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ABSTRACT

The thermal structure of an AC arc has been studied both experi-
mentally and analytically. In order to provide a reasonable descrip-
tion of the manner in which the dynamic arc behaves as a circuit
element, it is first necessary to solve the partial-differential equation
that describes the energy-transfer processes within the arc column.

In the idealized »situation; where the arc is characteﬁzed by strict cy-
lindrical symmetry and the electrodevs have little effect on the positive
column, certain limiting closed-form solutions have been obtained from
the appropriate boundary-value problem. In the genefal case, the prob-
lem has been solved on a digital computer. In all cases, a simplified
relationship between the electrical conductivity and the plasma tempera-
ture was assumed. The theoretically derived waveforms for electric-
field strength and current bear a close relationship to those found by
éxperiment. The latter results were obtained from a cascade-tube arc
such as that employed by Maecker for his DC work. The present device

was excited by 60-cps AC power, and rms currents up to 30 A were

employed. Nitrogen, and argon were the working gases.
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1. INTRODUCTION

In recent years the increasing technological importance of the
electric arc has motivated a quest for a better understanding of its
phenomena. In the past, studies of the arc have been in the domain of
physicists and electrical engineers (see (1) and (2) and their bibliog-
raphies). The advent of the ballistic missile, however, created the
need for high temperature laboratory simulation of the re-entry envi-
ronment and the aeronautical engineer quickly turned‘to the electrié
arc as a means of obtaining high enthalpy gas flows. Today dozens of
organizations operate some type of gas-stabilized arc heater for either
materials studies, hypersonic simulation, basic chemistry studies, or
for use as a space propulsive device. In most applications the aim is
to pass a stream of cold gas through and around a stabilized arc dis-
charge thereby heating the flow to extreme temperatures. An excel-
lent summary of the state of the technology (as of 1961) for this type
of device is given in (3). It is evident upon reading (3) and similar
articles that the development of the arc heater type of device has re-
lied almost exclusively upon trial and error pr_'ocedures., The complex
interaction between the arc temperature field and the flow field sur-

rounding it has made analysis of the problem especially difficult.

The present work was initiated in an attempt to understand some

of the fundamental processes which occur in an arc type of gas heater,

1

Manuscript released by the author July 1964 for publication as an ARL
Technical Documentary Report.



specifically one that uses an alternating current power supply. In

(4) and (5) the details of this device as well as some analytical inves-
tigétions of its behavior are discussed. Before introducing the prob-
lemsl peculiar to dynamic arcs, however, it is instructive to consider

the work that has been done on DC electric arcs.

At the outset it should be mentioned that the theory of the arc as
developed here entirely disregards any phenomena that are due to the
presence of electrodes. As is customary in studies of this sort only
the quasi-neutral arc column is considered and, for most situations,
this part of the discharge determines the operational characteristics
of the whole arc. If the material properties of the arc gas are known,
it is a simple matter to write an energy balance for the cylindrical arc
column. This is known historically as the Elenbaas-Heller equation.
Uhlenbusch (6) presents a summary of the various approaches that
have been used to solve this resulting equ:—zltior‘l° In general, the theory
of the cylindrically symmetric arc is firmly established and compares
well with experiment. Even in the more difficult case of the DC arc
where gaseous convection is important, considérable work has been
done. To include the effects of convection one devises the simplest

possible arrangement consistent with reality.



Imagine, for this purpose, an arc which is confined to a tube with
well cooled walls and along whose axis gas is forced to flow. This ar-
rangement is no mere fiction conceived for mathematical simplicity but
it is actually utilized very successfully in some types of arc heaters.
Its geometry is shown in Fig. 1. Entrance effects are allowed but the
tube extends to infinity in the positive direction. Several investigators
have studied the problem of the approach to the asymptotic column.
That is the case where energy 1s transpori:ed both radially and axially
until a fully developed profile is attained. There,all axial derivatives
disappear and the arc is identicél to the éylindrically symmetric column
described above. Hence all analyses of the tube arc problem must
eventually merge into an asymptotic column solution, such as those

discussed in (6).

Skifstad (7), John (8), and Stine and Watson (9) have formulated
tube arc problems with varying degrees of sophistication with the latter
- work showing particularly good égreement with 'experiment, (10). In
fact, the apparent success of the method of Stine and Watson (9) indi-
cates that the important processes occurring within a tube arc do not
depend so much upon the phenomena of fluid dynamics as those of heat
conduction. It will be shown that under certain conditions this is true

for the AC arc as well.
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The analytical description-of the energy transfer processes in
alternating current arcs is further complicated by the presence of the
time variable. Most of the work on AC arcs has been done in connec-
tion with circuit breaker design, but nothing as comprehensive as that
reported for DC arcs, (6)-(10), appears in the literature. There are
no solutions at all for the problem of the approach to the asymptotic
column and-the cylindrically symmetric column has only been imper-
fectly examined. In short, the theory of the AC arc is not well estab-
lished. Two noteworthy attempts at a theoretical treatment of the
dynamic, cylindrical, positive column Were reported about 25 years
ago by Cassie (11) and Mayr (12). Both of these investigators formu-
lated arc vmodels where the radial variation of propertie“s was not
~ included or was integrated and not considered further. Cassie (11),
for example, assumes an arc column within which the temperature
is fixed and uniform in space and time, having constant per-unit-
volume resistivity, power loss, and energy content. In orderto ob-
tain a variation in column conductance he invokes a variable arc
radius. This leads to an ordinary differential equation with conduct-
ance as the dependent variable. Mayr (12), on the other hand, defines
an "ersatz" arc gas whose transport properties exhibit a Gaussian

dependence upon the radial variable. An integration over the arc



radius is then performed so that thére remains only an ordinary differ-
ential equation for the arc conductahce. If the assumption is made that
the column energy loss per unit length is constant, it is possible to
solve Mayr's equation for specified applied current or voltage varia-
tions. While the work of both Cassie and Mayr has had some limited
usefulness for circuit breaker engineers, little insight into the detailed

energy transfer processes which affect arc behavior has been gained.

From both theories there arises the notion of an arc time constant;
that is, a typical ‘time required for thermal re-adjustment. Because of
the oversimplified nature of the Cassie and Mayr models, however, it
is not possible to relate this time constant to anyvof the known condi-
tions under which an arc is operating. In the present work it is shown
how a theory can be developed which contains a time constant that is

easily related to known conditions.

All sﬁbsequent attempts (see (13), (14), and (15)) to explain the
nature of the dynamic arc are subject to the same objection put forth
above; an integral approach is used to cast the inherently partial dif-
ferential equations into a simple ordinary differential equation. The
situation can be likened to a boundary layer theory based solely upon
solutions of the Karman-Polhausen type with no knowledge of the exact

profiles that exist.



In order to place the theory of the dynamic arc on a firmer footing
t.he present investigation was initiated, A theory for the cylindrically
symﬁletric dynamic arc has been formulated that considers the detailed
structure of the column and that requires the solution of a set of non-
linear partial differential equations. in two special cases, for a high
frequency AC arc and fo? a DC arc which experiences a step function
modulation in current, it was possible to obtain a closed form solution
to the governing equations. In the general case,numerical solutions
for the quasi-steady AC arc have been obtained with the aid of a digital
computer. Only the AC arc that experiences thermal reignition was
considered. Field intensified processes and glow discharge phenomena
were not included. In all cases a simplified relationship between the
electrical conductivity and the plasma temperature was assumed so
that the dynamic behavior of an arc could be determined which is inde-
pendent of any type of gas. Prior to this investigation no measure-
ments had been made on AC arcs burning under well controlled conditions.
The experimental results obtained by the writef from a specially con-
structed Maecker-like cascade arc show good agreement with the the-

‘oretically derived waveforms of electric field strength and current.

With the ability to predict the behavior of AC arcs burning under
the conditions mentioned above, one can proceed to investigate questions

of stability, circuit interaction, efficiency of energy transfer, etc.



" 9 THE FUNDAMENTAL EQUATIONS

"~ 9.1 The Conservation Equations

The equations needed to provide a description of the energy trans-
fer processes within an electric arc, be it DC or AC excited, are the
well established multi-component conservation equations. It is not
intended to derive those equations here since they are exhaustively
discussed in the literature (16), (17), and (18), and, except in cases
where certain flux coupling terms may appear, there is no reason to
doubt their applicability to the thermal arc. It is stipulated at the out-
set that no external magnetic fields will be applied to the region occu-
pied by the arc column and, furthermore, the current carried by the
arc will be small enough so that the self-magnetic field will be of no
importance. Peters .(19) has shown that an arc must carry several
thousand amperes before the magnetic pressure induced thereby be-
gins to be a significant fraction of the static pressure. This assump-
tion is therefore not too limiting. A result of the above stipulatiéns
is that little new knoWledge is gained from Maxwell's equations and
that the conservation equations combined with a suitable form of Ohm's
law suffice to describe the arc column properties completely. Further-
more, the effects of radiatio:; gas velocity, and finite reaction rates
are included in the subsequert formulation only for the sake of tempo-

rary generality. In the analyses which follow, the neglect of radiation



and finite reaction rates are justified, while the effect of an ordered
mass motion on the column properties is considered only for a highly

idealized situation.

If one takes account of the foregoing remarks, the energy equa-

tion can be written as

Here h is the weighted sum of the enthalpies of the constituent species,
Ef is the generalized heat flux vector and Qel and Qra d are the joule

heat and radiative loss terms, respectively. Of course, p is the over-
all density and D/Dt denotes the Eulerian derivative. The heat flux
vector consists of an ordinary conduction term and several diffusion
terms, most of which are quite negligible for the rather high pressures
(one atmosphere and greater) being considered here. In fact, Cann (17),
using the best available numbers for thermal and baro—diffusioh coef-
ficients, concludes that for many problems in arc physics these forms
of energy transfer need not be considered. Thus the heat flux vector

may be written as.

H::—KVTJéanh C
S ss s

S
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where k is the ordinary thermal conductivity, Es is the diffusion veloc-
ity peculiar to the sth species (excluding baro-diffusion) and ng, Mg,
and hS are the particle number density, mass, and specific enthalpy
for a single component, respectively. An expression for the conserva-
tion of each species as well as the momentum equation is needed to

complete the set of reqlfisite equations., If I‘S is the net change of

species concentration per unit time, one finds

on

S = _
Tt-+ V[ns (V+ ES)— FS

While the consequences of a finite reaction rate (relaxation effects)
would doubtless introduce some interesting effects into the present
problem, the exclusion of such terms from the conservation equations
will be justified. Since the present understanding of this "simplified"
situation is far from complete, the inclusion of relaxation effects at
this vpoint would not be in order. Despite the fact that the momentum
equation will be of little or no use in the ensuihg discussion,it is in-

cluded here for completeness:

DV

PV P

Here P is the usual pressure tensor which includes viscous as well

as hydrostatic terms.
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In addition to the conservation equations,a force-flux relationship
generally known as Ohm's law (generalized or otherwise) is needed.
In its most general form this equation includes a Hall effect term,
an ion slip term, and a term accounting for electron inertia. In the
present problem the simplest form of the expression will be employed,
namely, that the curreﬁt density is proportional td the electric field.
The absence of a magnetic field obviates the need for the Hall and icn
slip terms and eléctron inertia need be considered only if the frequency
of the applied electric field is comparable to the so—célled plasma fre-
quency. This latter situation will never occur in the present study.

Thus it is permissible to write simply
j =0k
where the left member is the current density vector and is proportional

to the electric field strength through the (scalar) transport property

known as the electrical conductivity.

2.2 Equilibrium Times in a Thermal Plasma

It will be the purpose here to show that there is a range of external
disturbance frequencies for which the usual assumptions of local ther-

modynamic equilibrium can be invoked in a study of the dynamic arc.
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- One could methodically evaluate the equilibrium assumption for a host
of different gases but it will be sufficient to show that even for one gas

the conditions can easily be met that validate the work to follow.

Nitrogen is chosen for an exainple, since for that gas the most is
known about high temperature transport properties, reaction rate coef-
ficients, and thermodynamic variables. In addition, much of the past
work on arcs has been performed using nitrogen as the working fluid.
In what follows, then, when it is necessary to relate the pertinent

results to a specific gas, it will most often be nitrogen.

If one were to be completely precise in his investigation of the
equilibrium times in a thermal plasma, he would begin by question-
ing whether or not there is sufficient time to locally establish a Maxwel-
lian distribution for each species in the plasma (thereby permitting the
assignment of a definite temperature to each component gas) and, fur-
thermore, whether there is sufficient time for the species to interact
so that a single temperature can be assigned to the mixture. In the arc
plasma the electric field strengths are never very high (of the order of
a few tens of volts per centimeter) so that there should be no tendency
for the electron gaé to be out of equilibrium with the atom-ion gas.

This speculation is verified later.
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In an alternating current arc the effect of the cyclical change in
energy addition is felt first by the electrons through the altefnating
changes in imposed field strength. This change must in turn be trans-
mitted to the more massive ion and neutral gasés through elastic col-
lisions between the species. Uhlenbusch (6), on the basis of a mean
free path argument, estimates that the time requifed forv the plasma

to attain a unique temperature is given hy

Teq = M/nvqm

Here M is the mass of the constituent atoms (or ions), m is the elec-
tronic mass, n is the number density of the Whole mixture, and v and
q are the électron collision frequency and Ramsauer Cross section,
respectively. For an atmospheric pressure plasma at about 10, OOOOK1
the above expression yields a thermal equilibration time of the order

of one microsecond.

At this point Uhlenbusch (6) and other writers have concluded that
if external disturbances are applied with a frequency of less than about
105 cycles/second, one can legitimately assume that the gas is very
nearly in thermodynamic equilibrium at all fimeso However, it seems
that this conclusion cannot properly be reached without first consider-
ing the characteristic chemical times within a plasma. Most arcs do

not operate in a state of full ionization (or even full dissociation in the
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case of polyatomic gases) so that a change in the energy input to an arc
vﬁll always result in a change in its chemical composition. Hence,
some of the collisions between the electron gas and the heavy atom

gas will be inelastic and the times required to establish local thermo-

dynamic equilibrium can be longer than that predicted in (6).

For the reaction

n kf n
V' M, = p,"t M,
Z ] kaz U

Penner (20) and others show that the rates at which the various n par-
ticipating quantities are created or destroyed are given by the follow-
ing expression:

1 te

n v, n v,
= = 10 _ ot J 1o gy 00 ' ]
I‘i = d(Mi)/dt = (Vi Vi ) kf ;D; (Mj) + (ui Vi ) kb;Ul- (Mj)
In the above (Mi) denotes the concentration of the ith species, vi' and
Vi” are the stoichiometric coefficients of the reactants and products,
respectively, and kf and kb are the forward and backward reaction
rate coefficients. For nitrogen, at temperatures up to 12, OOOOK and

a pressure of one atmosphere, the following reactions are the only

ones of importance (21):
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5

N2+ME- N+N+M

N+ M=o N +e+M
Ke

Here e denotes the electron and M is some catalytic third body which
acts as an energy carrier for the reaction. If the specific third body
does not have too great an effect on the reaction rate coefficient, M
may be considered to be any of the species in the mixture which exist
at a given temperature level. For inétance, at elevated temperatures
there will be almost no moleculaf nitrogen so that for the last reaction

listed above M could be atomic nitrogen, an ion, or an electron.

