length 

506 Phys. Fluids, Vol. 6, No. 2, February 1994 Marshall, Sahraoui, and Kaviany 



!P) 

- 

-----* 
---.* 
- 
- 

* 
--t 
- 

t 

I 

(b> 

3 
‘1% es 
CL loo : 

< 
8 

.2=0.95 
In-line Cylinders 

\ 

FIG. 2. (a) Unit cell used to examine the effect of cell anisotropy on the 
pressure drop. (b) Pressure drop for creeping flow over an anisotropic, 
in-line arrangement of cylinders. The pressure drop is normalized with 
the isotropic arrangement. 

in the longitudinal (along the flow) and the transverse 
(orthogonal to the flow) directions (i.e., G=G= 1). How- 
ever, examination of the micrographs of fibrous filters 
shows that the fibers are very close in the longitudinal 
direction and far apart in the transverse direction. This 
anisotropy, among other geometrical factors, contributes 
to the discrepancy between the predicted and the experi- 
mental results for the pressure drop in fibrous filters. Using 
the two-dimensional numerical simulation, we examine the 
effect of this anisotropy on the pressure drop by varying 
the cell dimensions in the x and y directions, as shown in 
Fig. 2 (a). The same porosity and the average tlow rate are 
maintained the same and the pressure drop over the same 
distance, which is the dimension of the isotropic cell 
( m = 1) , is determined. The results of these computa- 
tions are given in Fig. 2(b), and they show that as the 
transverse period (/) increases, the pressure drop across 
the same distance $ decreases significantly. This result is 
consistent with the experimental results, which give a pres- 
sure drop that is lower by about 60% than that for the 
square (i.e., isotropic) unit cells (as reported by Liu and 
Rubow”). For <,/4=4 (<=2 and /X=O.5), the pressure 
drop is about 25% of the pressure drop for the isotropic 
structure. This shows that a significant portion of the pres- 
sure drop is due to flow restriction between the cylinders. 

This is also shown by decreasing 4, which results in a 
significant pressure drop, as shown in Fig. 2(b). 

III. ANALYTIC SOLUTIONS 

First, in Sec. III A the Kuwabara solution for the 
Stokesian flow in a cylindrical domain, as shown in Fig. 
1 (c)i is reviewed. Then, in Sec. III B the extension to this 
solution for the square unit cell, also shown in Fig. 1 (c) , is 
developed. In Sec. III C, the extension to the anisotropic, 
periodic arrangements is developed. 
A. Kuwabara solution 

As mentioned above, the Kuwabara solution’ approx- 
imates the periodic structure by using a cylindrical outer 
boundary. The governing equation for the streamfunction 
$ is given by 

v41j=o. (12) 

The boundary conditions at the surface of the fiber are 

v,=ve=O, at r=R, (13) 
where v, and ve are given by 

1 a* a* 
4’; z and ve=--. dr (14) 

For the outer boundary, Kuwabara uses 

v,=cos0 and o=O, at r=R+AR, (15) 
where w is the vorticity. The solution to Eq. (12) is 

$(r,@=R Cl f 3 
IO 

sine. 

(16) 
The coefficients Ci to C4 are found using the boundary 
conditions (13)-( 15), and they are given by 

4 
c4=- 2hr(l-e)-1+44~+(1--&’ (17) 

(18) 

(19) 

c,=-q-c,, 

where E is the porosity given by 

e=l---?rR2, 

and for the circular unit cell it is given by 

(20) 

(21) 

(22) 

B. Extended analytic solution 

The purpose of extending or improving the Kuwabara 
solution are threefold. It is practical to find a new solution 
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that is more accurate, but still compact and not of over- 
whelming complexity nor a slowly converging series, such 
as the one suggested by Hasimoto.” 

Since the Kuwabara solution is in much use, and as we 
shall show later, in the limit of high porosity it is a good 
approximation, the new analytic solution is obtained by 
adding a correction term to the Kuwabara solution. This 
additive correction form is possible because of the linear 
superposition of the eigenfunctions of the biharmonic op- 
erator. 

From the boundary conditions for the Kuwabara so- 
lution in Eq. ( 15>, we note that the only element of a 
periodic cell or even a square surrounding cell is that the 
outer radius can be chosen so that the solid fraction of this 
cylindrical region is the same as the square unit cell. This 
is indeed how the Kuwabara solution is used (e.g., 
Banks’). No other influence of the square unit cell is found 
in the Kuwabara solution. This greatly reduces the math- 
ematical complexity since the eigenfunctions of the equa- 
tions have a convenient form in the cylindrical coordinates, 
but reduces the accuracy of the solution away from the 
cylinder, which, in turn, affects the accuracy of the predic- 
tion of the particle trajectories and collections. 

