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We present a systematic study of a new type of consistent “brane-world Kaluza—
Klein reduction,” which describes fully nonlinear deformations of codimension
one objects that arise as solutions of a large class of gauged supergravity theories in
diverse dimensions, and whose world-volume theories are described by ungauged
supergravities with-one half of the original supersymmetry. In addition, we provide
oxidations of these ansawhich are in general related to sphere compactified
higher dimensional string theory or M-theory. Within each class we also provide
explicit solutions of brane configurations localized on the world-brane. We show
that at the Cauchy horizdin the transverse dimension of the consistently Kaluza—
Klein reduced world-branethere is a curvature singularity for any configuration
with a non-null Riemann curvature or a nonvanishing Ricci scalar that lives in the
world-brane. Since the massive Kaluza—Klein modes can be consistently decou-
pled, they cannot participate in regulating these singularities.2001 American
Institute of Physics.[DOI: 10.1063/1.1377272

I. INTRODUCTION

The conventional way of extracting an effective lower-dimensional theory from a higher-
dimensional one is by performing a Kaluza—Klein reduction in which the extra dimensions are
wrapped up into a compact space such as a torus or a sphere. Provided that the scale size of these
internal dimensions is sufficiently small in relation to the energy scale of excitations in the lower
dimension, then the mass gap separating the massless modes from the massive ones will be
sufficient to ensure that the internal dimensions are essentially unobservable, and the world will
appear to be effectively lower dimensional.

If an extra dimension were noncompact then seen from the lower-dimensional viewpoint there
would usually be a continuum of modes, with masses extending down to zero. One would nor-
mally expect that this would mean that the observable world would be the higher-dimensional one,
and that one could not usefully describe it in terms of a lower-dimensional view\dietcannot
usefully view our four-dimensional space—time as being effectively three-dimensional simply by
shutting our eyes to the existence of thaxis!) However, it has been shown that under suitable
circumstances it may be that the continuous mass eigenvalues for the massive lower-dimensional
metric perturbations are distributed in such a way that the effects of the nearly-massless modes is
suppressed, implying that the world does in fact appear to be lower-dimensional, with only small
modifications to the gravitational forced law appropriate to the lower dimersiorits original
form this Randall-Sundrum Il scenario is realised by starting from pure gravity with a negative

0022-2488/2001/42(7)/3048/23/$18.00 3048 © 2001 American Institute of Physics



J. Math. Phys., Vol. 42, No. 7, July 2001 Brane-world Kaluza—Klein reductions 3049

cosmological constant in five dimensions, and patching together two segmetsSof In horo-
spherical coordinates one has

d€=e 2145  dx*dx"+d2Z, (1)

where the 3-brane is locatedzt 0. (For a review on the global and local space—time structure of
the codimension one objects, see Ref.lRwas found that gravity is effectively localized on the
3-brane corresponding to the join between the two segmenisi &f.* Specifically, it was shown
that the metric fluctuations around the flat Minkowski space—time of the 3-brane are localized near
the brane.

More generally, if the flat Minkowski metric on the 3-brane is replaced by any Ricci-flat
4-metric the five-dimensional metric will still, in the bulk, satisfy the Einstein equations with a
negative cosmological constant. In other words, one can view

d¥=e *ldds2+dZ )

as a Kaluza—Klein reduction ansatz that gives a consistent embedding of four-dimensional pure
Einstein gravity in five-dimensional Einstein gravity with a negative cosmological constant. In fact
the construction could be extended to give an embedding of four-dimengibaal ungauged
supergravity in five dimensions, by starting frddi+ 2 (i.e., minima) gauged supergravity iD

=5. Note, however, that the bosonic sectorDr=4 would still only comprise the metric, and
there would be no Maxwell field that could support charged Reissner—Namisiieck holes. In
particular, it should be noted that one cannot get a Maxwell field as a standard type of Kaluza—
Klein vector by writingd¥=e~ 27 ds}+ (dz+ A(;))?, sincedldz is not a Killing vector.