It is now possible to write a general expression for the time rate
of change of concentration of each of the species listed above. This is
not necessary, however, since the pertinent reactions are rather well
compartmented as to temperature. That is, according to (21), only
N2 and N are present in any abundance if the pressure is one atmos-
phere or greater and the temperature is less than 6000°K. Hence,

only the dissociation reaction is of any importance. For this, one can

easily write
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d(N,)/dt = -k (N)(M) + k, (N)()

d(N)/at = 2k, (N,)(M) - 2k, (N)2(M)

1

Clearly the system presents some formidable mathematical difficulties
and an exact solution would be quite hard to obtain. It will suffice, how-
ever, to gain only an order of magnitude knowledge about the slowest
process in the above system of rate equations. The three body reac-
tions will in general be the slowest so that an equilibration criterion can

be conservatively based upon those processes.

According to Wray (22), the recombination of atomic nitrogen is
slowest when the third body is N2° Then for a small change in the con-
centration of N (and since it is assumed the recombination reaction

dominates) one obtains from the general rate equations
A(N)/dt = - 2k, (N)2(M)

Here k2 corresponds to the nitrogen molecule and (M) is the total con-

centration. An approximate reaction time can be obtained by taking

(M) to be approximately constant whereupon one finds

T, = -1
ch 2k2 (M)(N)0 (N)1
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The bracketed expression represents a fractional change in (N) from
the initial (equilibrium) value (N)O. Using the numerical data from (21)

with P = 1 atm., the reaction time, 7 is found to be about 2 x 10-4

ch’
second for a 10% change in nitrogen atom concentration,when the initial
temperature is 6000°K. These conditions are representative of the
slowest reaction times in the arc column. Of course, the above approxi-
mation assumes a constant temperature process, but actually there must
have been a slight decrease. The same analysis could be applied re-
peatedly until the final temperature in the cooling process were reached,
but the characteristic time would probably still be of the order of a mil-

lisecond. At very low temperatures, however, the reaction rate would

be quite slow, but the degree of dissociation would not be great enough

to worry about.

A similar line of reasoning can be applied to the other reactions
listed above and one concludes that an external disturbance frequency
- on the order of 1000 cps can easily be tolerated by a nitrogen arc with-
out causing significant deviation from chemical equilibrium. In fact,
the chemical time is easily seen to be the slowest equilibration time
in the thermal plasma so that one can generally say that when it is
small compared to disturbance times,local thermodynamic equilibrium

prevails in the arc.
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2.3 Energy Transfer by Radiation

1t is quite simple to verify the assumption that for a Wide range
of conditions one can neglect the transport of energy by radiation com-
pared to that carried by conduction and diffusion. One way to assess
the importance of radiative transfer to the arc problem is to compute
all of the relevant prop;erties‘and then calculate the radiative flux whiéh
would resﬁlt from this particular temperature distribution. The radia- |
tive properties of many gases are known Well enough so that such a cal-
culation can be carried out with confidence. If this computed radiation
terni is indeed small (as originally assumed), the correct temperature
disffibution is already in hand. Otherwise, one is confronted with a

much more difficult problem.

In (23) it is shown that the radius of the arc plays a large role in
determining when one may neglect radiative energy transport. This
‘is understandable since the total radiated power depends upon a geo-
metrical size and a larger arc radius implies a greater energy flux
by radiation. Criteria can be developed by which one can be assured
that radiation will not be of importance. This has been done in (23)
and a summarizing figure therefrom is reproduced here as Fig. 2.
The computation was}made for nitrogen but similar results can be ob-

tained for other gases. Maecker, in (24), shows that for argon, for
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~ example, the radiative energy transport is about 10% of the power input,
even for a current of about 50 amps. The point is, that for a wide range
of important conditions radiant energy transfer can be successfully neg-

lected in an analysis of the arc column.

2. 4 The Approach to the Asymptotic Column

If the simplifying assumptions which were discussed in the preceding

paragraphs are incorporated in the energy equation, one obtains

2

2
h+V7-

\'4
h+T

0

pf}f +pV°V

- %tli =-v: ('- kVT + Z nsmshsés) +Q
s
The intent is to study the asymptotic arc column, or where there is no
dependence upon the axial variable, z. .Then the z comporients of the
gradient operators in the above equation vanish and, since rotational
symmetry is assumed, only derix}atives with respect to the radial vari-
able remain. Furthermore, the assertion that the change in the kinetic
energy of the flow along the arc (no swirl or radial flow is assumed to
exist) is trivial compared to the change in the static enthalpy of the arc
gas is simple to justify. The arc gas typically has a temperature of
the order of 10, 000°K whereas the flow velocity in the cascade device

described previously is only a few feet per second everywhere. Hence
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the Mach number of the flow is quite small. Furthermore, for large z,
the convection term vanishes completely from the above equation since
the axial derivative of the static enthalpy disappears in the asymptotic

column.

It was mentioned earlier that no magnetic fields of any consequence
are assumed to exist in the vicinity of the arc. Specifically, the cur-
rents are so low that self-magnetic fields can cause no noticeable pinch-
ing of the discharge. As is the case with most arcs, those presently
being considered are presumed to operate in a constant pressure field,

thereby allowing one to drop the dP/dt term.

All of the above assumptions lead to the equations describing the
time-varying asymptotic arc column. These are more fully developed

in the following paragraphs.

2.5 The Working Equations

Having stated under what conditions the effects of radiation, con-
vection, and chemical relaxation can be neglected, it is possible to
specialize the energy equation and Ohm's law to strict cylindrical
symmetry. From Faraday's law one can see that the electric field
has only a z component. Since no magnetic field of consequence is

present one can write

vx E

il
o
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or, in cylindrical coordinates

2y ) oE
___r__z)g I E S G 4
0z or | 6 |ror 8’ r 0 7

1 "z 0

T 00 0z

b

e +
r

Here 3r, 39 , and EZ are unit vectors in the respective coordinate direc-
tions. There is no # -component of electric field and in the asymptotic

column only derivatives with respect to r exist. Hence

and the longitudinal electric field (denoted by E) is a function of time alone.
The arc burns in a well cooled tube of radius R whose walls are main-
tained at a constant temperature, but which carries no current. This
scheme is illustrated in Fig. 1. In line with other investigators the dif-
fusive contribution to energy transfer is combined with the "frozen'
thermal conductivity, k, to give a total effective thermal conductivity,

k. Dropping the pressure variation term from the energy equation (as

discussed previously) one has

- 0T

, 0(T)[E(t)]2+%%[r(ic-é?]=p(T)-g—t}3

where 0 < r < R, T(R,t) = T, and t > 0. In addition, Ohm's law becomes
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R
E(t) j 27 ro(T) dr = I(t)
0
The energy equation has become simply a relation between the joule
heat produced in the arc column, the energy transport by conduction,
and the storage term, pah/ ot. The electric field strength is understood
to have the spatially constant axial value méntioned above. In general,
the transport properties o and K }as well as the thermodynamic vari-
ables h and p depend upon both temperature and pressure.v Here,
however, there are no gradients in the pressure field so that only the

temperature variations are of concern.

Finally, it should be mentioned that an equation describing an elec-
tric circuit should rightfully accompany the above set,‘ but for the mo-
ment it is presumed that the arc burns in a current source, i.e., the
arc impedance is small compared to the combined impedance of the
rest of thé circuit. It is only slightly more difficult to consider a cir-
cuit equation in conjunction with the column equations, but first there
is much to be learned from the current source case. It is presumed,
then, that the I(t) occurring in the Ohm's law expression has a simple

cosine variation.
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Unless one is willing to embark on a complete numerical program
for the solution of these equations, it is necessary to make some sim-
plifications. The temperature variation of the transport properties
as well as the quadratic manner in which the electric field enters the
problem introduce strong non-linearities. Some years ago Schmitz
(25) introduced a transformation which has greatly simplified analytical
investigations of arc problems. He defined the heat flux potential,

S(T) by the relation

T

S(T) = j % (a) da

Tref

Using S as the independent variable,instead of temperature removes
the troublesome thermal conductivity from the problem. However,
one must be able to express all other thermodynamic and transport
properties in terms of S since T ié replaced ev_eryWhere by S as the
dependent variable. The heat flux potential for nitrogen and argon is
shown in Fig. 3. The pressure is one atmosphere and the data is due

to Avco (26) and Marlotte (27).

There remains the problem of dealing with the electrical conduc-
tivity function. In Fig. 4 the electrical conductivity of nitrogen is

shown as a function of S and it is seen that ¢ becomes non-zero quite
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abruptly and rises sharply to rather large values. Looking for the
simplest possible approximation to this behavior, while retaining its
essential character, one turns again to the work of Schmitz (23). In
his studies of direct current arcs Schmitz suggested that approximat-
ing the o - S behavior by two straight lines might yield good results.
In this scheme the electﬁrical conductivity is assumed to be identically
zero up to some cut-off value and then rise linearly with a best-fit
slope to the highest value which occurs in the arc column. In this
approximation S1 is the heat flux potential when o is "turned on' and

B is the slope of the second straight line portion of the curve. Then

c=0 ,  S<8

o=B(S-5) , 8>§

In what follows,this simple polygonal model will be employed for
the electrical conductivity variation,in spite of one or two disadvantages
which will be discussed later. Uhlenbusch (6) has described several
analytical procedures which have been followed in the study of DC arcs
and the interested reader can find there a good discussion of the various
merits and demerits of these schemes. The straight line approximation
has the particular advantage of allowing the governing equations to be

fully non-dimensionlized so that they may be solved in general with no
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reference to a particular gas. In addition, the sharp onset of electrical
conductivity caused by this model introduces the notion of a conducting
zone or arc radius, an extremely useful fiction. Most analytical models
of electric arcs have required the knowledge of some sort of arc radius
and here this position is automatically defined as the point where the
local heat flux potential is equal to Sl’ the cut-off value. It is to be
noted, however, that the arc radius is a function of time for the AC

arc. This fact introduces an interesting mathematical complication

about which more will be said later.

Finally, in order that the proposed analysis not be tied to any
specific gas with a unique set of thermodynamic and transport prop-
erties, it is necessary to modify the heat capacity term, p oh/at.
Toward this end it is convenient to introduce a new integral variable

F, defined by the relation

or
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This function can easily be computed for any T (and pressure) since
high temperature thermodynamic properties are known with a reason-
able degree of preéision (28). Eventually, of course, this auxiliary
function must be related to S, the chosen dependent variable. Since
E, p, and Cp are all single valued functions of temperature, it is pos-
sible to prepare an F ; S plot for any gas. The heat capacity term in

the energy equation becomes
p(anh/at) = F'(aS/at)

where F' is the local derivative with respect to S of the auxiliary func-
tion. Since F' =p Cp/_h’, the coefficient of the time derivative term is
nothing more than the inverse of the instantaneous, temperature de-
pendent, thermal diffusivity of the arc gas. Unlike most heat conduc-
tion problems this quantity is not strictly constant, but a glance at
Figs. 4 and 5b indicates that for common gases like nitrogen and argon
one can approximate their F - S behavior with one or two straight lines.
In obtaining a linear fit to these curves one can weight his selection

according to the average conditions which exist in a particular case.

A linear fit to the F - S curve implies that F' is a constant, which
will be designated )\—1, The energy equation can now be rewritten in

the following simplified form:



30

UOZJay JOF [BIIUDI0J XN JBSH JO UOI}oUNg B SB AJIATJONPUO) [BOIIIISTH ‘BG 9an3dig

WO/S}IeM ‘[e1jual0d XNn|4 1eaH

09¢ 02¢ 08¢ 1724 002 091 021 08 oy 0
| | ] | ] I I I |
— 92
— oy
\ — 09
(L2 "}3y) uobay WIVT = d —{ 001

WI/SC jw ‘A IAIIND 10D [B: 14303]3



31

uoS8Jay JOJ 1e1juajod Xnig JB9H Jjo uoljounyg € se 1exdajul Ljisus ASasuy °qg aansig

009

WO/SHeM ‘S ‘|ejualod XN|4 yesH

00s 00y 00€ 00¢ 001 0

_ ] _ _ |

ANAISNJIQ eWRY] JuRISUOD _ \\

Jo sanjeA juasasday
saul7 ybiesys uayoug \

2955w 0T = X/ \ \
29s/ ;W 001 - <\ 295/ ;W2 (G = <\ 29s/5Wd O = Y

(2 “J3y) uobay WLV T =d

o~

N & - - H - - o o o o

NOw\OQNON\DV‘NOOOOV

M o &N NN

cwaysapnol ‘4 ‘Ayisuag AbJau3



2 10 0S| 198
EB(S-Sl)+;a—rfra—r—x—t- 5 (OSr_<_r s t>0)
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tram=iw o+ @e<r<Ro, t>0)

Here r, is that radial location at which S = S1 (see Fig. 6) and is, of
course, a function of time. Because of the discontinuous coefficient
introduced by the cut-off model for the electrical conductivity, there

are two partial differential equations to solve for the heat flux potential.
The solutions of both equations must agree in slope and magnitude at
the moving boundary, r O(t) and there must be no heat sources within

the region of interest. Hence the three auxiliary conditions

5. (0,1) =0
S(r ,t)=S(_,t)=8
o2 To s =%
S (r) ,t)=8_(r_ 1)
o st =bp g s
and, at the tube wall,
S(R,t)=S2

The plus and minus signs denote evaluation of the functions and their
derivatives approaching the moving boundary from the outside and in-

side, respectively. It is the condition regarding continuity of slope that
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determines the position of the conducting zone radius, which is unknown,

a priori. In fact, if the problem is posed in the normal way, by specify-

ing the current behavior, there are three dependent variables S(r, t),
E(t), and ro(t). In order to make the problem determinate an additional
equation is required. This is provided by Ohm's law,
ro(t)
27BE(t) f r(S - Sl) dr = I(t)
0

The boundary value pr;oblem thus posed, while linear in the vari-
able S(r,t), presents a non-linear system by virtue of the moving boﬁnd—
ary and the fact that the electric field strength occurs to the second
power in the energy equation. Clearly, even with the simplifications
which have been applied to the problem, it is still mathematically for-
midable. Even if the field strength, E(t),and the boundary position,
ro(t), are prescribed (thereby eliminating the need for some of the above
equations), one still is confronted with a partial differential equation
with variable coefficients, a class of equations that can prove most

troublesome.

In order to arrive at a set of equations which are universal and
apply to any gas, it is necessary to introduce several dimensionless

variables. In addition, with a boundary that is free to move, it is
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difficult to see what effect its motion will have on the evolution of the
problem. The free boundary will therefore be fixed by an appropriate
transformation. In order to eliminate the moving boundary a different
transformation must be used for the conducting region than for the
annular zone. For the inner region the following independent variable

is introduced:
X = r/ro(t) , 0<r S,ro(t)

For the outer, annular zone it is proposed to fix the moving boundary

by the transformation

y=R-r)/[R-r®)] , r®HrlR

The range of variation for both of these new independent variables is |
between zero and one but care must be exercised in forming deriva-
tives with respect to these variables. The dependent variables are

made dimensionless by the transformations

U=(S-8)/(S, -8) 0<r<r (t)

and

V=(8S

-8)/(8;-8,) , r)<r<R

1

where S2 is the heat flux potential of the gas at the wall. Finally, one

can introduce non-dimensionalizing factors for the moving radius, the
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.electric field strength and the current. These are

plt) =r,®)/R E-8Y% ®EY =18, - S,) rBY/?