In this extended analytic solution we attempt to cor- 
rect for this problem. Due to the symmetry of the geometry 
and the flow considered, we can fold the domain into one- 
quarter, as shown in Fig. 1 (c). The boundary conditions 
we use along the cylinder surface are the same as the no- 
slip boundary in the Kuwabara solution. These are the 
appropriate boundary conditions, as long as the mean-free 
path of fluid molecules is much smaller than the fiber di- 
ameter. The equations to be solved for this creeping flow 
are 

V2$=co, (23) 

v20=o. (24) 

The streamfunction solution, which satisfies these govern- 
ing equations in a square unit cell and the no-slip boundary 
conditions in the cylindrical coordinates, is known (e.g., 
Sangani and Acrivos’), and is 

+=( g[ al 

2hrr -(:)‘2lnX+l]]’ -2lnR+l 

.kf3+ j2 [@+I[ l-,.(~~-*,,,-,,(~)-] 

XL@+‘[ 1(2n-l)(~~-4+2(n-l~(;)4~-2]] 

xsin(2n-l)& (25) 

Sangani and Acrivos5 have used the collocation method (a 
spectral numeric method) to solve for the spectral coeffi- 
cients aI, and b,. This is done by using the appropriate 
boundary conditions at some discrete points on the Carte- 
sian boundary of the square unit cell. Then they form lin- 

ear equations for the coefficients a,, and b, for each bound- 
ary collocation point. This provides an accurate numerical 
method of solving for the fluid flow. 

The outer boundaries of the square unit cell in Fig. 
1 (c) can be represented, in the cylindrical coordinates, as 
having a distance r from the center point and an angle 8. 
Then we can define S(0) such that when it is added to the 
outer radius R+ AR, it gives the square unit cell in the 
polar coordinates as 

r=(R+AR)+S(O). (26) 

Note that S( 0) for the square geometry is always less than 
0.23. Thus s(e) is always a small parameter and can be 
considered as a perturbation. This is a perturbation expan- 
sion from a cylinder to a square. The expansion of the 
streamfunction is given by 

~=f!o+wl+eh. (27) 

Substituting this into the linear biharmonic, Eq. (12) gives 

V4$o=0, at order So, (28) 

V4$r=0, at order 8’. (29) 
The boundary conditions we will use are 

and 

The problem with these boundary conditions is that 
there is no explicit dependence on S( 0). This can be ob- 
tained by a perturbative expansion of the boundary condi- 
tion and a Taylor expansion about R + AR. The result is 

au0 x (r&J) =z (r,e) lR+m+~~ (r,e) 1 s(e). R+hR 
(32) 

The order So boundary condition is 

=o, (33) 
R-I-AR 

and for the S’ is 

s(e). 
R+AR 

(34) 

Note the explicit dependence of the boundary condition on 
the geometry. Then S’ can be expanded in a Fourier series 
in sin[ (2n - 1) 61, and the boundary conditions are used to 
calculate the coefficients in Eq. (25). 

The resulting solution is not very accurate for low 
truncations. For high truncations the formula becomes ex- 
cessively large. Sangani and Acrivos5 used 6-40 terms for 
accurate numerical solutions. This analytic method will 
produce accurate results if enough terms are included from 
the expansions. However, it does not provide a useful, 
compact formula. For this analytic form, each successive 
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coefficient depends on the previous coefficients. Thus the we shall show in Sec. IV the above boundary conditions are 
length of the analytic solution becomes overwhelming for adequately satisfied for many situations. Other expansion 
this method. In contrast, our goal is to obtain a reasonably terms need to be included for the anisotropic unit cells, and 
compact analytic solution. this will be discussed in Sec. III C. 

The problem is that the basic state of the perturbation 
is not a very efficient approximation. The Kuwabara solu- 
tion is a better approximation than the lowest term in Eq. 
(25) with the above approximations. The above solution 
method is more accurate only when enough expansion 
terms are included. Since our goal is to have both an ac- 
curate and compact formula, the Kuwabara solution is 
used as our basic state. Note that the streamfunction ob- 
tained by Kuwabara is essentially the sin 8 term in Eq. 
(25) with a particular choice of the coefficients. Thus our 
solution is still of the form of Eq. (25). With the Kuwa- 
bara solution as the basic state, we proceed with a stream- 
function given by 

The resulting extended solution for the total stream- 
function is 

$(r,e)=R C, f 3+Czi+C3:+C4iln f 
IO ( )I 

xsin e+(C5RV[ 1+2(;)(-3(;)*] 

+C,?[ l+3(~)s-4(~)6]]sin(3B), (38) 

$=$K+k (35) 

where ?,& is the streamfunction obtained from the Kuwa- 
bara solution and r/E is the extension that is that part of Eq. 
(25) having the higher-order terms of sin[2( n - 1) 01. As 
will be shown in the next section, the rectangular periodic 
cell requires sin (2n0) due to symmetry changes. The error 
in the streamfunction for the Kuwabara solution in a pe- 
riodic cell, we hypothesize should have a symmetry similar 
to the perturbation parameter S defined in Eq. (26). The 
perturbation S, in turn, has a symmetry like the first term 
of E!q. (25). The convergence of this approximation will be 
the test of this hypothesis. 