In a recent paper, it was shown that if one instead startsM#ti gauged supergravity in five
dimensions, then it is possible to construct a consistent Kaluza—Klein reduction ansatz that gives
an embedding of four-dimensional ungaugdee: 2 supergravity on the 3-brarieThis is a new
kind of dimensional reduction, which we shall refer to as “brane-world Kaluza—Klein reduction.”

It should be emphasized that it is nontrivial that@sisteniKaluza—Klein reduction of this sort

is possible (A consistent reduction is one where all the higher-dimensional equations of motion
are satisfied provided that the lower-dimensional fields satisfy their equations of matrah.
there is no obvious group-theoretic explanation for why it should work. Two further examples of
consistent brane-world Kaluza—Klein reductions were obtained in Ref. 3, describing the embed-
ding of six-dimensional ungauged chirdl=(1,0) supergravity in seven-dimensional @\
gauged\N =2 supergravity, and the other describing the embedding of five-dimensional ungauged
N=2 supergravity in six-dimensional $2)-gaugedN=2 supergravity. More generally, it was
conjectured that it should be possible to find a consistent brane-world Kaluza—Klein reduction
from any gauged supergravity D dimensions to an ungauged supergravity with half the super-
symmetry in O —1) dimensions.

The purpose of this paper is to provide a systematic construction of consistent brane-world
Kaluza—Klein reductions for gauged supergravity theotigith maximal supersymmetyyin di-
verse dimensions, thus in general leading to the ungauged supergravities with one-half of the
original (maxima) gauged supersymmetry. In addition, the studied examples provide compactifi-
cations on both AdS and dilatonic codimension one objects. In the first of these examples, in Sec.
I, we show that five-dimensional maximall&8) SQ(6)-gauged supergravity admits a consistent
brane-world reduction to four-dimensional ungaudéd 4 supergravity. Next, in Sec. lll, we
show that massive type IIA supergravity admits a consistent brane-world reduction to nine-
dimensional ungauged= 1 supergravity. Next, in Sec. IV we show that eight-dimensional maxi-
mal SU2)-gauged supergravity admits a consistent brane-world reduction to seven-dimensional
ungauged\N =2 supergravity. Then, in Sec. V, we show that seven-dimensional maxin{a)-SO
gauged supergravity admits a consistent brane-world reduction to seven-dimensional ungauged
N=(2,0) chiral supergravity.

All the brane-world reductions that were constructed in Ref. 3, and the brane-world reductions
of five-dimensional maximal S@)-gauged supergravity and seven-dimensional maxim@bs0O
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TABLE |. The ungauged supergravities iD (- 1) dimensions obtained by
brane-world Kaluza—Klein reductions.

(D —1)-dimensional theory from

D D-dimensional theory brane-world reduction
10 Massive II1A D=9, N=1

8 SU(2)-gaugedN =2 D=7, N=2

7 SQ5)-gaugedN=4 D=6, N=(2,0)

6 SU2)-gaugedN =2 D=5, N=2

5 SQ6) gauged\N=8 D=4, N=4

gauged supergravity in this paper, are examples where the higher-dimensional theory admits an
anti-de Sitter vacuum solution. By contrast, massive type IIA supergravity and the eight-
dimensional S(2)-gauged supergravity that we also consider in this paper do not admit anti-de
Sitter solutions, but instead they have dilatonic domain walls as their most symmetric “vacuum”
solutions. In all the cases, the brane-world Kaluza—Klein reductions can be thought of as fully
nonlinear descriptions of deformations around the anti-de Sitter or domain-wall background, in
which the © —1)-dimensional Minkowski metric on théX— 2)-brane in thé-dimensional AdS

or domain-wall vacuum is allowed to become arbitrary, along with the other necessary fields that
complete the D — 1)-dimensional ungauged supergravity multip(&¥e should emphasize that as
with any fully nonlinear Kaluza—Klein ansatz, the reduction is not pinned to any specific solution.
Although it may sometimes be convenient to think of the AdS or domain-wall solution as playing
a preferred role, it is really just one out of an infinity of solutions of the reduced theory.