Earlier,p was used to denote the gas density, bﬁt hereafter it will only
refer to the dimensionless moving boundary and should cause no confu-
sidn. The starred quantities are the dimensional values and will not
appear again except, perhaps, in some numerical examples. When the
above variables are introduced into the boundary value problem two

more transformations are strongly suggested. If one defines
2
©=R"/x 9 T=t/6 |,

where © is thetime constant for the heat conduction problem, it will
be seen that a universal set of differential equations is obtained with
the particular operating conditions of the arc contained solely within
the current forcing function. The details of this transformation are
described in Appendix A. The previously described dimensional

boundary value problem becomes:
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2
19 [ au] 1dp” [ aul 2.2 23U
2o [F7x)t2ar Fax| TP EUP g o 0sxsDl o, 720
u (0,7)=0 , U(1,7=0 , plus initial condition
2 2
"V 1 g\_/'__l(l-pdp (yav\_(l p)zﬂ
2 -1 2 d ay| — v " F ot
oy [(l-p) -y] y p|ar {7 oy]
0<y<1 , 7>0
5(1)
v(@,7=1 , V(,7=0 , plusinitial condition
= _ | P
0, 4,7 =- (725] v, 0,7
and
1
27 [p("r)]2 E(7) J x U (x,7) dx = I(7)
0 J

The non-linearity of the system, which was not obvious in its dimen-
sional formulation, can now clearly be seen. In this new, fixed domain
the differential equations have each acquired a term proportional to
d(pz)/ dr. Since p is one of the dependent variables, the system is
non-linear, even if the time dependence of the electric field is explicitly
known. It is not strictly necessary, in fact, to consider E(t) as an
unknown, but physically it makes more sense to specify the current

carried by the arc and determine the resulting field strength. For
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any specified current an arc will be thermally stable but only for certain
variations of E(t) will this be true. It would even be possible, in fact,

to assume an explicit temporal variation of the conducting zone radius
and find the temperature profiles that would produce this variation.
Then, however, all of the original equations could not be satisfied and
one would have to be content with some non-constant tube wall tempera-
ture and/or variable tube diameter. Even the simplest temporal varia-
tion of p that one can devise proves to be too difficult to permit the
solution of the boundary value problem. If d(p)z/dT is a linear function
of 7, for instance, the partial differential equations have variable coef-
ficients and, because of the second term in their left members, are

not separable, Only when d(p)z/ dT is either zero or any finite constant
of either sign can a closed form solution to the above formulated bound-
ary value problem be readily found. It is not immediately evident,
however, that one can attach any physical significance to these solutions.
Fortunately, it is possible to do so and these two situations, when
d(p)z/d'r = 0 and when d(p)z/dT = constant, are discussed in detail in

the following sections.



3. THE TRANSIENT BEHAVIOR OF DC ARCS

3.1 General Considerations

The system of dimensionless equations which was presented in the
preceding section is capable of describing the dynamic behavior of all
non-stationary arcs,provided that the original limitations imposed on
the analysis are not violated. Thus the system should yield solutions
which pertain to DC arcs (in the stationary state), AC arcs, and the
transition from one DC discharge to another one burning under differ-
ent conditions. The transient behavior of DC arcs has received con-
siderable attention over the years for a number of reasons. Weinecke (29)
attempted to measure the thermal conductivity of a nitrogen plasma by
observing the variation in radius and temperature of a collapsing DC
arc. He then employed numerical techniques to infer the transport
property from the energy equation. Frind (30) and others have con-
cerned themselves with transient arcs because they provide a means
of assessing the relative merits of various gases which can be used
as the atmosphere surrounding the contacts of high voltage, high power
.switchgear. If one measures the rate of decay of the conductance of
an arc column which is composed of a certain gas, it is possible to
predict its performance as a circuit breaking medium. Finally, the
analytical treatments of dynamic arcs, (11) and (12), mentioned in the

Introduction contain the notion of an arc column time constant which

39
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cannot be immediately related to the properties of the arc gas or to

the conditions under which it is burning. Nevertheless, these analyses,
because of their great simplicity, have found favor among those engineers
and scientists who have occupied themselves with switchgear problems.
Therefore, several attempts have been made to obtain experimentally
some typical values of this time constant so that the theories of Cassie
(11) and Mayr (12) would be more quantitatively useful. The most recent
work along this line is reported by Yoon and Spindle (31). There the
scheme was to instantaneously apply a step function increase to the cur-
rent flowing through a DC arc. The subsequent transient behavior of

the electric field (arc voltage) was then monitored and the e-folding

time was a measure of the arc time constant.

Most of the above mentioned investigators have interpreted their
experimental results in the light of quite simplified analytical models;
for instance, that of Mayr (12). It ié felt that in what follows a more
sophisticated description of the transient behavior of DC arcs is pre-
sented. The main improvement is seen to be that of providing a means
of relating experimental observables to conditions actually prevailing in
and around the arc. Such insight is denied by the spatially integrated
models used previously. Additional improvements over past work will

be indicated later.
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If a DC arc suddenly receives a positive or negative step function
modulation in current, the ensuing transient behavior will involve (with
the model proposed previously) the difficulties associated with the mov-
ing boundary of the conducting zone of the arc. Thus, since the boundary
position is a dependent variable of the problem, it is still not possible,
even in this relatively simple case, to obtain a closed form solution to
Eq. 1. It is, however, possible to obtain an approximate solution by
specifying a boundary motion which is compatible with reality. I, in
Eq. 1, the coefficient, dp2/ d7, is any positive or negative constant, a
closed form solution can be obtained. Clearly, the specification of a
boundary motion makes the set of equations, Eq. 1, overdetermined
and some originally specified compatibility or boundary conditions must
be relaxed. If one insists on continuity of heat flux at the moving bound-
ary, the tube wall cannot have a constant temperature and/or position.
The details of the boundary modifications are not too important, however,
since the solution of the first differential equation gives the behavior of
the arc proper and this is all one needs for cdmparison with experiment.
The partial differential equation which applies to the annular region
serves only to communicate to the arc (the conducting zone) that there
is a fixed, cold wall in its vicinity, thereby determining the radius,

p(7). When p(7) is known a priori the annular equation is no longer
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essential. Thus one has simply

2 3N

19| au) 1dp“( au] 2.2 23U
xaxxai]l)+§-&-7'-xax tPEU=p T (0__<_x§1 ’ 7>0)

: 2
UX(O,T)—O , Uu@,n=0 , dp/dr=+4K }(2)
1
Zﬂszij(x,’r)dx=I

0 J

plus some initial condition. Here K is some arbitrary constant which
represents the rate at which the conducting area increases or decreases.
As in the more general formulation the current is some constant or speci-
fied function of time. The boundary motion equation can be integrated

to give

p2 - pi2 =+ 4Kt

if p= [ at 7=0. Clearly, this approximate solution will not admit of
any oscillatory behavior and is representative of only a temporally uni-
directional process. There is a similarity here with the motion of the
interface in a solidification or melting problem in an infinite or semi-
infinite domain. There (see (32)) a closed form solution can be obtained
only when the interface position is proportional to the square root of the

time variable, whether the domain is a slab or is cylindrically symmetric.
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The Eq. 2 can be solved by separation of variables, but first it is

convenient to introduce the new variable § = xz° Then one finds

2 .
ga—g+(1+K§)g—g+%p2E2U=%p2§H , (o<E<t . T>0)
T - 3 oT ==
My 00=0 , U@D=0 , pl=prkr @)
!
waJU(E,T)dig:I 7
0

If one assumes a solution of the form
U(En=X(E T ,

the following two ordinary differential equations are obtained:

N
EX" o+ (1+ KE) X' + uZX =0
T + (éluz/p2 - E2) T=0 (4)
2% 0)=0 , X@)=0 )

In the above the primes denote differentiation with respect to the argu-
ments and [ is a separation constant to be determined later. The first
of these equations can be brought into a standard form known as Kummer's
or the confluent hypergeometric equation. If one sets s = + K¢, depending

upon the direction of boundary motion, the following result is obtained:
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/2% =0 , XGK-=0

The general solution to this system can be found in many places, c.f.

(33). For the equation-
sX"+(y-8)X'-aX=0 |,

when v = 1 is an integer, the general solution contains four terms.
They are discussed thoroughly in (33) or (34). In the present case

v = 1 and one of the terms in the general solution (a finite polynomial)
vanishes identically. Two other terms will not appear here because

of the condition of regularity at the origin which prevents a logarithmic

term from being included. One is left, then, with a solution of the form

X(s)=C 1F1 (e,1;s)

where

2
(a,l;s)=1+a——s——-+ a(a+ 1) S ...

11 11 5 o

The boundary condition X(K) = 0 implies that the non-trivial solutions

of the Kummer equation are the eigenfunctions

2

\
XJ$=CF‘iJL1ﬂ , n=1,2 ...

11 K’
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where a has been replaced by the specific value, uz/ K, and the eigen-

values are the roots of

2

+ & 1;+K

IR =0

11

The second of Eq. 4 involves a specific current variation, i.e., the
input function. From Ohm's law one finds that the electric field can be

expressed as
1
E=1np2fx(g)-T(r) ds
0

Thus the T equation can be written as

2 2
ve g Bp2 I '
TT +4p2T = 1 5

2 4
TP fX(i)dé
0

The above equation is non-linear as it stands but if T2 rather than T is
chosen as the dependent variable it can readily be solved. Recalling

that p2 = (pi2 + 4K7),0ne finds the solution of the above equation to be

i
2,2 w:
1K 9 r X
9 K 2 9 1“(a) 4K
T (1+4;—2"T Ti 1 3 p4 l_pza da
I n? j-XG)dg i
0
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Then for any current variation which is compatible with the boundary
motion the integral in Eq. 5 can be evaluated and the functional form
of T(7) thus obtained. This does not complete the problem, however,
since a generalized Fourier series of the eigen-functions given above
must be formed to accommodate an arbitrary initial distribution of
temperature. To illus;rate this procedure a DC arc upon which is im-

posed a positive step modulation in current will be considered.

3. 2 The Step Modulated DC Arc

Suppose a DC arc has been established which carries a dimension-
less current Ioo By some means it is possible to instantaneously
increase the current to a new value, Il“ Since the arc cannot immed-
iately adjust its thermal structure to correspond to this new current,
the voltage drop (electric field strength) increases atkthe outset. The
increased heating due to the higher field strength raises the tempera-
ture and with it the electrical conductivity. Gradually, for a fixed
current, the field strength decreases and the arc reaches a new steady
state condition corresponding to the DC current Il" This process is
illustrated in Fig. 7. Then consider the solution of Eq. 3 when

p2 = po2 + 4 K7 and
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1-1 , (@<0)

I=1 s (T>O)

The initial distribution of heat flux potential can easily be obtained
from Eq. 1 by setting the time derivatives to zero and solving the re-
sulting set of ordinary differential equations. This solution is denoted
by Uo(x) and is given by

J (Bx)

. :

where p is found by specifying I = I and using the relation
0 )

27

p
0
L= B In 317p0)
Here B is the first zero of the Bessel function of the first kind; J 0(x).

When the direction of boundary motion is positive, the solution to

the Kummer equation is

1;s

X(S)— F K“

Il
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or, by Kummer's first theorem,

2
oK Ny
Xn(g) =e€ lFl l: - T;\" I,Kg}

The integral in Eq. 5 can easily be evaluated to yield

Zuz
-2 9 2
o 4 |\ K 20 il 21
Lo 1e =57 -1 -—
T - fo 1+25 -1+U21+—f1—1—<2-7 (6)
2“2 , p2 0 0
2, 2[""n 0 0
27 Kpo(K —I)A i 3

where Ti2 has been replaced by U02 in order to satisfy the condition

at 7= 0. In addition, A represents the integral

From Slater (33) one finds that this integral can be evaluated to yield

r

A=e-KFlv 'T:

[
n .
Fll2- 2,4

It is interesting to note that one obtains a power law character for the

time solution rather than the familiar exponential behavior. The solution
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to Eq. 2, then, has the form

2

X(s): T(r) = C_* F, —;l{—,l;s - T(7)

with T(7) being given by the square root of Eq. 6. Now according to
Sturm-Liouville theory the Kummer functions can be shown to form
an orthogonal set in the internal 0 2 S 2 - K with respect to the weight
function e . Furthermore, a normalizing factor can be found that
permits the formulation of an orthonormal set. Changing to a positive
s interval and using Kummer's first theorem allows one to find the

normalizing factor, En’ from

Thus, one can form the orthonormal set

2
o "
-1 -s n
<pn(s) =B, e fF [(1 K

R l;s]

Finally, the coefficients, Cn’ are found by means of the orthonormal
properties of the <pn(s) and from the initial distribution of heat flux
potential, JO(BX)O (The magnitude, U, of the initial distribution has

been absorbed in the T(7) function.) One obtains
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K 2

c—E'“J(x/7K)1~*1lun 1:s| d

- jOBS r1|{- KPS| 98
0

The complete solution of Eq. 3 for the case of a step modulated arc

can now be written as

o0
U(t,7) = L C Tn(T) e K& F [

n=1

2

A

K

1

1- ,1;K£:|°En_

and, as indicated earlier, the K are found from

2
F 1-i- 1:K|=0
11 K P~

In order to obtain numerical results from Eq. 7, a series of Ko

Cn, and En mﬁst be computed, the number depending upon the accuracy
desired. Unfortunately, it does not seem to be possible to obtain a
closed form for either the coefficients, | Cn9 or the normalizing factor,
Eno In addition, a tabulation of the roots, Moo has apparently only been
made for the first eigenfunction, Hys (33). Thus, in what follows, only
the first term in the series Eq. 7 will be considered in order to obtain
a rough idea of the behavior of the solution. If K is small, this one

term series will yield nearly the exact solution to Eq. 3 since, from

(7)
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Slater (33), one finds that Kummer functions have the following

asymptotic behavior as a -:
1-vy g 3
1/2 (-—-) | )
F@na-To e 2w 2y @AY {1 +o(lkl™ Y
In the present case 2= 1, k = unz/K -1/2, and v = 1/2 so that one
finds:
u 2
D | es] o JKE/2 1/2 1/2
1F1 [(1 ——K—),I,KgJ e 'Jo (ZunE ){1+0 (K" s K-0
In the limit K = 0 the Kummer function is identical to the initial Bessel
function distribution. Also, for K = 0, all coefficients, Cn, forn>1
vanish identically. Thus for K close to zero, (slow boundary motion)
the one term series will be a good approximation to a more exact evalu-
ation of Eq. 7,since the Kummer function and Bessel function profiles

nearly coincide for K small.