where C5 and C, are given by 

C,=-C,( -8R2f256R8-384R10) 

-C,( -R2+256R8-768R’o), 

C,= -C,( 16R4- 192R8f256R10) 

--C8(4R4-192R8+512R10) 2 

where C, and cs are given by 

(39) 

(40) 

The advantage of this formulation is that the Kuwa- 
bara solution is a more efficient choice than the first term of 
E!q. (25). However, the problem with this formulation is 
that Kuwabara’s boundary conditions are not appropriate 
to the square unit cell. In order that ~6, the total stream- 
function, has the correct boundary conditions, we must 
impose a boundary condition on rj and then subtract the 
Kuwabara solution to obtain the boundary condition for 
$E. The two boundary conditions on the total streamfunc- 
tion we use are 

C,= 
4C1- 16R2+ 16C2R2+64C3R4+ 16C4R2 ln( 1/2R) 

c9 
(4;) 

c,= 
16CI-32R2+32CzR2+64C3R4+32C4R2 ln( l/fiR) 

c, 
, 

s 
I/2 

u dy=A& at x= -0.5, (36) 
0 

and C9 is given by (42) 

C,= 16R6- 1344R’“+6912R*2~- 10752R’4+8192R18. 

i 
(43) 

The coefficients C1 through C4 are the coefficients of the 
Kuwabara solution and are given by Eqs. ( 17)-( 20). The 
coefficients of this extended solut$on depend only on the 
porosity and the radius of the fiber, iand for a set of porosity 
and radius they are constants. The equations were manip- 
ulated using the MATHEMATICA sdftware (MATHEMATICA 
is a Copyright of the Wolfram Research Inc). 

s 

l/2 
vdx=O, at y=O.5. (37) 

0 

These boundary conditions are chosen to correct for the 
flow (as predicted by the Kuwabara solution) from the top 
of one cell to another 6Eq. (37)] and to retain the correct 
mass flow rate through the filter [Eq. (36)]. If both Eqs. 
(36) and (37) are satisfied the correct outflow is attained 
as well. More general boundary conditions that include 
these as a subset can be used. We have used other and more 
general boundary conditions, and no improvement in pre 
dieting the local velocity is achieved. Higher-order terms 
greatly complicate the analytic formula and reduce the er- 
ror in the formula by less than a few percent per term. 
Thus our extended solution only includes one higher-order 
sin 8 term than does the Kuwabara solution. However, as 

Equation (38) is valid for small Reynolds number 
(i.e., Re < 1) and typical filters have Reynolds numbers of 
0.1 or less. Porosities from 0.5 to llhave been tested (Sets. 
IV and V). However, typical filters are in the range of 
0.8495. 

C. Anisotroplc extension of Kuhabara solution 

Many titers have fibers that are spaced closer together 
in the flow direction than in the perpendicular. direction. 
To study the effect of this anisotropic distribution of fibers, 
we have examined anisotropic extension of the Kuwabara 
solution to an anisotropic array of fibers. More appropri- 
ately, this is an extension of the’ extended solution dis- I cussed in the last section. As we wrll show this anisotropic 
extension to the Kuwabara solution does improve the ac- 

t 
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curacy of the solution for fibers spaced unequally in the x 
and y directions. However, the compactness of the coeffi- 
cients found in the last section is lost. 

The same geometry is used as in Figs. 1 (b) and 1 (c). 
However, the periodic rectangular cells have nonequal 
sides t’, and 4 with the total area /&,y= 1. Equation (2.4) 
from Sangani and Acrivos5 is no longer valid. It implicitly 
assumes the distance from the cylinder to the edge of the 
cell is equal in both x and y directions. We find that one 
more extended term plus the one we added in the-last 
section are needed to obtain reasonable solutions with at 
least some degree of compactness. 

The method of solution is much the same as in Sec. 
III B, so we will only point out to the differences. The basic 
Kuwabara solution is not the most efficient zeroth-order 
term, but with some small modifications it can be made 

into a first-order term. We modify the Kuwabara solution 
by applying the boundary conditions on an ellipse with 
axes equal to the rectangular axes. We retain the extended 
term with undetermined coefficients of the last section. Fi- 
nally, we add a sin 28 term that is the lowest-order term 
and is not found in Eq. (25) because of the previously 
assumed symmetry. The same boundary condition is used 
as in the previous section only the integrals in Eqs. (36) 
and (37) are divided into smaller segments of the bound- 
aries. 