A brane-world type of Kaluza—Klein reduction can also be performed in those cases where the
p-brane cannot trap gravity. A classification of domain walls that can and cannot trap gravity was
given in Refs. 4 and 5. In these cases, gravity can arise by placingthane on orbifold poinfs
ala Horava—Witten’

At the level of the supergravity theory, the requirement of the consistency of the brane-world
Kaluza—Klein reduction does not discriminate between whether or not the brane is capable of
trapping gravity. This is analogous to the situation for a standard Kaluza—Klein reducti®h on
at the level of the massless modes, which are the only ones retained in the consistent truncation,
one cannot distinguish between an extra dimension that is a circle or an infinite real line. In
particular, we shall usually write the brane-world reduction ansatz, &®)jrwith an absolute-
value sign for the coordinatg i.e., insisting on &, symmetric codimension one ansatz for the
transverse dimension. Thus, there is an actual delta function source needed, athose origin
lies outside the supergravity Lagrangian description. However, from the mathematical point of
view we could perfectly well write the ansatz without the absolute-value sign, thus describing the
bulk solution only, which would still correspond to a consistent reduction. In fact now the ansatz
will satisfy the equations everywhere, without the need for any external delta-function sources.
[However, one would now lose the brane-world interpretatatrz=0) of the reduced theory.

We conclude this Introduction with Table | that summarizes the principal results that we
obtain in this paper, and those of Ref. 3.

In addition, we shall consides® reductions of thé =8 andD =7 gauged supergravities. The
former provides a brane-world reduction frdin=7 that gives the nonchirdl=(1,1) ungauged
supergravity inD =6, while the latter provides a brane-world reduction frbms 6 that gives the
N=4 ungauged theory ib=5. The brane-world reduction of ti2=6 SU2)-gauged supergrav-
ity was obtained in Ref. 3, as were the brane-world reductions of tH@)Qjauged\N=2 seven-
dimensional supergravity, and the SU{Y(1) gaugedN=4 five-dimensional supergravity.
These two cases are contained within reductions with larger supersymmetries that we consider
here. It should be noted that an intrinsic feature of brane-world Kaluza—Klein reductions is that
the reduced theory never has more than half the maximal supersymmetry that is allowed in that
dimension. This is associated with the fact that there is always a halving of supersymmetry on the
brane solution of the higher-dimensional gauged or massive supergravity.
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Il. FOUR-DIMENSIONAL N=4 SUPERGRAVITY FROM MAXIMAL FIVE-DIMENSIONAL
GAUGED SUPERGRAVITY

A. Direct reduction from type 1B supergravity

In Sec. 1B, we shall obtain the brane-world embedding of four-dimensional ungaiged
=4 supergravity in five-dimensional maximal gauged supergravity, thus providing the brane-
world Kaluza—KIlein compactification iD =4 with the maximal allowed ungauged supersymme-
try. However, since this five-dimensional theory is rather complicated, we shall begin in the
current section by constructing the brane-world embedding of the four-dimendienéltheory
directly in ten-dimensional type 1B supergravity. This exploits the fact that the five-dimensional
gauged theory can itself be obtained via%reduction fromD =10. Having done this, we shall
then be in a position to re-express our results in terms of a brane-world reductiorDfrobnto
D=4. From the five-dimensional viewpoint the fields that we use are the metric, the dilaton and
axion[which are singlets under the $8) gauge group and the two sets of six 2-form potentials.
Thus inD =5 the 15 Yang—Mills gauge fields and the100+ 20" of scalars are set to zero.

The bosonic equations of motion of type IIB supergravity can be derived from the Lagrangian,

Li5=R#1-3#d¢p/\d¢— 3e***dy/\dy— 3 'A:(s)/\r:(s)_ 1e 0% '3(23)/\'2(23)_ ze’% '2(13)/\'3(13)

use carets to denote ten-dimensional fields and the ten-dimensional Hodde din equations
of motion following from the Lagrangian, together with the self-duality condition, are

RuN=3m® Ind+ 3672 It Ink+ sskunt 167 (Fiz) i

- ﬁ('A:(la))szMN)‘F e ? (('A:(Za))fAN_ ﬁ(ﬁ(zs))ngN),

d(e?**dy)=e’*F5)/\Ff,
o U i o
d(e?*F(g)=F/\F(y), d(e *F()—ke?*Fig)=—Fs/\(F5 Tk F),
L B o ~2 2 A2
d(*F5)=—Fa/\FG), F=*F). 4