Retaining only the first term in Eq. 7 results in the expression

2‘ -
1- -—u%(—), l;sz} g Tl('r)

2
. -Kx
Uk, 7) =e IFI'i
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where
1
- N 2
2u12
K 2 . 2
1?1+, ] 21y 2k
1 p 2 < ! 2 -T\
_ 0 4K | 4K
Tl(T)—< ‘ 2‘112 1+;—27 -1+ U 1+p 5T /
2., 2 2 (0] (0]
2 Ko\ A i

and Hy is the first eigenvalue of the system. With the above equation
and Ohm's law the variation in electric field strength with 7 can be

computed, a value which could easily be compared with experiment.

The behavior of the centerline heat flux potential (x = 0) and the
electric field strength is shown in Fig. 8 and 9, respectively. Initial
conditions corresponding to P, = 0. 8 were chosen and values of K =, 416
and . 441 were used to compute U (0, 7). These boundary velocities cor-
respond to (1 - p.lz/ K) = - 3.0 and - 2.8, respectively. As this param-
‘eter goes to negative infinity there is no boundary motion and one can
show that for the present situation the boundary velocity is effectively
zero when (1 - u.12/ K) = - 4,0. One thing to note is that the higher the
value of K (rapid bouridary motion) the smaller the rate of temperature
rise. This is evident from the way in which the de/ d7 term enters the

original differential equation, Eq. 2. For dp?/dT > 0 that term will
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make a negative contribution to the energy equation since 9U/dx is
negative for all x> 0. Thus; the advancing boundary has the effect

of slowing the rate of temperature rise. Included in the Figs, 8 and

9 are the results of an exact solution of the complete boundary value
problem posed earlier. This solution was obtained on a digital com-
puter and will be discussed later in more detail. For the present,
however, it will be sufficient to point out that for a proper choice of
K the approximate solution given here corresponds satisfactorily to
the "exact" theoretical result. The value K =, 441 provides a rea-
sonable linear approximation tb the p2 vs. T curve which was obtained

from the numerical computation.

Finally, a word about time constant determination from transient
arc behavior is in order. Yoon and Spindle (31) and others define the
time constant as that point where the falling E(7) curve intersects the
original value E0 on the way toward approaching El’ This time con-
stant is then related to an analysis (Mayr (12»)) wherein a constant ra-
dius arc with constant energy losses is postulated. According to the
present work, the time constant determined in this way is too low, by
perhaps a significant factor. It is suggested that measured arc time
constants that have been interpreted in terms of cruder, constant ra-
dius models could be re-evaluated in terms of a more sophisticated

model,similar to the one presented herein.



4, THE CONSTANT RADIUS AC ARC

In the preceding section it was mentioned that the boundary motion
specified by dpz/ dr = + 4K is quite unsuitable for application to orscil-
latory arc phenomena. Since alternating current arcs comprise an
extremely impoftant part of the technology of géseous discharges, it
behooves one to search for a specified boundary motion that could apply
to a quasi-steady, oscil}atory column. An appeal to physical intuition
can be quite useful in determining the conditions under which this might

be possible.

As noted previously, Eq. 1 merely describes a very sophisticated
heat conduction problem with a constant thermal diffusivity,A. As in
any time unsteady conduction problem the diffusivity is a measure of
the speed with which temperature changes can be effected when ei.ther
a boundary condition or an internal heat generation function 1s altered.
Then, since the conducting zone radius is defined simply as the locus
in the time-space plane of a fixed temperature, its position and rate

of change of position must depend in some way upon the thermal diffu-
sivity.

Physically, the conducting zone radius reaches extreme values
in the AC arc when conditions are such that there is no tendency to

raise or lower the temperature on either side of its immediate posi-

tion, or when,locally, there is no net heat flux across the boundary.

57
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When this situation occurs, there is an inflection point in the heat flux
potential profile at the zone boundary. This is easily seen from the

differential equations. At x =1 the first of Eq. 1 becomes

since both U and 9U/d7 vanish at x = 1. Then, when p has an extremum,

dpz/dT = 0 and

Ry o)
E

0xX =0

1

Thus, since the boundary position is thermally determined, it is rea-
sonable to expect that under some conditions the motion of the conduct-
ing boundary will be small and unimportant. Specifically, if the exter-
nal conditions which are imposed upon the arc (the current function)

are changed so rapidly that the arc cannot readily adjust to these changes
there will be little overall variation with time in the structure of the arc.
Even if the changes are not rapid but the arc is thermally "slow", the
result again will be that there is only a slight temporal variation in arc
properties. The parameter that is a measure of these relative rates

of change is the product of the circular frequency, w, of the current

waveform and the pseudo-time constant of the arc-tube system,
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0= Rz/)t. When this product is large, implying either w or © is large,
one expects the arc to be operating under the conditions described
above; namely, there is almost no change in the arc structure. It is

not yet possible to say, however, just how large is "large'.

There is more than just intuition fo stimulate the type of reason-
ing described above. Analyses by von Engel and Steenbeck (35), Rompe
and Weizel (36), Frie (37), and Uhlenbusch (6), of the linearly modu-
lated DC arc have all indicated that as the applied frequency of the dis-
turbance is increased, the magnitude of the deviations from the DC
condition becomes vanishingly small. Frie (37), indicates, in fact,
that the perturbation to the conducting boundary position decreases as

(w )'3/ 2 while centerline temperature perturbations die out only as

(w@))-l.

All of these analyses treat the case of a DC arc, operating
at a given point on its characteristic, and upon which is superimposed
a small (linear) AC signal. It is possible to obtain, in most cases, a
closed form solution to this problem and the four authors cited above
have done this with varying degrees of sophistication. They all indi-
cate, however, that as w@® — « the arc essentially stagnates and re-
tains a fixed temperature distribution with no consequent change in

its conductance. Thus, in the infinite frequency limit the arc should

look like an ohmic resistor with a positive voltage-current character-

istic.
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One is led, then, to make the following conjecture: at a suitably
large value of w® one can neglect altogether the influence of the mov-
ing boundary on the determination of arc structure. That is, thé cbh-
ducting zone pulsates only so slightly that the arc essentially has a
constant radius. This can only be strictly true in the limit as w@ -
but it is assumed that for' 'qther "iafge” values of wO the approximate

solution to the energy equation obtained by this simplification will

closely resemble reality. It is shbwn in the sequel how this assumption

can be substantiated a posteri‘o‘r’i and also how a "large" w® can be

defined.

If it is pfesumed that there is effectivély no boundary motion then
dpz/dT = 0 in Eq. 1.; As_ indicated earlier, this makes it possible td
obtain é closed form solution. Actually, this corresponds to the case
K= 0 in the previ‘ous section but it will be more convenient to rework

the problem with slightly different notation,

Under the assumptions made above the governing equations become

-~

2.2 20U

U \
x-é-x-+pEU~pm_- , (0<x<1 7>0)

19

ol
&

UX(Oy 7y=0 , U(l,7)=0 , plus initial condition >
1

271sz f x U(x, 7) dx = I cos (wer)
-0
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where the sinusoidal current waveform has been specified. Again,
since the boundary motion is known, there is no need for either the
annular differential equation or the remaining boundary and compati-
bility conditions. It is convenient to use for the initial conditions the
properties of a DC arc that is carrying a current, Im’ equal to the
peak value of the AC curzrent level, It is possible to solve Eq. 8 by

the method of separation of variables. Assuming a solution of the

form
U(x, 7) = X(x)* T(7)

allows one to obtain the following ordinary differential equations:

X”+lX'+BZX=O
X
X'0)=0 |, X(1)=0

2 2,2
T -(E"-8/p)T=0
Here B is a separation constant to be determined by the boundary con-

ditions on X(x). The first equation is easily solved to yield the Bessel

function solution

X(x) = CJ_(Bx)

where application of the condition X' (0) = 0 has demanded the exclusion

of the second solution, Yo(x)o Upon applying the second boundary
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condition one finds that for non-trivial solutions

JO(B)aQ or B=8 n=1,2,3, ...

Thus the separation constant assumes the values of the zeros of the

Bessel function., From Ohm's law

Im cos (w@r)
1 b
2 ’
271p J,XX(X)“T(T) dx
0

E =

and the T equation can be arranged in the form

2 I 2 cos2 (wer)
m

p2 [1 2
4nzp44j’xX(x)dx
|0

As in the case of the transient DC problem; the time equation is non-
linear but if Tz((T) is chosen as the dependent variable it can readily
be solved. It will be convenient to absorb the constant, C; into the

initial conditions, so one obtains the result

1

[ xa a3 0
0
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T

‘ g1 2 2
T2 exp(2 27) =— 4m2 [ exp (Zizg) cos2 (wea) da + Ti2
p 21°p°J,7(8) p

The initial conditions for this problem are those which prevail
for a DC arc carrying a current Im° This solution was obtained in
the previous section but it will be fruitful to rederive it here in more

detail.

In the DC arc all time unsteady terms vanish, leaving one with

t1d{ do] 2.2
;&-lx&-+pEU—0 , (0<x<1)
Ul o , ww-=o
dx

0
a2V 1 av

, Z’IszEfXU(X) dx=-—~Im
0

Since the solution to the first equation must be well behaved at the

origin one finds

(9)

(10)
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U(x) = UmJo (pEx)

But, since this function must vanish at x = 1, the requirement for a
non-trivial solution is pE = B, the first zero of the Bessel function.
Subsequent roots are not considered since the solution cannot assume
negative values. Usﬁing the compatibility condition allows one to ob-

tain the solution to the annular equation in the form:

1—(1-p)y}

Viy) = U, (2

The edge of the conducting zone can be found by noting that at y = 0,
V =1, Thus,

1

'~ BT I (/)

Ohm's law yields the relation,

Im =2 npUmJl(B)

and, upon combining this with the expression for Um above, one ob-

tains the following relation between arc current and conducting zone

radius:

27

[ =271 P
8 In (1/p)

m
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Notice that when there is no boundary motion (as in the DC case) it
is possible to solve the complete problem exactly and a unique value
of p can be determined. It should be possible, therefore, at the high
frequency limit of the AC arc (w© —o) to similarly determine a
unique radius for the conducting zone. This follows from the pre-
sumption that for large values of w@ there will again be no boundary
motion. Henceforth the value of p which applies to the DC arc will

be denoted by p de while the AC value will have no subscript.

Since the initial distribution of heat flux potential is identical to
the first eigen-function of the present boundary value problem, there
is no need to form a generalized Fourier series for the representa-
tion of the time varying distribution. The first Fourier coefficient

is simply unity and all others are identically zero.

The integral in Eq. 9 is easily evaluated to yield

2

TZ_ Im
- 22_2
877073, "(B)

[1+ cosycos (2QwoT - y)]-(1+cos ¥) exp( 2[; T)
p

+ Ti exp(

2627)

p

(11)
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Here an auxiliary angle, v, has been introduced and is defined by

tany = (wO)pz/ Bz

At 7 = 0 the DC solution holds, T = Ti’ U(x) = UmJ o(Bx), and Ti = Um'

The two terms involving exponentials in Eq. 11 represent the transient

transition from the initial DC arc to the quasi-steady AC column.
Since the transient part of the solution is of no interest, let 7 - and
obtain the desired expression. Thus, one can find

L3 o(E%) 1/2
U(x,7) = m [1+ cos ¥ cos (2wOT - ¥)]

Now it was mentioned earlier that the above solution would be
expected to apply to the situation where the conducting boundary mo-
tion is slight and consists of a small oscillation about some mean
value. One would not necessarily expect that mean value to be p de
so the solution is not complete until a proper AC radius has been de-
fined. Since this solution is valid only when w@ is large, the radius
corresponding to the infinite frequency limit is the most logical one

to choose. For large w®,y -~7/2, cos ¥ -0, and Eq. 12 becomes

I
m

U = 3 73,

3 (%)
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It is convenient to refer all quantities to their DC counterparts so the
above may be rewritten as
vZ_ Um
Ux) = = J
(x) 5 Wp—dcj o (Bx)
One sees that were it not for the difference in conducting radii the heat
flux distribution of the high frequency limit AC arc would be the RMS

value of the corresponding DC column. As it is, by analogy with the

DC solution, one finds the radii to be related by

p Q p‘dc
n 2

1 In pdc

P

From Eq. 12, the expression for the time varying heat flux poten-
tial, it is possible to obtain the electric field waveforms which corres-
pond to this high frequency arc. With the help of Ohm's law it is not

difficult to obtain the expression:

E - _\/’2-_@ (e]] (w@'T) | (13)
p [1+ cos v cos (2wOT - y)]l/2

which, of course, applies only for the assumed cosine current waveform.
Again, notice that as w® becomes very large, implying that cos y -0, the
denominator in the above expression becomes unity and the column ap-

pears to behave as though it were a fixed composition (ohmic) resistor.
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That is, the voltage waveform precisely follows the current input and
is directly proportional to it. It appears that the electric field is inde-
pendent of the current or power level, normally indicated by the magni-
tude of Im. It must be remembered, however, that the power level
enters Eq. 13 through the arc radius, p.

Since it is still not known for how low a value of wO the present
analysis is valid, it is instructive to plot Eq. 13 for an arbitrary

range of values of the frequency parameter. Since the electric field
strength is an easily measured observable of AC arcs it is possible

to compare the results of this analysis with some carefully taken experi-
mental results. In Fig. 10 the electric field waveform is plotted for
values of w©=0.5, 1.0, 1.5, 2.0, 5.0, 10.0, and 100. 0. A value of

p2 = (0. 64 was chosen in order to compute the angle y but it does not
really matter what number is used as long as a wide enough range for
wO is chosen. That is, it would be just as easy, in the present case,

to absorb the factor p2/B into the definition of the time constant © so

that ¥ would be a function of this new value alone. Since © 7 is the
original dimensional time, the arguments of the cosine functions in

Eq. 13 are simply the radian measure of position in the cycle. By
plotting Eq. 13 for values of ¥ from zero to 7 /2 one obtains all possible

shapes that can be assumed by the electric field waveform.
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Normalized Field Strength

wOT

Figure 10. Electric Field Waveforms for a Constant Radius AC Arc
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In Section 6, experimentally obtained electric field waveforms
indicate that any analysis of the AC arc column must be capable of
predicting two important features that are characteristic of small
values of w@ Shortly after the point of current zero passage, a
large voltage spike appears which is known as the reignition peak.

The voltage thén drops sharply to a low plateau level, remains nearly
constant for much of the half-cycle, and then rises slightly to a second
peak before falling to zero at the next current zero passage. This
second voltage spike is called the extinction peak. The value of w©

at which these features occur is certainly less than 5 and probably

close to unity.

A glance at Fig. 10 indicates that none of the analytically derived
waveforms bear the proper resemblance to reality. The reignition peaks
are too low relative to the plateau values to be realistic and an extinction
peak never develops. It would, of course, be quite surprising if there
were good agreement between experimentally obtained waveforms and
those given by this simple analysis. For low values of wO one concludes
that the moving radius must be included in a meaningful analysis of the
AC column. Also, the value of w® at the lower limit of applicability
of the analysis is certainly greater than five but just how much greater
can only be determined by comparison with an exact solution of Eq. 1.