The resulting solution is not as compact as Eq. (38). 
However, it becomes compact once a porosity and a ratio 
of 4 to /.. is chosen. The reason is the dependence of the 
coefficients on the porosity and the geometry is rather com- 
plex. For a porosity of 0.95 and /$/c$= 1.44, the solution is 

-4.723r-7.809rs+9.943rln(7.927r) 

2.533~10-~ 3.183X1O-2 
r4 -T)?]sin 28+ [1.043X 10-l 

8.063 X 1O-6 7.600X 1O-4 
l+ r6 - r4 

The same anisotropy and a porosity of 0.80 gives the following expression: 

$(r,f3) = 1.593X 10-t 
( 

4640x lo-’ -6.478r- 12.72?+ 16.20r h(3.963r) sin 0+ 1 172 1+ 
r ) [ . ( 5.160: 1O-4 

1.216X 1O-2 4.053 X 1O-3 1.273 x 10-i - 
r4 r4 -,---)rL]sin 2ef [2.374x io-2 

4.928 X lo-’ 5.160X 1O-4 1.216X 1O-2 
r8 1+7- r4 (45) 

Equations (44) and (45) have been derived for an angle 0 
between 0 and n-/2. Using the same formula for angles 
larger than r/2 leads to errors. For these angles symmetry 
is used to calculate the streamfunction. 

We have a closed-form analytic solutions for the coef- 
ficients of the above equation. These can be provided via e 
mail (however, the length approximates the length of this 
article). These solutions can be manipulated via a com- 
puter algebra program such as MATHEMATICA or MAPLE. 

In Sec. IV we show the results of this solution as we 
compare them with the numerical results. 

IV. COMPARISON OF VARIOUS SOLUTIONS 

As previously discussed, numerical solutions to this 
problem are known (e.g., the numerical solutions of San- 
gani and Acrivos5), and are more accurate than the ana- 
lytic solutions. Thus the numerical results from Sec. II will 
be our standard for the comparison. 
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The streamfunction contours using the Kuwabara, the 
extended, and the numerical solutions are shown in Fig. 3. 
Note that the Kuwabara solution has streamlines crossing 
the upper boundary of the unit cell in error. As we shall 
show later this has negative consequences for calculations 
of the particle collection efficiency. The extended analytic 
and the numerical solution show that the flow does not 
cross the upper boundary of the cell, as expected. Figure 3 
also shows that the numerical and the extended analytic 
solution are in good agreement above the fiber. However, 
at the exit and inlet boundaries, the extended analytic so- 
lution deviates from the numerical solution. Further com- 
parisons of the different solutions are given below in terms 
of the velocity fields. 

In Figs. 4(a) and 4(b) we show the velocity errors in 
both the Kuwabara solution and the extended analytic so- 
lution. The velocity error fields for both are constructed by 
subtracting the velocity fields from that of the numerical 
solution. Both Figs. 4(a) and 4(b) are scaled similarly. 
The magnitude of the largest error vector for the Kuwa- 



------- Kuwabara 

- - - Extended 

- Numerical 

TABLE I. Pressure drop predictions for the Kuwabara solution, the 
extended, and the numerical solutions for the in-line arrangement of cyl- 
inders. 

e Kuwabara Extended Numerical 

0.5 368.2 344.6 533.4 
0.6 184.1 177.9 218.3 
0.7 96.88 95.25 103.2 
0.8 49.94 49.64 50.26 
0.9 25.15 25.15 24.87 
0.95 15.74 15.76 15.57 

0 

PIG. 3. Constant streamfunction contours for the Kuwabara solution, 
extended analytic solution, and numerical solution (~=0.95). 

bara solution is 0.349, while that of the extended analytic 
solution is 0.119, and occurs at the inlet and exit bound- 
aries of the unit cell. These results show that the extended 
analytic solution improves the prediction of the local flow 
field over the Kuwabara solution, especially near the upper 
boundary of the cell. This is also shown in Fig. 3, where the 
streamfunction contours for the extended analytic solution 
near the upper boundary is almost rectilinear, as expected. 
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This is an important feature of the analytic solution, since 
mass flow conservation is satisfied at every cross section of 
the square unit cell. The Kuwabara solution has a discon- 
tinuity in the upper boundary streamfunction when con- 
nected to the adjoint cell. 

We have also made the same comparisons for e=O.8, 
and we have found that the discrepancy between the Ku- 
wabara solution and the numerical solution is larger. The 
magnitude of the maximum error vector is 0.690, which 
occurs at the inlet and exit boundaries of the unit cell. The 
maximum error for the extended analytic solution is 0.205. 