The ungauged four-dimensiondl= 4 supergravity that we are seeking to embed in type 11B
supergravity is described by the following Lagrangi{@etually this Lagrangian corresponds to a
special truncation of toroidally compactified heterotic string theory where the gauge fields of the
original heterotic string are turned off and the momentum and winding modes of the NS—NS
sector are identified, thus freezing the internal metric and antisymmetric two-form fields of the
six-torus:

L,=Rrl- $xdpA\dp— 3P dy/N\dx— 3 % Fi,)AF (5~ 3x Fl2)/\Fl2). G
where 1<i<8®, andFi(z)ZdAi(l)-

We find that the following is a consistent reduction ansatz that gives the embedding of the
four-dimensionaN=4 theory in type IIB supergravity,
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d¥,=e 1 ds+dZ2+g 2dO2,

'E(5):4gi4 Q(5)+4g 674k |Z‘ 6(4)/\d2,

~ 1 . .
A%Z):Eg_le_k‘d pi (e ?*Fig+x Fiz), (6)
- 1 _
A2 — -1 e*klz‘ . FI ,
2) \/ig HiF(2)
$:¢’ X:X’

Wheredﬂé is the metric on the unit 5-sphere, which we can write in terms of six coordipates
that are subject to the constrajatu;=1, asd(lé: dui dui. The 5-form() s is the volume form
of the metricdQZ, and €(4) is the volume form of the metrids;. Note that() 5y can be written
as

9(5)256”115#' d'u'Jl/\/\d'u’ls (7)

The constank (which we take to be positiyas related to the gauge-coupling constgnof the
five-dimensional theory bik?=g?. In fact, to be precise, we must have

®

Substituting the ansai6) into the equations of motion of type 1IB supergravig), we find
that they are all exactly satisfied if and only if the four-dimensional fielsl% ¢, x, and F'(z)
satisfy the equations of motion of ungaugse-4 supergravity, which can be derived frai®).
Note in particular that the six abelian gauge fieFd(§) satisfy the equations of motion,

d(e ?*F(y+x F2))=0. )

The following results are useful for verifying the consistency of the reduction ansatz. First, we
have from(6) that

N 1 )
F(ls)zﬁg_le_klz‘ e ?xFp/\(dui—g uid2),

(10

F2 1 -1 a—k|z i
F(3):Eg e Floy/\(dui—g u;d2).

[Here, we have for convenience of presentation already made use of the fact tﬁ@)thatisfy

the Bianchi identitiesd F'(2)=0 and the field equation®); they can, of course, bderived by

substituting the ansatz into the ten-dimensional equations of mptMext, we can write the
ten-dimensional Hodge duals of these field strengths as follows:
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. 1 .
FRl=—g e e P Fip N O~ 9 Z/Ad2),
V2
11
. 1 _
FEG)=— —0 e R/ \(ui 5~ 9 Z/\d2),
V2
where the 4-forn; is defined by
1
Zizmeijkl"'m ,LLJ d,ukl/\-'-/\d,uk4. (12)

This 4-form is the Hodge dual afy; in the unit 5-sphere metrié,sdu;= —Z; . Note thatZ; has
the following properties:

duiNZj= = (8ij— pi 1) L5y, dZi=5u; Q5. (13

It is now straightforward to verify that all the type IIB ten-dimensional equations of motion
consistently yield the equations of motion of four-dimensional ungaijed supergravity; in
particular, all the dependence on the coordinatesd u; consistently matches in all the equa-
tions.

It is worth noting that théN=4 gauged supergravity in the four-dimensional world-volume of
the D3-brane has an SL{), electric/magnetic S-duality, with the two scaldtsy) parameteriz-
ing the SL(2R)/O(2) coset. It is easy to see from the reduction ans@tzhat this SL(27)
symmetry of the theory in the world-volume of the D3-brane originates from the 3] (,the
original type 1B theory inD =10, which is not an electric/magnetic duality.