Such a solution has been obtained and is discussed in the next section.
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The results shown in Fig. 11 compare the variation of centerline
heat flux potential for the "exact" arc and the "approximate" arc (Eq.
12) for w® = 100 and p de = 80. The agreement is excellent indicat-
ing that 100 is a "large'" value of the frequency parameter. A similar
comparison is shown in Fig.l? for the same Pic and w® = 10. Here the
agreement is satisfactory but not as good as in the first case. A
glance at Fig. 13 indicates why there begins to be a discrepancy be-
tween the two solutions. Shown there is the variation in p(7), start-
ing from a DC state and decaying to a quasi-steady AC value. For
w0 = 100, the radius undergoes only a 1/29% oscillation about its mean
value while the central heat flux potential has about a 5 1/2% varia-
tion. For w® = 10 the oscillations are 7% and 40%, respectively so
that the moving boundary has more than a second order effect.in that

case.

In the next section it is shown that a numerical solution to the
~exact Eq. 1 can be obtained and the low values of w®, which correspond
to those easily obtained in the laboratory, can be examined. In addi-
tion, it will be possible to say something about the time relationships
between processes (heat generation, heat loss, etc.) that occur within

the column, as well as the temporal variation in arc structure.
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5. THE NUMERICAL SOLUTION OF THE
BOUNDARY VALUE PROBLEM

5.1 The Finite Difference Method

Except for the two special cases treated in the preceding sections,
it has not been possible to find an analytical solution to the boundary
value problem posed in Section 2. It was decided, therefore, to attempt
to solve the system nufnerically for an AC positive column which re-
ceives a perfect sine wave of current from some imaginary power
supply. Of course, the equations are capable of describing the proc-
esses occurring within any dynamic arc, but herein attention will be

focused primarily on the AC column.

The art of solving partial differential equations by numerical tech-
niques has been described in many recent books c. f. Forsythe and
Wasow (38), Fox (39), and it is generally agreed that obtaining stable,’
accurate solutions economically and efficiently is troublesome. The
technique adopted here is closely related to that used to obtain solutions
to partial differential equations on analog computers. There one first
applies a finite difference scheme to the space-like variables, leaving
a series of ordinary differential equations to be solved in the usual
way on an analog computer. This procedure is described in many

places among which are (40), (41), and (42); the latter paper being a

75
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very elegant treatment of the general procedures to be followed as well
as the errors incurred by the application of finite differences. Fox (39)
also mentions this procedﬁre and suggests that one might try solving

the resulting ordinarf differential equétions on a digifal rather than
analog computer by some simple forward integrétion technique such as
the Runge-Kutta method. The accuracy is not better than that obtainable
with an analog solution,‘ but it is usually simpler to implement the digital
process. Fox also gives a stability ‘criterion that should be satisfied

by the cell size of the finite difference scheme together with the step
size for the time integration, but the experience of the writer has shown
it to be too optimistic. In all cases it was necessary to use a step

sizé that was considerably smaller than that given by Fox's criterion.

Finite difference schemes as applied to tabular data are discussed
in many books on numerical analysis, typical of these is (43). Basically
the idea is to examine the first, second, and higher order differences
that exist between a given piece of data and its tabular neighbors and
determine an approximate expression for the derivatives that exist at
that point or close nearby. Fundamentally, there are forward, back-
ward, and central difference schemes, with the essential differences
between them being the direction that one proceeds from a tabular point

to examine the differences between it and its neighbors. By using the
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first order central difference method a rather high degree of accuracy

can be obtained without the expense of undue mathematic'al sophistica-

tion.

Consider .Fig; 147where the coordinate system for the finite differ-

ence scheme is illustrated. It is presumed that the values of U and V

at a particular time are known only at discrete stations (or in finite
cells) in their respective spatial domains. The finite difference scheme
consists of finding an interpolating polynomial that passes through the
point in question and through an arbitrary number of neighboring points,
depending upon the degree of accuracy desired. Then,first and second
(partial) derivatives can be formed at each station and the partial differ-
ential equations are cast into a series of ordinary differential equations,

equal in number to the prescribed number of cells.

From (43) or its equivalent one finds that the first and second
derivatives at a point in the difference table, say, Um’ can be approxi-

mated in the first order central difference scheme by

dU 1 12

dx m "~ 2Ax U1~ Uyt O [(ax)"]
dzU 1 2
5 =— (Um-l - 2Um + Um+1) +0 [(AX) ]
dx o (Ax)
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Figure 14. Coordinate System for the Finite-Difference Scheme
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where U and U are the tabular values on the positive and nega-
m+1 m-1

tive side of Um’ respectively. The cell size is denoted by Ax and is
related to the spatial coordinate by x = m(Ax). At a boundary station
it is easy to see that one can encounter difficulty, for fictitious cells
are introduced. Often, at the boundaries, one switches to a forward
or backward difference scheme giving the same degree of accuracy
(second order in this case) in order to circumvent the introduction of
a fictitious tabular value. There are manipulations that can make
this unnecesgsary, however, and, in the present case, it has been
found that the fictitious tabular values can be eliminated to yield needed
additional relations that account for the moving boundary. Finally, it
should be noted that at the axis of symmetry some additional manipu-

lation is required since UX ~0asx~0. By L'Hopital's rule

lim (190 o
U,x-0lIx0x| . 2 ?
X 0x
x=0
so that
%aix X%{Q] = 42(U1'Uo)
x=0 (Ax)

One can now proceed to prepare the set of equations in Eq. 1 for solu-

tion by the finite difference technique. For the inner, conducting
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. region let x = mh so that 1 = Mh, with M being the chosen number of

cells. At m = 0 the special result above enables one to obtain

dU
4 2.2 2 o
] (U1 - Uo) +pEU =p" 3~ - (14)

h

Otherwise, one finds

1
— (U -2U0 + U )
h2 m-1 m m+1 9mh

2.2 2 m (15)

m=1,2,..., (M-1)

The boundary condition U(1,p) = 0 gives the relation, U, = 0 and, of
course, the Um are functions of 7 only. Including the special case for
m = 0, the above set provides M equations. So far, (M + 2) unknowns

have been introduced, UO through Um as well as p(7) and E(7).

For the annular region let y = nk, 1 = Nk, and obtain

v .-V ) 2
V-2V sV ) = -1n-1 _%dgT(l-p\(V+l—Vn-l)
g " noE 9k[(1-p) - nK] P ®
dv (16)
2 n
=(1-p) 37

This equation holds for n=1,2, . . . , (N - 1) since both V_and vy

are known from the boundary conditions. Thus (N - 1) more equations
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and unknowns are introduced by consideration of the non-conducting
zone. Two more equations are evidently required to make a deter-
minate set. One of these is provided by Ohm's law (in which Simpson's
rule is used to evaluate the integral) and the other must result from the
compatibility condition for the derivatives at the moving boundary.

Since VN =0, one can apply Eq. 16 at y = 1 (or n = N) and obtain

V., , -V

Ne1” VN1 =0

=i

1- 1 dp
(Vieq - Vnor) + 2V 4] - (_,Tp) (l T3ar

The fictitious variable V appears in this equation but this is of no

N+1

concern since it is the difference (V ) ) which is of importance,

N+l = N
With this difference term one can calculate the slope 0V/dy at y = 1.

By rearranging the above expression one finds

2
gz =ﬁ VNe1 ~ Vned) = ™ ) ()
7 ly=1 2 1-pf;, 1ap®
k p 2 dt
Similarly, at x =1, Eq. 15 gives the result
2 1 dp* _
B (Oner - U * 200 ) ( zar| Ui Um-r) = 0
Finally,
2
9u Lw -u )-- V5 (18)
0x 2h ' "M+1 M-1 2
=1 g 1+ 1 dL
h 2 d7
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One can now apply the compatibility condition which Eq, 17 and 18 must

obey and find

. Un-1 VN-1 \ |
B oo
1-p M-l p N—1

p 2 1-p kZ

The condition p = 1, which could only occur for. infinite current, will
never arise. Thus, by suitable manipulation of the boundary conditions,
an explicit ordinary differential equation for the boundary motion has
been obtained. The original partial differential equations have been
reduced to (M + N) ordinary differential equations for (M + N + 1) vari-
ables. The additional equation is the integral relation furnished by
Ohm's law. The set is, of course, still badly non-linear and recourse

to numerical techniques is necessary.

There are many methods available for solving the initial value
type of ordinary differential equation (or set of eciuations) but for the
present problem it was found to be convenient to use the Gill modifica-
tion of the Runge-Kutta technique (43). This method has the advantages
of requiring no starting solution (only initial values are needed), the
step size may be changed at will anytime during the computation, and

it is inherently stable. In addition, the fourth order technique, which
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~ was used herein has an error at each step that is proportional to only

the fifth power of the step size.

Ohm's law and Eq. 14, 15, 16, and 19, were programmed for solu-
tion on The University of Michigan IBM 7090 digital computer wherein
the Runge-Kutta method is included as a library sub-routine. The
MAD language (_I\LI_ichige;n Algorithmic Pecoder) was used in program-
ming this problem and it was presented to the computer in as general
a way as possible so that changes in the program could easily be made
by varying only data cards in the input deck. For initial conditions it
was convenient to use the structure of a DC arc carrying a dimension-
less current Im' For the AC arc a cosine variation of current is
assumed to begin at 7= 0 and Im then becomes the peak value of cur-
rent. Actually, it is more convenient to assign an initial value of p
and calculate the resulting value of Im from the DC solution. The
relation between the conducting radius and Im is shown in Fig, 15.

It is seen that neither an infinite nor zero value of current can be tol-
erated in the present approximation to the AC arc problem so that care
must be taken in the numerical computation to insure that cpmulative
errors do not cause p to vanish. In addition to the parameter Im (or
its equivalent p), one must specify the product w® which is needed in

the expression
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I=1 cos (o)
m

This is sufficient information ’to‘ permit coﬁiputation of all the Vn’
Um, p and E for each instant of time. Usually, the transient period
between the DC arc and the quasi-steady AC solution is of no interest
and the solution is carried out far enough in time to insure the estab-
lishment of a steady stéte. The balance of this section will be con-
cerned with the steady state AC arc which carries a perfect cosine
wave of current. Furthermore, except for one or two spécial cases,

only w@ will be varied over a significant range, Ifn being held constant.

Besides the temperature distribution aﬁd electric field strength
there are other quantities associated with the arc which are useful in
interpreting its behavior. 'i‘hese are the instantahéous po&ér input
énd the instantaneous power fransferréd to.the tube wails. Tﬁesé two
variables can easily bé computed. acéording to'the' finite difféfénce
scherhe. The heat entering the tube walls is given in dimrensionaiv

variables as

97RE | -P  (watts/cm),.
or R out

With the transformations and dimensionless variables introduced

earlier, one can bring this expression into the form



86

Pout _ 27 _a_y_

y=0

Upon evaluating the above derivative in finite difference terms one

obtains

. 5 - 27 . (Vl-l)
out k(1 -p) [l+§(1-p)]

where the bar denotes non-dimensionalization with respect to (S1 - Sz).

The dimensionless power delivered to the arc is easily found to be
Pin = E(7) I(7)

Finally, there are one or two situations where it is fruitful to
consider the arc as a circuit element, in which case the current can
no longer be specified. Thus an additional unknown is added to the
system, but a circuit equation can also be written. The circuit which
has been chosen is easily represented and is also commonly used. It
is presumed that the arc burns in series with a pure inductance of L
henries and a power supply which generates a voltage, Vm sin wt.

The circuit equation can be written as

V sinowt+ L-c-llt+ EX =0
m dt - ?
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where { is the effective length of the arc (positive column) and the

asterisks denote dimensional quantities. In dimensionless form one

obtains
A" A4
dl _ . a
E-—wev_ smw®T+V——E (20)
L m
Here
V. -wLRBY2 (5. -5.) and Vv =—2
L 1 2 a RB172 ’

which are two additional parameters to be specified when necessary.

The accuracy of the finite difference scheme has not been thoroughly
investigated but a comparison of some numerical results for large w®
with the closed form solution presented earlier shows close agreement.
For this comparison the boundary velocity was set to zero in the numer-
ical computation so that the same problem was solved in both cases,

i. e., analytically and numerically. In addition, a computation using
fewer cells (4 rather than 6) was tried for a particular problem

(w® = 3) and no appreciable effect on the numerical result was observed.

5. 2 Numerical Results and Discussion

From Fig. 15 one finds that for p de = 0. 8, Im = 9.4, Depending

upon the particular type of gas and constrictor size for which one
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desires physical resulfs, this could represent current levels from a
few amps to i)erhaps 100 amps. With this parameter fixed, w@ has
been varied between 1 and 100. Furthermore, N = M = 6 in all cases.
Rather than deluge the reader with dozens of curves, only the most
representative of the numerical results ié presented and discussed.
Three sets of data cofnesponding to high, intermediate, and low fre-

quencies are scrutinized.

In Figs. 16, 17, and 18 are shown the pertinent variables for a
high frequency column, w®= 100. The applied current waveform is
common to all three figures in order to facilitate comparison with
the forcing function of the problem. At this frequency the closed form
solution obtained earlier agrees well with the exact solution, as shown
in the preceding section. In addition to the arc current, Fig. 16 shows
the variation of UO('r), the centerline heat flux potential and the conduct-
ing zone radius, p(7). The oscillation frequency for U0 and p is about
twice the fundamental, a fact also indicated by the approximate solu-
tion. Since the frequency is so high that the arc displays an Ohmic
type of behavior, the power input to the column varies as IZ(T). The
heat flux potential and other thermally determined variables react not
primarily to the current, but to the power input. Thus, the sine

squared behavior of the heat flux potential and p(7). The power input
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behavior is shown in Fig. 17 and clearly has a sine squared charac-
ter. The power lost to the tube walls, also shown in Fig. 17, departs
only slightly from a mean value that is nearly equal to the average
power inbut to the column. I w@® wére infinite, there would be no
temporal variation at all in the power loss behavior; it would be pre-
cisely equal to the average power input. Ih. Fig. 18 the electric field
variation is shown aiong with the current, and the expected proportion-
ality between the two quantities is evident. In general, the power is
nearly in phase with the applied current and.all of the thermal and
thermally determined variables lag the powe'r‘ iﬁput by about 90°,

The sole exception is the arc radius, which lags the power input by
about 130°. This is reasonable since the condubting zone radius must

lag somewhat the centerline temperature variation.

At lower effective frequencies '(lowe‘r w@) the entire character
of the arc changes. Since the thermal properties can follow the exter-
nally applvi‘ed variations more féithfully, ’lth‘ere are large changes in the
heat flux potential, condﬁét'ing zone radius, and other variables. There
no longer exists the proportionality between the applied current and

the arc voltage that one finds at higher w®. In fact, the arc voltage
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waveform assumes quite an unusual shape due to the large, non-linear
changes in thermal conditions which occur. Furthermore, the wave-
fofms of the thermal variables begin to resemble fully rectified sine
curves, rather than the pure sine curves (of twice fundamental fre-

quency) that occur at higher frequencies.