The various solutions are also compared by evaluating 
the pressure drop for different porosities. The results are 
presented in Table I. These results show that for high po- 
rosity (i.e., e)O.8), excellent agreement between the nu- 
merical solution and the analytic solutions is obtained. 
Note that for fibrous filters the porosity is larger than 0.8. 
For e=O.7, the difference between the extended analytic 
solution and the numerical solution is about 7%, which is 
acceptable. For lower porosity (i.e., e<O.6), the accuracy 
of the analytic solutions in predicting the pressure drop 
deteriorates further, and a difference of 20% is obtained. 
Since the extended analytic solution is intended to correct 
the Kuwabara solution near the outer boundary of the unit 
cell, the flow near the cylinder is not altered significantly. 
Thus, the Kuwabara and the extended analytic solutions 
predict pressure drops that are very close. 

In Fig. 5 we show the error for the extended aniso- 
tropic solution with /y/fX= 1.44. The magnitude of the 

\,,,w4---r*-+,,,, .-*/n 

PIG. 4. Comparison of the local velocity vector between the two analytic 
solutions and the two-dimensional numerical solution (a) extended ana- 
lytic solution and (b) Kuwabara solution (e=O.95). 

PIG. 5. Comparison of the local velocity vector between the extended 
analytic solution for the anisotropic unit cell for e=O.95 and //& 1.44. 

Phys. Fluids, Vol. 6, No. 2, February 1994 Marshall, Sahraoui, and Kaviany 513 



maximum error vector is 0.182, which is slightly larger 
than that for the square cell. Most of the error in the 
velocity vector occurs near the exit boundaries of the unit 
cell. Thus for small stretches in the y direction, the aniso- 
tropic analytic solution gives good estimates of the particle 
collection efficiency (this will be discussed below). 

V. PARTICLES IMPACTlON EFFICIENCY 

To examine the utility of the extended solution, we 
begin with the particle impaction and the study of particle 
capture in filters with negligible diffusion, negligible sur- 
face forces, and for particles with negligible inertia. With- 
out the inertial effects, the particle paths are entirely de- 
termined by the fluid flow. We assume that particles do not 
affect the local flow and thus follow the streamlines. The 
opposite extreme is the case where the particle inertia is so 
large (i.e., the Stokes number is large), such that there are 
no fluid flow effects on the particle collection. Particle in- 
ertia is explored in the next two sections. 

In Fig. 6, the geometry in aspects of the particle im- 
paction are shown. A particle of radius Rp is collected if it 
impacts the fiber, otherwise it is uncollected. There is a 
critical streamline that distinguishes between the collected 
and the uncollected particles for a given R,. For these 
calculations, we assume that the fluid entering this unit cell 
has a uniform distribution of particles. The eficiency is 
simply the ratio of the collected particles to the total par- 
ticles. For particles larger than the openings between fibers, 
sieving occurs and then they are all collected. 

For each particle radius there is a limiting streamline 
that separates the flow region where particles are collected 
from the flow region where. the particles are not collected. 
Thus the streamfunction with 8 set to ?r/2 and the radius r 
replaced by the fiber radius R plus the particle radius Rp in 
E!q. (38), becomes an analytic relationship for the particle 
collection, which is the advantage of having an analytic 
solution for the fluid flow. We can derive a particle collec- 
tion formula rather than having to recalculate the effi- 
ciency for each particle. The particle capture efficiency is 
given by 

v=ZW$( R,+R, ;) (46) 

=2OOR[ Cl(~)3+Cz~+C3& 

+&$%(y)] -200[C5R2(Rp+R)3 

X [ 1++&&3(&)*j +c,(Rp+R)s 

x [ 1+3(&)8-4(y)6]]. (47) 

Assuming particles do not affect the local flow, the entire 
range of RJR is valid. For small particle (Rp< R), the 
above efficiency expression can be simplified: 

FIG. 6. Impaction schematic. 
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FIG. 7. Particle impaction efficiency for uniformly distributed particles in 
the flow using (a) e=0.95 and (b) ~=0.5. 
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FIG. 8. Collection efficiency error as a function of porosity (R,=R/lO). 

+c42 (I+$)]-200( Izc,$+24C& 

(48) 
From Figs. 7(a) and 7 (b), one can see that close to the 

cylinder (i.e., small dP) both the Kuwabara and the ex- 
tended analytic solution are accurate. The extended ana- 
lytic solution is also accurate near the edge of the periodic 
unit cell (i.e., large Rp=dJ2). The particle collection ef- 
ficiency derived from the extended analytic solution is in 
excellent agreement with those from the numerical results. 
The results from the Kuwabara solution are less accurate 
than the extended analytic solution, especially for lower 
porosity, as shown in Fig. 7(b). The Kuwabara error in- 
creases linearly while increasing the porosity. This is 
shown in Fig. 8, where the particle collection efficiency for 
R,=R/lO is shown for a variable porosity. For low poros- 
ity the discrepancy between the numerical and the Kuwa- 
bara solutions is large, but the extended solution is in good 
agreement for the entire range of porosity shown. 

Figures 9(a) and 9(b) depict the efficiency predicted 
by the anisotropic extended solution given by Eqs. (44) 
and (45) and computed in the same manner as above for 
the square cell, i.e., Eq. (47). The results are for 
//fX= 1.44. As shown, a good agreement is found with the 
numerical results for both porosities. 