The waveforms of the variableé of interest for an arc having an
w'p of 5 are shown in Figs. 19, ZQ, and 21. The centerline heat flux
potential, the arc radius, p(x), and the applied current are shown in
Fig. 19. There is initially a rapid fall-off in both UO(T) and p(7) as
the current is modulated away from the DC value. When the current
reverses, however, and approaches a negative maximum, the heat
flux potential quickly rises to a level which even exceeds the DC value.
This is possible because the arc is not losing energy as fast as it
is gaining it, as for the stationary discharge. On the other hand,
the conducting zone radius never quite reaches its DC magnitude, indi-
cating that the higher overall temperature (and the concomitant higher
conductivity) allows the arc to carry the same current witha smaller
radius. Notice the rectified sine wave behavior, referred to above,
that is manifested by both UO(T) and p(7). This results because the
current waveform (actually power) can be closely followed by the arc,

except at the zero passage points where a cusped behavior is in
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evidence. Of course, the thermal variables must always have a posi-
tive sign so there must be a rapid reversal in behavior as the current

changes direction.

The power input and loss waveforms are shown in Fig. 20, with
the rectified behavior again occurring. There is a- marked asymmetry
to the power input waveform and one notices that it reaches a maxi-
mum well before (leads) the current. The reason for this behavior
will be explained shortly. Notice first, however, the lag in power
loss with respect to the heat generation function, the phenomenon that

accounts for the temperature overshoot mentioned above.

In Fig. 21 the electric field waveform displays a sharply rising
behavior, immediateiy following the current zero passage. Physically,
this obtains from the arc having lost considerable energy (and having
gained resistance) during the interval when the current was low. The
small time constant indicates that the arc stores energy poorly and
rapidly loses the qualities of a good conductor of electricity. Since
the current is specified, the force (electric field) required to produce
this electron flux becomes large and remains so until sufficient energy
has been added to significantly increase the column conductance.

Since the power input depends upon the product of E and I, its asym-

metric character is easily understood. It must lead the current by a
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considerable amount, for the electric field reaches its peak at nearly
the beginning of a cycle, about 90° before the current. Note, also,
that the strong departure of the E(7) waveform from a sine curve indi-
cates the presence of harmonics higher than the fundamental. This
suggests some interesting speculations on the power factor of an AC

arc, a subject to be discussed later.

Finally, consider the characteristics of a low frequency arc, as
depicted in Figs. 22, 23, and 24. Here, w®= 1.0, a value close to
that obtained in the laboratory for an argon arc. The rectified sine
curve behavior is even more pronounced than in the previous case,
as seen from the cusped nature of the centerline heat flux potential in
Fig. 22. In the same figure is shown p(7); one notices immediately
the broad maximum that is exhibited. Since the conducting boundary
position is determined by a special heat flux equilibration (as described
earlier), the broad peak indicates that over a large portion of the half
cycle of heating an inflection point in the profile resides at x = 1.

Close to the point of zero current passage, however, the conducting

zone radius changes very rapidly, drops to a sharp minimum, and then
rises quickly to a nearly constant value for the next half-cycle. From
another point of view, the small value of w® used for these calculations

implies that the DC characteristic (the E-I curve) can be rather faithfully
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followed. From the DC solution found in the previous section one can
construct such a characteristic as well as a curve that relates Pic

to Im. The behavior of these variables is shown in Figs. 15 and 25.
During the high current portion of the sine wave input, the arc is oper-
ating on the branch of the p dc " Im curve where dp/dlI is very small.
Hence, the flat top for the p(7) curve. Near current zero, however,
the static curve can no longer be followed and the sharply rising and
falling portions of the radius curve are dictated by dynamic considera-
tions. On the other hand, the centerline heat flux potential has more
nearly the shape of the input current since, at large values of p, the

DC solution indicates near proportionality between p and L

The input power and power loss functions are shown in Fig. 23,
with the former closely resembling the centerline heat flux potential.
Again, this is expected because of the low effective frequency of the
present example., The power loss function, however, has a much
smoother behavior than any of the other thermal variables. No cusps
occur at all, and with good reason. From the expression given earlier
for ﬁout’ it is evident that only the heat flux potential adjacent to the
wall, Vl’ and the radius p(7) enter into its determination. The cusped
character of, say, the centerline heat flux potential indicates the pres-

ence of very high frequency harmonics in its waveform. It is charac-

teristic of transient heat conduction problems that a heat wave is
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dispersed during propagation through the heat conducting medium.
In the present problem one can think of the electrically conducting
core as a distribution of heat sources having a certain temporal
variation. As the heat flows to the cold walls, the high frequency
components of the heat generation function are strongly attenuated,
meaning that close to the wall only the low frequency behavior ap-

pears. Hence, the smoother behavior of the power loss function.

Finally, in Fig. 24, the electric field waveform exhibits some
interesting characteristi.cs. Compared to the DC value, there is an
immense reignition transient immediately following the zero current
passage. The arc suffers a rapid loss in conductance when it is mo-
mentarily extinguished so that a large field is required to drive the
specified current. As the column gains energy again, from the Joule
heating, the field strength drops to a value that is comparable to the
DC level and remains nearly constant for over 50% of the half cycle.
This plateau behavior is explained by reference to the static charac-
teristic, Fig. 25. Here, one sees that at high current levels the arc
voltage varies only slightly with the current. At a low frequency the
AC afc can closely follow the static characteristic until, of course,
the time comes for current reversal. Then the analogy no longer is

valid. At its lowest point the AC arc burns with a voltage somewhat
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below the corresponding DC level. This is a dynamic effect due to
the AC arc actually over ionizing as a result of the initial voltage

transient.

The behavior of AC and DC arcs can be clearly shown in a cyclo-
gram or dynamic E-I characteristic. Such a plot appears in Fig. 26,
with only the positive half-cycle of the AC arcs being shown. At high
frequencies the near-Ohmic, positive characteristic is in evidence,
while for w® = 1 the falling DC characteristic is closely approximated.
In fact, this close adherence to the DC curve brings about a voltage

rise before current zero passage that has been observed experimen-

tally; it is known as an extinction peak. For the conditions assumed

in the present numerical calculations, it appears that w®must be less
than 1. 5 before an extinction peak develops. The presence of an exter-
nal circuit or of different current magnitudes may alter this conclusion

considerably.

Returning to the electric field waveform for the high frequency
arc, one sees, by comparison with Fig. 24, that the character has
changed from that of a pure sine curve nearly to that of a square
wave. The non-linear element, which is the arc, introduces harmon-

ics into a circuit that are not originally there; the current is, after



106

SO11S14930BIRY) oY J13B)S PUE dDlWeuk( [BO1}8I09YL, ‘9 2In3ig

| ‘jusaan) ssajuoisuawig

o1 9 s v ¢ : :
T T T T _ ! . 0
- 2
—_— - —~— — v
ool=em N
G=em // — 9
\
/ -1 8
\

1=em\ | —{ o
—I Al

|
——l 41
_ 1
dl)s1a8peIRY) IQ ’
_ 81
(174

a2

3 ‘PIal4 91419913 SSAUOISUWIQ



107

all, a pure wave form. It is interesting to examine one of the
more obvious consequences of the presence of harmonics in a cir-

cuit element that are higher than fundamental.

If one retains the usual definition of power factor for a cir-
cuit or part circuit, one finds that the power factor for an AC arc
carrying a pure sine \;vave of current can be significantly different
from unity. It should be emphasized that this statement applies
for the arc alone and not a complete circuit. For the usual AC
circuit with linear elements it is easy to understand a non-unity
power factor; some amount of the input energy is always stored in
a capacitor or inductor. Here, however, all input energy must be
dissipated in the arc and to understand the existence of a power
factor less than one it is necessary to re-examine the concept of

effective or root-mean-squared circuit quantities.

In (44) the special considerations which must be given to the
analysis of a circuit that contains non-fundarhental harmonics is
carefully described. The concept of Fourier decomposition is
introduced; any periodic waveform can be represented by a linear
superposition of the many frequency components which it comprises.

If the average power of a circuit element is defined by



108

T
W= jE'IdT ,
0

where T is the fundamental period, one can easily show that a value
of W, different from zero, is obtained only by the combination of a
voltage and current of the same frequency. That is, if E and I are
represented by their respective Fourier series, the cross product
terms in the above integrand will contribute nothing to the value of
the integral, W. rIn th‘e present case I(7) is a pure harmonic with no
overtones, SO the amplitude of its first and only harmonic is simply
Im. The voltage waveform, however, is rich in higher harmonics,
none of which will contribute to the average power. Upon integrat-

ing the above expression one obtains

where Emi and Imi' are the magnitudes of the various voltage and
current harmonics. No phase angle between voltage and current has
been assumed to exist, but no generality is lost by this assumption.
It is most essential to recognize that since the Imi , i>1,areall

zero, the average power is simply given by
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On the other hand, the usual definition of effective voltage requires

that

Ji\/z 2
Eeff——z— Em1+Em2+. o o

As usual, Ieff = (V2/2) Im and it is easy to see that if the voltage wave
has a non-fundamental harmonic of even the most minute magnitude,
the power facfor of the arc, W/ (Ieffo Eff), cannot be precisely one, |
Physically, the large arc voltage that is required to overcome the
high resistance that follows extinction is ineffectively used to prodlice
power. The éurrent is very low‘at this point and-the power added to

the arc is trivial compared to that potentially obtainable from }a ~situ-
ation where the voltage and the current have the same harmonic content.
In Fig. 27 the variafion in arc power factor with the effective frequency,
w@, is shown. When one is trying to dissipate power by means of an
AC arc it is clear that the higher the value of w@ the more efficient
the utilization of the available power supply. This non-linear effect,

| therefore, is definitely penalizing to the arc heater designer who

uses AC power.

Another consequence of the presence of overtones in the electric
field waveform is that the possibility arises of non-equilibrium effects

occurring. Not only is the reignition transient of a much higher
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frequency than the fundamental, but, in addition, it is due to a very
rich harmonic. The result is that the arc voltage momentarily rises
to a value that, in the case w® =1, is about 8 times higher than the
plateau level. While this voltage spike is applied to the arc, the prob-
ability of the electron gas having a higher local temperature than the
ion and atom gas is large. Furthermore, the frequency at which the
transient field is applied to the column is at least an order of magni-
tude greater than the fundamental frequency, an apparent violation

of the assumptions made at the outset of this study. Closer scrutiny

indicates, however, that is not the case. -

Chemical non-equilibrium is brought about by overly rapid changes
in the gas temperature or, what is the same here, the heat flux poten-
tial. While the steep voltage rise causes the power input to increase
more rapidly than normal, the effect on reaction times is not large.
Since the reignition transient quickly disappears, the slopes of the
power input and heat flux waveforms soon return to allowable values.
Thus, the only significant effect of the abnormally high field strength
could be to cause the electron gas to be greatly out of equilibrium
with the heavier parent gas particles. Again, however, this effect
would only last as long as the reignition spike itself unless, after the
voltage is back to normal, the equilibration time between the two gases

is very long. It was pointed out earlier, however, that the time
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* required for this type of equilibration, under the conditions of inter-
est here, is of the order of a microsecond. This is three orders of
magnitude lower than the m_inimum period allowed under the present
anal;:sis. It is not likely, therefore, that the reignition transient will
cause a significant deviation from the predicted equilibrium conditions.
It is of ini:erest, however, to estimate by how much the electron tem-

perature could possibly deviate from the parent gas temperature.

If one compares the energy gained by electrons moving in the
existing electric field with that lost to the heavy particles during col-
lisions, the following relation is obtained as a criterion for testing

the existence of kinetic thermal equiliibrium:

T -T 2.2
e g e E « 1

¢ 3my KT
e g

Here Te and Tg are the electron and gas temperatures, respectively,

e is the electronic charge, f is the fraction of electron energy transfer-
red per collision to a heavy particle, Ve is the collision frequency and
k is the Boltzmann constant. The above expression is simple to derive
and may be found in (45) or (46). Using values that are appropriate to
an atmospheric pressure nitrogen arc with a centerline temperature

of about 10, OOOOK, it is possible to obtain a rough estimate of the
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degree of non-equilibrium which might exist between the electron and
heavy particle gases. According to (45), f can be taken as 10‘3 since
some fraction of the collisions that take place are inelastic. Taking
Vé =5x 1011, according to (47), and Tg = 10, 000°K, one finds

(Tg - T,) 6 .2

e -
—,I,;-i=2.72x1o E°

if E is in volts/cm. For the nitrogen arcs that have been operated in
this laboratory, a reignition spike as high as 100 v/cm has been ob-
served. Under these cénditions, the electron temperature can be
about 270°K higher than the parent gas. The plateau voltage, how-
ever, is about 40 v/cm, in which case the degree of kinetic non-
equilibrium is trivial. Since the spike rapidly disappears, the two
gases will quickly equilibrate; no impyortant effects due to electric

fields are anticipated.

Finally, to complete thislsection, a few heat flux potential and tem-
perature profiles that result from the numerical computations are pre-
sented. For the high frequency arc there is virtually no deviation from
the mean value profile, which in turn closely resembles the DC struc-
ture. The latter is shown in Fig. 28 for an initial dimensionless arc

radius of 0. 8. There, also, is shown an intermediate profile for the
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wO = 1 case, as well as the heat flux potential cross-section at the
lowest point in the cycle. Bessel function profiles, appropriate to
DC only, are included for comparison. It is seen that the dynamic

effects of the AC arc do not cause significant deviation from these

curves.

In Fig. 29 temperatﬁre profiles for nitrogen are shown, with the
thermal conductivity data being due to Avco (26). At a high current
(and hence high temperatures) the hot core characteristic of molecu-
lar gases is in evidence. As the current passes through zero the
temperature profile becomes very flat, with a steep gradient near the
tube wall. Nothing untoward or unexpected, however, is displayed

by these profiles.
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6. THE EXPERIMENTAL DETERMINATION
OF AC ARC CHARACTERISTICS

6.1 The Alternating Current Cascade Arc

The measurements of the properties and characteristics of AC -
arc columns that are reported in the literature have all been made
under poorly known and poorly controlled conditions. For the most
part, measurements have been made on free burning arcs, where the
effects of natural convection are not accurately known. By way of con-
trast, there are some excellent and cax;efully taken measurements on
DC col_umris that have been repqrted in recent yeafs, These have been
made possible by the use of a device first reported by Maecker (24) in
1960. This is the cascade arc, so-named because the arc is forced
to strike through holes drilled in a series of copper disks that are
electricaH}; and thermally insulated from each other. The effect is
to produce a wall stabilized arc in a highly anisotropic tube; it is a
good conduictor in the ra‘dial direction, but has all the properties of
an insulator along_ the tube axis. _Aceording to Maecker and others,
it is possible io create an extrem\ely» steady and reproducible discharge
in an apparatus of this sort, with the obvious additional advantage that
the arc boundary conditions are known precisely. With this device,
Maecker and others have obtained very accurate measurements of

DC arc characteristics (E-I curves) and column temperature profiles.

117
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Also, it has been possible to infer frdm these measurements some
transport properties of high temperature gases. I the individual disks
are well cooled the tube wall can be held at nearly a constant tempera-
ture and, if a portion of the column where no axial gradients exist can
be found, one has the experimental counterpart of the cylindrically
symmetric wall stabilized arc. As mentioned earlier this arrange-

ment is amenable to analysis.

An additional advantage of the cascade arc is that column potential
differences (and hence electric field strength) can be measured directly
without the interference of electrode effects. Each copper disk, being
electrically isolated from the circuit, acts as a probe; it assumes
some potential that is characteristic of the local column properties.

A high input impedance instrument can be used to measure the poten-
tial difference that exists between any two disks. To be sure, a space
charge sheath will form on the inside of the probe (disk) so that abso-
lute potentials cannot be determined in this way. In a fully developed
portion of the discharge, however, the sheath effects at any two disks
will be comparable. Thus, the potential difference measurement will

be accurate.

In order to obtain data for the AC column to compare with the

present theoretical work, it was necessary to construct a Maecker-like
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cascade arc. The use of AC power with such a device, however, pre-

sents one or two problems that are not present in the DC counterpart.

It is conceivable that the stack of disks, insulated one from the
other, can act as a shunting capacitor to the arc column, thereby chang-
ing its characteristics. It was necessary to verify that this was not
the case, since only pu;'e‘arc behavior was desired. First, the capaci-
tance of the device with no arc present was measured directly with an
impedance bridge and was found to be 20 pf. In addition, with the arc
burning,a varying amount of shunt capacitance, up to 12 uf, was pur-
posely added to the circuit to determine at what value the arc wave-
form was noticeably changed. There was no observable effect for
the range of operating conditions that prevailed. Physically, one would
not expect the capacitance to play a large role unless the maximum
energy it could store were comparable to the arc energy. A compari-

son of typical values indicated that the cascade capacitance should be

of no consequence,

A second problem peculiar to AC cascade operation is due to a
power supply imposed limitation. Since the arc voltage rises to large
values after the current zero passage, complete extinction can result
unless the available open circuit voltage can overcome this transient.

The total reignition voltage is, of course, strongly dependent upon



120

columnvlength so that with a fixed open circuit voltage it is important
to minimize the total arc length. At the same time, however, one
must have sufficient length to allow the development of an asymptotic
column. While the theoretical problem of the approach to the asymp-
totic cplumn is very difficuit, the apparent success of the Stine and
Watson (9) simplified analysis of the DC é.rc moves one to attempt a
similar approach for the AC column. If sucha solution c}ould be ob-
tained it would permit one to predict the minimum length required for

the establishment of an asymptotic column in cascade type arc heaters.

Following Stine and Watson, it is assumed that the arc has a con-
stant radius; it does not vary with either time or z, the axial distance.
All of the simplifications and assumptions listed in Section 2 are in
effect here. Thus, the equations for the constant radius AC arc are
applicable (Section 4), except for the inclusion of axial transport terms.
If, in the energy equation, the transport of heat in the z direction by
conduction is neglected compared to that carried by convection, one
obtains a soluble partial differential equation. Near z = 0 the solution
will not be valid, but at a short distance down the column one can show
that convection will definitely dominate conduction. This approach
has been well verified experimentally, (10). If all variables have

their previous definitions and
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z* =7 (WOG) ,

one obtains the following boundary value problem:

12 [ 0U) 22U 2.2, 23U
xox Fox| P oz p =P 37
O0<x<1) , z>0 , 7>0 (21)

UX (0,z,7)=0 , U(,z,7n=0 |, U (x,2,0) = UOJO(Bx)

1
U(x,0,7)=0 , 27Tp2E f xU (x,z,7) dx = I(7)
0

Here, W0 is the flow velocity of the gas along the arc column and it is
assumed to be constant. Clearly, this crude model of the arc cannot
possibly satisfy all conservation equations, nor Maxwell's equations.
Nevertheless, some of the salient features of the energy transfer proc-
esses should be delineated by this approach. The initial distribution
that is assumed is unimportant, since only' the steady state is of inter-

est.
Assuming a solution to Eq. 21 of the form

U (x,2,7) = P (z,7)-X(x) |,
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one obtains

ex) _p?
P

X

M=

oP 0P 2.2 2
Fr -37)-PE—-3 )

where Bz is a separation constant and ( )' = d/dx. The above relation

yields the following two equations:

(xX') + B2 XX = 0

(22)
2(0P oP 2 2
FZ”a_r'E P)+B P=0
The details of the solution of the separated equation are presented in
Appendix B, but, briefly, the procedure is to use the Laplace trans-
form on the P(z, 7) equation and to investigate the result for large
time, i.e., when all effects of the initial condition have died out. The
resulting equation is:
U(x,2,7) =
, 1/2
M 1 - exp ﬁ??- 1+ cos y cos (2wOT - ¥) (23)
2V2 7pJ 1(B) p2
|

For large z the solution given above goes over to the constant radius
asymptotic column solution that was discussed earlier. The details of
Eq. 23 are not of much interest here, only the rate at which the fully

developed column is approached. From Ohm's law
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«]—2'(—@) cos (woT)
E(z,7) = 73 £ , (24)

- 2322 *
I:l - exp . V1+ cosy cos (2wer - y)

2
p

and one sees that the axial behavior of the field strength is contained

in the term

1/2

[ eef]

An RMS value for the field strength could be obtained, but since magni-

tude is of no importance, write
-1/2

2
E = [1 - exp (- 2% ZH , (25)
p

where E is defined so as to include the scale factor for E(z, 7). From

Eq. 30 one finds that E is within 7% of its ultimate value when (262/p2)z = 2,

A dimensionless total column voltage drop can be obtained from

z
V=f§(a)da ,
0

which, when integrated, yields
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1/2

i 2
- 28z
9 1+1—exp( 5 )‘

_\7=p 1n< = P

~

2 - 172
28 2Bzz
: 1-11-exp |
\ p /-

This function is also shown in Fig. 30 where a linear behavior for the
voltage drop is seen to begin at about (262/ p2) z = 2. Thus, when the

design parameters of the cascade arc satisfy the relation

p

one can expect that an asymptotic column will prevail. This criterion

z>2 R

can be expressed in terms of dimensional variables as

p___ﬂ_
*2 2

lel

where the total mass flow, W, is introduced because it is directly meas-
- urable. The most unfavorable value of p in the above criterion is clearly

unity so that in terms of tube diameters one can write
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The maximum value of (Cp/?) for high temperature nitrogen at 1 atm.
is about 103 cm-sec/gm. Thus, to insure the establishment of an
asymptotic column in a reasonable number of tube diameters, the flow
rate of nitrogen should be such that the parameter w/R is of the order

of 1072 gm/cm-sec.

Guided by this approximate criterion, one can design a cascade
arc heater which is long enough to insure the development of an asymp-
totic column and yet does not tax the voltage capabilities of the available
power supply. A schematic drawing of the unit which was finally built
is shown in Fig. 3la. It is easily disassembled so that the hole size
of the cascade tube can be quickly changed. Uncooled carbon electrodes
are used to ease the voltage requirements of the complete ar(; and to
encourage smooth burning. Electrode erosion is slight in view of the
fact that they are provided with no cooling. A photograph of the assembled

unit is shown in Fig. 31b. Size can be judged by knowing that the device

is about 8 in. long.

One of the requirements of the present cascade unit is that the elec-
trodes not influence the behavior of the positive column. Toward this
end, the working gas is injected with a slight tangential component at
a central position in the tube. The flow divides, with the major portion

going toward the hollow electrode. Some (unknown) fraction passes
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through the longer portion of :the cascade, where the measurements
are made, through the ffansition section, past the électrode, and exits
radially. This flow arrangemeﬁt is designed to preveﬁt any electrode
material from entering the coltil;ln portionv of the arc, }thereby changing
its chemical composition. Thexfe is a threshold flow rate that must be
established to achieve t“his‘ condition since the‘cathod'e .jet from the
momentarily negafive eiectrpde {can penétrate a sﬁbéta‘ntial distance
into the opposing flow. The attainment of this critical flow level can
be determined by monitbi'ihg th~é.l columri'voltaéé wavefprm on an oscil-
loscope. A marked asymmetry appears when there is a cathode jet
injection of carbon into the c_olurhn since‘ even a s‘mall amount of low

ionization potential contaminant (about 11 volts for carbon) can pro-

foundly influence the electrical conductivity and hence the arc voltage.

Spectrograms of argon and nitrogen arcs appear in Fig. 32a; the
absence of carbon lines attests to the purity of the plasma column. In

the nitrogen arc CN bands would be quite intense, even for a small
0

amount of carbon. A particularly strong one would occur at 3883 A,

+
2

purity of the arc gas. It should also be noticed that the absence of

0
but only the 3918 A, N band appears in this region, indicating the

copper lines in both spectra ihdicates that the cooling of the cascade

disks is sufficient to prevent erosion of the exposed surfaces. If
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copper contamination were present the most dominant lines would occur
at 5106 lgand at 5153 K The spectra were taken through a window in
the cascade that was formed by replacing a micarta insulating washer
with a . 030 in. slice of thin wall Vycor tubing. The glass section held
up quite well in spite of the high temperature environment and remained

free from discoloration throughout the experimental program.

Other, ﬁlore qualitative tests were conducted to show that the elec-
trodes have no effect on the positive column. Besides the carbon-
carbon electrode pair, which was normally used, a series of other com-
binations were tx;'ied. Carbon-tungsten, carbon-copper, tungsten-
tungsten, tungsten-copper, and copper-copper electrode combinations
all showed essentially the same behavior; no discernible changes in

the column voltage waveform could be detected.

In order to show the existence of an asymptotic column in the de-
vice of Figs. 31a and b, two tests were performed. The first involves
the measurement of the pressure drop along the left (working) section
of the cascade. Each disk was provided with a pressure tap, the line
from which was led to a single pole, 6 throw Scanivalve pressure switch.
The single outlet from the switch was connected to an inclined manom-
eter that could detect pressure differences of 0. 02 in. H20. ’Since one

expects a Poiseuille flow to be established in the asymptotic column
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portion of the arc, a linear pressuredrop indicates theattainment of this
condition. Some typical results of the pressure surveys are shown

in Fig. 33 for both argon and nitrogen arcs with different total flow
rates and constrictor diameters. These results indicate that Poiseuille
flow ié attained at about disk number 3 which, for the hole sizes used,
represents an entry length of about 2 diameters. For the current level
that prevailed for these tests, p2 =0.5and (Cp/ﬁ) for nitrogen is of

the order of 103 cm-sec/gm. The total mass flow was about 2 x 10—1
gm/sec. so the asymptotic column criterion developed above indicates

Z*
2R

> 5.5

Not all of the measured mass flow, however, passes through the work-
ing section of the cascade. If this fact is taken into account, it is seen
that the analytical prediction of the location of the fully developed column

is at least approximately correct, which is all that was initially antici-

~ pated.

Finally, as Fig. 30 indicates, ‘the voltage of an asymptotic column
should vary linearly with arc length. By using a vacuum tube voltmeter
(with an input impedance of about 10 megohms), it is possible to obtain
an RMS measurement of the voltage variation along the column,referred

to, say, the first or last disk. A summary of several such measurements



134

U OJy 9pPBOSE)) 9y} WOJJ SA9AING 9INSSAIJ [BIXY °€¢ 9In31 g

uo}}ea07 Xsiq
9 4 p ¢ Z 1

RlU|

! | _ | I _

J9s/wb g1 * =

/MM —_ L BIE - 42 “Uobiy
//////
/

/Av

/\
29s/wbh QT = M
/ Ul g€ = U2
// /A_mmo:_z
29S/Wh T = M V/O
Ul 8/€ = ¥Z ‘usbosyN

A

— ¥0°

— 80°

— U

— 9T’

— 0¢°

— v

— 8¢°

aJaydsow)y aAoqy a4nssald



135

is shown in Fig. 34 where it is seen that, except for the first disk, a
straight line can be drawn through the data points. Thus, one concludes
that the establishment of an asymptotic column requires between one

and two tube diameters, certainly no more than three. It is interest-

ing to examine the behavior with axial distance of the column waveform
for a typical cascade opérating condition. Such a survey taken in a nitro-
gen arc is shown in Fig. 35. Going from top to bottom, one can see the
evolution of the waveform as the column is sampled at a progressively
greater distance from the gas inlet. Finally, the smooth waveform shown

in the last trace is obtained; this is typical of the results to be described

shortly.

A word or two is certainly in order about the flow regime (laminar
or turbulent) in which the cascade operates. The average Reynolds num-
ber in the arc column is of the order of 15 to 20 as computed by the best
available transport and thermodynamic properties. While this low
Reynolds number would ordinarily prompt one to assume that laminar
flow exists, such a conclusion might be unwarranted. The stability of
plasma flows wherein electric fields exist is not at all understood and
furthermore, near the cold tube wall, the Reynolds number will be
much higher than the average value since the viscosity is very low.

Experimentally, only an aural diagnostic was used to determine
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Figure 35. A Survey of Voltage Waveforms Along the AC Arc
Column in Nitrogen
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whether or not laminar flow (probably) existed. That is, there isa
range of flow rates for which the arc operation sounds smooth. De-
pending upon the gas being used, there is a critical flow rate that,

when exceeded, causes the arc to burn with a rough sound. Whether
this is due to the onset of turbulence or to some separation phenomenon
has not been determined, but smooth, reproducible results can be ob-

tained only when the cascade is operated below this threshold flow rate.

It has also been noted that the voltage waveform of the arc column
is quite sensitive to this onset of apparent turbulence,and abruptly changes
shape at that point. There is likewise a minimum flow rate that can be
tolerated, but this is due to a different phenomenon than the high flow
limit. Unless the test gas is introduced into the cascade in excess of
some minimum rate, room air can enter the tube and markedly influ-
ence the column behavior. This is especially true when argon is the
| test gas. Since there is nothing in the theory that was developed earlier
that could account for turbulent phenomena, one would not expect good
agreement with experiment unless laminar flow existed in the cascade
tube. In the absence of evidence to the contrary, it was assumed that

laminar flow was present.



139

6. 2 Experimental Results

The broad purpose of the experimental program was to obtain meas-
urements that characterized the behavior of the arc column and that
could easily be compared with the analytical results of Section 5. Be-
cause of the limited capabilities of the AC power supply, the only param-
eter that could be significantly varied was the dimensionless frequency,
w®. Only 60 cps power was available, however, so parametric changes
were effected by varying either the tube radius, R, or, by using differ-
ent gases, the effective thermal diffusivity, A. All data were taken
from atmospheric pressure arcs that used either argon or nitrogen as
the working gas. The primary diagnostic tool was the oscilloscope by
which means the electric field and arc current waveforms were obtained.
The power supply was a three phase variable transformer (Powerstat),
which was capable of supplying about 30 amps, single phase, at 565 volts.
The circuit current was limited chiefly by an inductor that provided
15 ohms impedance at 60 cps. For a specific gas, only the constrictor
tube radius was varied. The range of variation was from a 1/41in, toa
1/2 in. diameter, except in the case of nitrogen where an arc could not
be sustained in the 1/4 in. tube. Even with a diameter of 5/16 in., the
nitrogen arc could barely be sustained, due to its relatively high operat-

ing voltage.
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Because of its favorable experimental properties, the most conclu-
sive results were obtained in argon and these are presented first.
Oscillograms of arc voltagé and arc cu}rre‘nt for tube diameters of 1/4
in., 3/8 in., and 1/2 in., are presented in Figs. 36, 37, and 38, re‘spec-
tively. In ali of these cases the current is nearly é perfect sine wave
so, in that sense, comparisoﬁ with the theoretical results should be
feasible. Some amount of discretion is necessary in choosin}gr values of
Sl’ B, and A in order to intefpret the éré data in terms of the dimen-
sionless waveforms in Section 5. The DC solution can be used to guess
at a range of values for which linear approximations to the ¢ - S and
F - S curves should be chosen, The data in Section 1 indicate that
reasonable values for argoﬁ are: B=1.5 mhos/ watt, S1 = 5 watts/cm,
and, since the tubé wall is very cold, S2 =0. A linear fittothe F - S
curve is somewhat arbitrary, but a selection Shouid be weighted by the
average value of hea,t‘ flux potential that will probably exist in the column.