VI. INERTIAL PARTICLE COLLECTION EFFICIENCY 

One major mechanism for collection of heavier parti- 
cIes in the absence of external forces is the inertial impac- 
tion. In the previous section we ignored the particle inertia. 
The extent of the particle collection can be determined 
once the particle trajectories through the fiber lattice is 
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FIG. 9. Particle impaction efficiency for anisotropic unit cells using uni- 
formly distributed particles in the flow (a) ~=0.95 and (b) e=O.S 
(q&1.44). 

known. The trajectories can be calculated by using the 
force balance on a particle. The Lagrangian particle mo- 
mentum equation is given by (Tien12) 

4 du’ 
c,g~R*~p* J=6~p*Rp*(u*-u,*), 

P Pdt* (49) 

where RT is the radius of the particle, u* is the fluid ve- 
locity vector, up* is the particle velocity vector, ,u* is the 
dynamic viscosity of the fluid, and c, is the Cunningham 
correction factor, which accounts for the velocity slip when 
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FIG. 10. Sample trajectories for the different solutions. 
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the particle size is comparable to the mean-free path of the 
fluid. The nondimensional form of Eq. (49) is 

dUP St -&-==-- (u-up), 

where St is the Stokes number, defined by 

St=c 2 f;(u*)q2 
s9 pc* * 
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FIG. 11. Particle collection efficiencies for l =0.95 and (a) St=O.COl, (b) St=O.l, (c) St= 1, and (d) St=lOO. 
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The particle velocity vector up is found by numerical inte- 
gration of Eq. (50). The explicit scheme is used for the 
integration. The fluid velocity vector u is obtained from the 
different solutions (numerical, extended analytic, and Ku- 
wabara) . 

A. Periodic flow regime 

For high Stokes numbers, the fluid flow has less intlu- 
ence on the particle trajectory and particle inertial effect 
dominates. For low Stokes numbers, the fluid flow domi- 
nates the particle trajectory. Thus the previous section on 
impaction is the limit for the small Stokes numbers. Figure 
10 shows some sample trajectories for St=O.l using the 
different solutions methods. The extended analytic solution 
predicts better the particle trajectories than the Kuwabara 
solution and both are compared with the numerical solu- 
tion. 

80 - - Kuwabara 

60 

e 

40 

In Fig. 11 we examine the particle collection efficiency 
for the Kuwabara, the extended, and the numerical solu- 
tions. Results are shown for four Stokes numbers that are 
representative of the full range of Stokes numbers. As in 
the previous section, we have assumed that the particles 
entering the unit cell are uniformly distributed in the fluid 
and have a local velocity equal to that of the fluid at the 
inlet boundary of the unit cell. The results of the previous 
section on the particle impaction agree well with the small 
Stokes number results in Fig. 11 (a). Figure 11 (b) shows 
that at St =O. 1 a small deviation occurs in the predictions 
given by the numerical and the extended analytic solution. 
This deviation becomes larger as the Stokes number in- 
creases, as shown in Figs. 11 (c) and 11 (d). Also, as the 
Stokes number increases, the efficiency increases. In all 
cases the extended analytic solution gives a better predic- 
tion of the particle collection efficiency than does the Ku- 
wabara solution. For small particle diameters and high 
Stokes number (i.e., St) 1 ), the Kuwabara solution and the 
extended solutions underpredict the particle collection ef- 
ficiency, as shown in Figs. 11 (c) and 11 (d). This is be- 
cause the particle trajectories are strongly dependent on 
the initial conditions. Both the Kuwabara and the extended 
analytic solutions have a nonzero u component of the ve- 
locity at the inlet of the unit cell. For the numerical solu- 
tion, due to the assumed symmetry, this velocity is very 
small compared to the u component. The nonzero u com- 
ponent of velocity in the analytic solutions and for high 
Stokes numbers (i.e., St > 10) makes the particle path ob- 
lique with respect to the x axis of the unit cell. Hence the 
particle capture efficiency is lower than the numerical pre- 
diction. The effect of making the u component of velocity 
zero at the inlet is shown in Fig. 12 for high Stokes num- 
bers. The analytic solutions predict higher efficiency than 
the numerical solution. Note that for the numerical solu- 
tion the trajectory of the particle is a straight line along the 
x axis for high Stokes numbers, and therefore the particle 
efficiency can be predicted from the geometry consider- 
ation and inlet velocity. 

0.0 0.2 0.4 0.6 0.8 1.0 

dP 

FIG. 12. Effects of initial conditions on particle collection efficiency using 
q,( -0.53) =0 (St= 100 and E=O.95). 

care must be taken. A comparison between the prediction 
of the different methods (for the inertial impaction) can 
only be made for the high Stokes number asymptotes, with 
the same inlet velocity. In this limit, the fluid has no influ- 
ence on the particle trajectory, so assuming the same initial 
velocity for the fluid and particle is not physically accept- 
able. Thus, the results given in Fig. 12 are more realistic 
and the results in Figs. 11 (c) and 11 (d) show how the 
initial values can effect the solution. 