‘Since the circular frequency corresponding to ‘60 cps is 377 i'ad/ sec,
a particularly simple expression for w® results if the reasonable value
2

of 37.7 cmz/ sec is chosen for the thermal diffusivity. Thus, w®=10R",

where R is in centimeters.
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For the 1/4 in. diameter tube R =. 3175 cm and w@ = 1. For Figs.
37 and 38 the above expression gives w@ = 2.25 and 4, respectively.
The waveforms for the 1/2 in, and 1/4 in. tubes should be compared
with Figs. 21 and 24 of Section 5. The resemblance as to waveform
shape is clear. Theoret‘ical data for the intermediate size were not
presented earlier, but a; voltagev wavefdrm for the case wO= 2.0 is
shown in Fig. 39. The cbmpérison is not as favorable as in the other
cases, but the theory noﬁetheless predicts the trend of the arc dynamic
behavior. All of the argon wéveforms exhibit sligﬁt non-uniformities
and asymmetries. It refquired much effort, however, to obtain data as
clean as that shown above and, in view of the complex phenomena

occurring in the arc column, they are considered to be good waveforms.

There are several points to consider when comparing the experi-
mental and theofetical results. All the théoretiba-l curves were obtained
for a dimensionless curreﬁt ,léve’-l corresponding’~ top dc = 0.8. For the
same dimensional current, the three tube diaxheters that were used
correspond fo a 'conducting zone radius that varies between 0. 81 and
0.89. For a fixed value of wo, a loWér dimeﬁsioniess current causes
the arc to behave (ina noﬁlinear manner) as if it had a lower dimen-
sionless frequericy. The magnitﬁdedf fhis effect, however, is not

great for high initial values of p, such as those that occur here. Also,
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upon examining the transport property plots of Section 1, it is clear
that argon, over the appropriate range of heat flux potential, shows a
wide variation in possible choices of B. A poorly chosen value of B

directly affects the dimensional voltage magnitude.

For example, consider the data of Fig. 36. Here, one finds a
reignition peak of abm;t 45 v/cm (the distance between cascade disks
is about 1. 2 cm) and a plateau value of 5. 5 volts/cm. The theory, using
the values of B and S1 indicated above, yields corresponding voltage
gradients of 55. 5 volts/cm and 7. 6 volts/cm, respectively. It is pos-
sible that the use of the "filling factor" principle of Maecker (24) could
yield better quantitative results. There, the linear fit to the 0 - S
curve is selected so as to duplicate the area under the actual curve,
up to some maximum value of heat flux potential. This principle was
developed for DC arcs, however, and only an approximate form of it
could be used here. Since only trends in arc behavior are of interest
here, the problem of accurate quantitative prediction must be left for

a more advanced study.

Finally, there is the question of the range of validity of the linear
approximation to the ¢ - S curve, A glance at the actual variation in
electrical conductivity shows that at some (high) value of heat flux

potential the slope becomes rather small. This change in slope is
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reflected in the E - I characteristic of the DC tube arc as a minimum
in the arc voltage. That is, the increase in electrical conductivity with
current, which initially is rapid, eventually falls off, so that the field
strength begins to increase with current. Results of this type can be
found in (23). The point at which the voltage reaches a minimum de-
pends upon the type of gefs and the tube radius in which the arc burns.
Small tube radii and small values of S1 move this point to the left in
the dimensionless E - I plane. For argon, S1 is rather small so that,
for the 1/4 in. tube, this effect could appear. A further refinement

of the theory presented herein could involve approximating the o - S

curve with three straight line segments, or even a power law behavior.

For nitrogen, the situation is more complicated. Voltage wave-
forms for a nitrogen arc burning in 5/16 in. and 1/2 in, tubes are
shown in Figs. 40 and 41, respectively. Their behavior seems to be
much smoother, but, of course, their overall voltage level is much
higher than for the argon arc. Thus, small irregularities would not
appear. The distorted current waveform indicates that the arc consti-
tutes a large part of the circuit impedance. Hence, the results of
Section 5 are not directly applicable. However, the entire circuit
can be included in the theory so that the reciprocal effect of the arc

can be studied. Before presenting results of this type it should be noted
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from the data that a two and one half-fold change in w® does not percept-
ibly change the character of the voltage waveform. This is understand-
able when one considers the probable values of w® that apply to these
situations. From Fig. 4, ohe obtains A = 75 cmz/ sec, indicating a
dimensionless frequency of about 0. 5. For the larger diameter this
value increases to only 1. 25, still a very low w®. At the same time,
the dimensionless current decreases significantly so the net effect is

to keep the voltage waveform looking the same as in the 5/16 in. tube.

Notice that the reignition spike is not as sharp as for the argon
arc. This results from the reciproca,l effect of the arc on the current
waveform. This is evident in Fig. 40 where it is seen that, following
current zero passage, the current waveform departs markedly from
a sine curve. The high voltage spike has limited the current, which,
in turn, limits the height of the reignition peak. The current level
subsequently remains low, thereby keeping the voltage high and spread-
ing out the reignition peak over a large portioh of the half-cycle. The
arc column equations have been solved, in conjunction with the circuit
equation given in Section 5, for a set of conditibns where the arc has a
noticeable effect on the current waveform. The resulting current and
voltage waveforms are shown in Fig. 42; the similarity to the experi-

mental data is obvious.
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Electric Field Pge =0.75
w® =2

Va/Vm = 0. 06
ViV, = 6. 84

Current |

0 2 v'd
Radian Time, w®T

Figure 42. Theoretical Waveforms of Electric Field Strength
and Dimensionless Current Including the Effects of an External
Circuit
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6. 3 Suggestions for Future Research

Improvements can be made in both the theoretical and experimental
areas of the work reported herein. If a wider range of conditions can
be attained, the experizﬁental findings can be made more conclusivé
and inclusive. This wﬂould involve designing a system for bafhing the
electrodes in an inert gas.. Then, the column test gas could be oxidizing
or corrosive. Presently, the use of, say, oxygen rapidly destroys the

electrodes.

An improved cascade device should be pressurizable and capable
of operation in a sub-atmospheric vessel so that column conditions

under various pressure levels can be studied.

A power supply with higher current and voltage capabilities should

be used, as well as, or in addition to, one that has a variable frequency

output.

In 2 more advanced experimental study, arc parameters other
than voltage and current should be monitored. These would include
time resolved spectroscopic measurements of emitted radiation, arc
power input, and cyclogram area. With the aid of spectroscopy, the

actual structure of the column, as well as its temporal variation, can
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be studied. Measurement of the cyclogram area (dynamic voltage-
current characteristic) could, it appears, ‘lead to a means of infer-
ring the thermal diffusivity of the arc gas, since the included area

is a strong function of w@

The area of theoref‘icval investigation of AC arc charactéristics
is by no means closed. There is room for both quantitative and quali-
tative improvement of the theory of the dynamic arc, even without the
a‘dded complication of an external circuit. As mentioned earlier, an
improved approximation to the ¢ - S curve should be devised, perhaps
- with a three-segment polygonal fit. This would still permit the gov-
erning equations to be universalized, whereas a non-linear approxi-
mation would require that the problem be solved anew for each gas.
It may be useful, however, to study the behavior of one particular
gas in some detail. For this purpose one would use the best possible
approximation, however nonlinear, to its transport and thermodynamic

properties, so that accurate quantitative data could be obtained.

The effect of radiative transfer on the column properties should
be included in the energy conservation equation so that a wider range
of pressures and arc currents can be studied. This would be of spe-

cial importance if the results were to be used in arc heater design.
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Ultimately, one would like to include the effects of an external
circuit, and, in so doing, study the stability of the arc-circuit com-
bination. This, too, will be of great interest to the arc heater

designer, as will be the effects of mass flow on the column proper-

ties.

Finally, when it becomes necessary, the effects of relaxation
phenomena will have to be accounted for. It may be that the dynamic
arc will provide a means for investigating chemical reaction rates,

but, at this point, this is pure conjecture.



7. CONCLUSIONS

It has been possible to simplify the conservation equations that
describe the‘ behavior of the alternating current arc column so that
only two. dimensionless parameters need be specified to obtain a
solution, The equations can be solved once and for all for a suitable
range of these parameters, and, in this sense, are universal and

independent of any type of gas.

The solutions to these equations, while complicated, have the
advantage over older theories, (11) and (12), that they can be direct-
ly related to measureable or calculable quantities that characterize
a particular gas and current level. This relation occurs through the
two parameters w®, and Im’ which determine the arc dynamic behavior
and power level, respectively.

Under certain special circumstances, the equations for the dy-
namic arc can be solved in closed form. This is possible for a high

- frequency AC arc, w®> 10, and for a DC arc subjected to a step

function increase in current.

Based upon experimental findings from a Maecker-like AC cascade

arc, it is concluded that the trend in arc behavior with w® can be

155
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successfully prediéted by the theory mentioned above. From this,
one infers that AC arc theory can be treated as a sophisticated heat

conductibn problem, ahd that all its salient features can be discov-

ered by such a description.



APPENDIX A

TRANSFORMATION OF THE ARC EQUATIONS TO A FIXED DOMAIN

After one introduces the simplifications and assumptions described

in Section 2, the energy equation assumes the form

1a as ' '1as 3
10 oS _12@_
cor|Tar) “xae 0 TWSTSR o, 120
$.0,6)=0 , Sk t)=8
+
S(r,t)=81 , S(R,t)=S
S (r,t)=8_(r_,t)
Furthermore,

r (t)
27BE* [ r(5-5)dr=1H0
0
With the eqﬁatiohs in this form, it is .dif'ficuult’to' see what role the mov-
ing boundary, r (t), will play The problem can be transformed into a
fixed domain by non- dlmensmnahzmg the spatlal variable with respect
to the free boundary. For the region 0<r< ro(t), introduce the new

variable ,
157
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X - r/ rbo(t)

Now, x and t are the new independent variables and derivatives are

formed in the following manner:

2 _jma 2 _[ma 3
or  l|or|/ox ot |ot] ox ot
But
w1, = x T
or r ot 21 dt ’
. 0 r
: 0
SO
2. 18 . 2.3 x(¥oa
or r 0X ot ot r &dt/ax
0 0

In addition,

After introducing the dimensionless variables and parameters

L L
U (x,t "6B-s) p(t) = — ,
S1'52 R
£ - 82 R) E* 1= r @Jf

’ pl/2 R(S; - 5,) ’ A

O+
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it is a straightforward matter to obtain

2 200
pEU pF 9

oU
X_

L 1dp” [ 2
Zd ax

10
X 0X
valid in the domain 0 < x <1, 7>0. The boundary conditions become
Ux (o,m=0 , U(Q,r1)s=
In the annular, non-conducting region a different transformation

must be introduced to eliminate the free boundary. Here, define

R-r

Y=R- roit)

The derivatives must again be formed with care since y is a function

of both r and t. Here,

ay 1 8y _R-r (dro)
= — ’ Nt 9
or R r, ot (R - )2 dt
0
SO
a1 a3 oy [Yola
or (R—roiay ? ot ot (R-r)\dt/oy °
and
2 1 a°
- 2
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Again, straightforward manipulation gives

v 1 oV 11-pdp

2y [ - o)L ) ar

valid for 0 < y <1, 7>0. Here, V (y,7) = (S /(S
V(0,7) =1, and V (1,7) = 0. The continuity of slope condition, Which

fixes the boundary position, transforms to

U (11')--1—‘_)-—5V (1, 7)

Finally, Ohm's law becomes

1
217p2E I xU (x,7)dx =I(1) ,
5 |

thereby completing the boundary value problem posed in Section 2.



APPENDIX B

THE APPROACH TO THE ASYMPTOTIC COLUMN

In order to estimate what the length of the cascade arc heater must
be to insure the development of an asymptotic column, the following

boundary value problem was developed:

14 29| 20U 2.2, 223U
X 9% \*ox Pog*P =P 37 >
0<

x<1 , z>0 7T>0

UX (O,Z,T)=O s U(l,z,'r)v:() L, -U;(X’Z”O)'—'UOJO (Bx)
1 .
U(x0,7)=0 %fEfXUmaﬂwuuﬂ
0

All symbols were defined in the text. As a first step, separation of

variables may be applied by assuming a solution of the form
U (x,2,7) = P (2, 7) X(x)
By this method, one obtains two equations
(X)) + F xX = 0

P, g2p, Pp-g

z(ap P 2
0z 0T

where B is a separation constant. The first of these equations is Bessel's

differential equation, having the solution

161

(B-1)
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X=J (Bx)

(V)

Since U (1,2,7) = 0, JO(B) =0, with 8= §;, [32, coe B where the
Bn are the zeros of the Bessel function. Only the first root is of

interest here because the initial distribution is proportional to the

first eigen-function.

In order to solve the equation for P (z,7), first find from Ohm's

law

PE’ - —5 [;ZI ;

41°p J1 (B)* P (z,7)
since
1
1
[ x5, 0 ax=53, @
0

Then, selecting P2 as the dependent variable, one obtains

2 2 2 2
(LA 4 L2 p? BZI . (B-2)

wtart Tt T34 2,
29 ) 21 J,°(8)

The method of the Laplace transform can now be applied to Eq. B-2.

If

(' 0
080 'P (z, 7) fe Pz, dT=7 (@9 ,
0
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one can obtain the ordinary differential equation

g‘_z.+ (Eg.+ S) y= F(S) + Po2 , : ‘ (B'3)
p
where
2.2
P2-P%(z,0° and 1(s) 5 g14 5
° 2n"p J,7(8)]

With the help of an integrating factor, Eq. B-3 can be solved to yield

2
f(s) + P :
y (z,8) = _— 9% /1 exp [— (-2—%2— +s) z} . (B-4)
e [t
p

The solution, y (z,s), can be easily inverted with the aid of the convolu-

tion integral and a table of Laplace transform pairs. One obtains

;
p’ (z,7) =f f(a) ex:{‘zgz (- a)i\ da
0 ,

p

.
2 2
- exp (- 2‘82 Z) j f(a - z)exp [_ 226 (r - a)] da (B-5)
P Ig p

2
+ PO2 exp(_ 2262'7) [l - exp (- ng Z) H, (T)] ,

p
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where HZ(T) = 1 when 7 >z and vanishes for 7 <z. Also, f (@ -2z)=0
for a< z. Notice, that for large 7, the term involving the initial value,
POZ, will tend to zero, and, since only a periodic, quasi-steady solu-
tion is of interest, the effect of the initial distribution will not be impor-

tant. Furthermore, 7 >>z so, if one assumes,

r)=1_coswerT) ,

the complete solution to the original boundary value problem can be

written as

I J (Bx)
U (x,2,7) = ———o 1-exp(—2[?z
2V27pJ (B) Py

)} [1+ cos ¥ cos (2wer - v)]

1/2
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