The collection efficiency is also examined for ~=0.8, 
and the results are shown in Fig. 13. For small Stokes 
numbers [Fig. 13 (a)], the efficiency predicted using the 
extended analytic solution is in excellent agreement with 
those predicted from the numerical solution. However, the 
efficiency predicted using the Kuwabara solution shows 
larger discrepancy than for the case of e=O.95, as shown in 
Figs. 11 (a) and 11 (b). This is because for e=O.8, the 
effect of the neighboring particles is more significant and 
the Kuwabara solution does not take that into account. 
For St=O.l, Fig. 13(b) shows that the inertial effects in- 
crease and the efficiency prediction of the extended analytic 
and the numerical solutions deviate. For St> 1, the inertial 
effects become significant, and, as shown in Figs. 13 (c) and 
13 (d), the deviations between the different predictions is 
more apparent. These deviations are more significant than 
those for e=O.95, shown in Figs. 11(c) and 11(d). 

6. Entrance flow regime 

In comparing the results given in Fig. 12, where the y 
component of velocity is zero, to those in Figs. 11 (c) and 
11 (d), where the y component of velocity is nonzero, a 

In addition to the accuracy that the numerical method 
presents over the analytic solutions, it is able to simulate 
flow in the entrance to the filter. In this region the condi- 
tion of periodicity of the fluid flow does not apply. These 
numerical simulations show that for creeping flows the 
fluid flow becomes periodic beyond the first unit cell. The 
numerically obtained flow field is used to compute the par- 
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FIG. 13. Same as Fig. 11 for e=O.8. 

title collection for low and high Stokes numbers. For low 
Stokes numbers, the efficiencies are very close to those pre- 
dicted using the flow field solution for the periodic (i.e., 
bulk). For high Stokes numbers, Fig. 14 shows that the 
efficiencies for the entrance region and the bulk region are 
different, because the particle trajectory is influenced by 
the initial conditions. For small particle diameters, the nu- 
merical results for the entrance region predict efficiencies, 
which are closer to the analytic solutions. For large parti- 

cles, the Kuwabara solution deviates, but the extended so- 
lution follows the same trend as the numerical results. 

VII. RECTIFICATION OF PARTICLE TRAJECTORIES 

In the section on impaction, particles leaving one unit 
cell could not be collected in the next periodic cell unless 
some diffusion and/or a body force such as the gravity, an 
electrostatic, or the van der Waals force are added. Since 
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FIG. 14. Particle collection efficiency at the entrance region of the packed 
bed of cylinders compared to the extended analytic solution, Kuwabara 
and the numerical solution in bulk for St= 100 (6=0.95). 

the lim iting streamlines are periodic, then for all following 
cells in a periodic structure all particles on the dividing 
streamline (i.e., capturing streamwise mentioned in Sec. 
V) barely m iss collection on each downstream fiber past 
the first. The addition of an infinitesimal diffusion or a 
body force causes collection on these downstream fibers. 

We propose that for the inertial impaction it may be 
possible for the in-line arrangement of fibers and down- 
stream of the first fiber to have no collection of particles for 
a small but finite body force. To illustrate the phenomena, 
particle trajectory are given in Fig. 15 for the numerical, 
extended analytic, and the Kuwabara solution. After the 
first fiber is m issed, the particle gradually, after passing 
through a number of unit cells (fibers), moves toward the 
center point between the fibers. AU trajectories of the par- 
ticles moving parallel to the flow and not collected at the 
iirst fiber display this behavior. 

To explain this behavior consider the extended analytic 
solution. To simplify the problem we will assume a large 
Stokes number. Thus, to a 8rs.t approximation, the trajec- 
tory is parallel to the x axis. The fluid velocity in the Car- 

0.5 

0.4 - - Extended 

0 1 2 3 4 5 6 
x 

FIG. 15. Particle displacement after crossing multiple cells. 

tesian coordinates can be found from Eq. (38) by using the 
chain rule. To the lirst approximation, we assume that y is 
nearly constant for large Stokes numbers and u=O at the 
boundary. The nondimensional equation for the particle 
velocity is given by Eq. (50). To estimate the time it takes 
for the particle to transverse unit cell, we can note that the 
fluid flow is symmetric about x=0. Thus the amount U 
retarded upstream, is accelerated by the fluid an equal 
amount downstream. This approximation is valid only as 
long as y=const is a reasonable approximation. Thus the 
time for crossing the unit cell is approximated by 

t=(u).& (52) 
where (u)~ is the area average velocity along the x direc- 
tion is given by 

WA= spy:., U(&YWX. (53) 

To a first approximation we can assume dt=dx/(u)A. By 
use of the integration factor exp( t/St), we can cast the y 
component of the velocity as 

ef@up, - up0 = 
s 

t’ li_ &St dt. 
0 St 

Recasting the equation in x rather than t, it becomes 

,-X,/(b).$t) 

s 
x1’(u)A 
0 

f ,#((U)A St’dx, (55) 

where we have substituted t=x/(u)*. We integrate once 
more to obtain an equation for Sy, the displacement per- 
pendicular to the x axis a trajectory receives as it passes 
through a unit cell is 

-x,/c (U)A St) 
Gy=y-yo= 

-+)A 

X 
s 

X1’(“)A 
0 

; dc/((U)..4 Sf’dx dxl. 

This formula can be analytically integrated using the 
extended analytic solution and a symbolic algebra package, 
such as MATHEMATICA.  The resulting formula is unwieldy. 
However, by breaking up the integration into two sections, 
before and aft of the fiber, we can understand the effect 
analytically. From the above formula we can see that the 
positive v component of velocity encountered before the 
cylinder displaces the near horizontal trajectory toward 
larger y values. The u velocities aft the fiber and in the 
opposite direction try to counteract the displacement that 
occurred upstream of the current fiber. The downstream 
fluid u component of velocity are not able to counteract the 
full y displacements resulting from the fluid upstream of 
the fiber. The reason that the positive Sy displacement oc- 
curring upstream of the fiber moves the trajectory up a bit 
and as it enters the downstream side the particle see 
smaller velocities because the particle is farther from the 
fiber. Thus in each unit cell the particle receives a net 
displacement toward the centerline between cylinders. 
Then there is a “rectification” of the particle displacement 
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TABLE II. Rectification of the particles trajectories crossing many cells 
shown by the vertical displacement of the particle at the boundary of each 
cell (St=O.l and E=O.95). 

cell 

Numerical integration 

Numerical Extended 
velocity field velocity field Analytic integration 

0 0.095 0.095 0.095 
1 0.140 0.151 0.156 
2 0.178 0.187 0.194 
3 0.211 0.218 0.226 
4 0.239 0.245 0.255 
5 0.262 0.268 0.274 
6 0.281 0.287 0.289 

from the fluid flow. This effect occurs for any finite Stokes 
numbers. The Stokes number just determines how quickly 
this rectification occurs and over what number of cells it 
takes place. The final result is that after passing enough 
fibers, particles move to the centerline between the fibers. 

In other words, by integrating the velocity to obtain 
the small y displacement, we show that dy upstream of a 
fiber is positive and always greater than the smaller nega- 
tive dy aft of the fiber. Since dy starts the downstream 
trajectory farther from the fiber, the v component of veloc- 
ities are less and the particle does not move to the original 
y value. For large Stokes numbers, this dy is small, but 
accumulates for each fiber that is passed. The net effect is 
a rectification and after many cells the particle is moved 
away from the fiber, and the possibility of collection is 
reduced, even if small forces are included. Some sample Sy 
values are presented in Table II for different Stokes num- 
bers and the different fluid flow solutions. The displace- 
ment values are obtained using the analytical approach 
given by Eq. (56) and the numerical integration of Eq. 
(50) using the numerical and extended analytic solutions. 
The results given in Table II show good agreement be- 
tween the different methods. This rectification process can 
be generalized for the in-line arrangement of fibers, beyond 
the doubly periodic arrangement considered here. This ef- 
fect can be used to align particles. 

VIII. CONCLUSIONS 

The Kuwabara solution for flow through an in-line 
arrangement of cylinders has been extended, and a com- 
pact extended solution is found. The extended analytic so- 
lution improves prediction for the efficiency of particle col- 
lection by fibrous filters. The advantage of this improved 
analytic solution is that it can be used for further analytic 
investigations of fluid flow in fibrous filters without undo 
complexity. The formula for the streamfunction is given by 
Es. (38). 

We calculate the analytic efficiencies for particle col- 
lection by impaction and show that the results agree well 
with the numerical simulations. We also investigate aniso- 
tropic arrangements of cylinders. The formulas for the 
streamfunction are given by Eqs. (44) and (45) using two 
porosities e=O.95 and 0.8, respectively. 

The “trajectory rectification,” where the particles are 
less likely to be collected, as they are moved away from the 
fiber by the fluid flow, is also discussed. A small body force 
would not alter this conclusion, because no collection past 
the first cell would occur beyond the first cell. However, a 
body force greater than a critical value determined by the 
Stokes number can alter this. Thus, only diffusion and 
body forces larger than a critical magnitude would cause 
collection of particles beyond the first unit cell in the fiber 
lattice. In the case of negligible diffusion and body force, 
the fluid flow through these periodic structures can be used 
to align particles. 
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