It is of interest to see how the brane-world embedding of the four-dimensibaal super-
gravity that we have derived here reduces to w2 supergravity embedding that was con-
structed in Ref. 3. In th&l=2 theory there is just one 2-form field strendify), and the dilaton
¢ and axiony are absent. It is easy to see that the equations of motiogh fomd y in (5) imply
that in order to seth= y=0, we must have

*Fl2/\F(=0, F{2/\F(5=0. (14)

The minimal nontrivial way to satisfy these conditions is by taking all but two of the six field
strengths to vanish, and for the remaining ones, Eé% and F(ZZ), to be related byF(zz)
=*F{,). If we defineFf,)=+F = —F(;/v2, and at the same time we parameterize the six
coordinatesu; that define the 5-sphere as

pmi=sinécosr, wu,=-—sinésint, u,=v,cosé, (a=3,4,5,6, (15
wherev, v, =1, defining a unit 3-sphere, the ansatz @&,, Al,,, andA,, in (6) become

d2,—e %1 42+ d2+de2+sir? ¢ dr2+cod £ dO2,
A A | (16)
Aly+iA%=— 39 e ¥lsinge™ 7 (Fp—i*F(y).

This is precisely the form of the ansatz found in Ref. 3 for the consistent brane-world embedding
of four-dimensionaN=2 supergravity.
B. Ungauged D=4, N=4 from gauged D=5, N=8

In the previous subsection, we considered the reduction from type IIB to the ungaluged
=4 theory inD =4 directly, omitting the intermediate description as a brane-world KK reduction
of five-dimensionalN=8 gauged supergravity on account of the complexity of the five-
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dimensional theory. We can now in fact reinterpret our results as a reduction of the maximal
five-dimensional gauged theory. However, in order to avoid the full complexity of this theory, we
shall work with a truncation of the full set of five-dimensional fields in which just the metric, the
dilaton ¢ and axiony, and the 6-6 of 2-form potentials are retained. In other words, we set the
15 Yang—Mills S@6) gauge fields and the %010+ 20" of scalars to zero. It should be empha-
sized that this is in general amconsistentruncation of the five-dimensional theory. However, we
can still work with it provided that we impose the necessary algebraic constraints on-theb
2-form potentials. Of course these constraints are precisely the onearthattisfied by the
brane-world KK reduction ansatz, now expressed simply as a reductionOrei® to D =4.

We find that the above truncated five-dimensional theory is obtained Brem0 by making
the following ansatz for the type IIB fields:

d¥,=dst+g 2dQZ,
F5)=49 4 Q(s5)+40 €5y,
Aly= i A5,
b=d. X=x, (17)

wherea=1,2. We immediately find from the Bianchi identity fér(5) that the following equa-
tions must be satisfied:

A AL, €,5=0, dASNA) €,5=0. (18)

These are the algebraic constraints alluded to above. We must impose them because we have set
other fields of the maximal five-dimensional theory to zero, which is in general in conflict with the
equations of motion of those fields.

Substituting the ansaid 7) into the remaining equations of motion of type 1B supergravity,
and making use of the constraintk8), we find that they consistently imply the following five-
dimensional equations:

dAG)—x dAG) = —ge **AD,
dAG =g e’ * (AL~ X AB).
d(e??xdx)=—g”e’* (AG)~ X AG)\AG),
dedg=e?’~dx/\dx+ 39%e?* (A5~ X AG)/\(AG) —x AG) — 307 e P AG/\AY,

R.,=30,0 0,0+ 36 d,x d,x+ 392[e? (A, — xAZ) (Al P—y AZP)+e ¢ A2 AZP].
(19

[A(3) andA3, denoteA3, with «=1 anda =2, respectivelyl. These equations, together with the
constraint18), are precisely equivalent to those of maximal five-dimensional gauged supergrav-
ity, after setting the Yang—Mills fields and the-£Q0+ 20’ of scalars to zero. The66 of 2-form
fields A'(g) satisfy first-order equations of motion, known as “odd-dimensional self-duality equa-
tions.” These, together with the constraint equati@h8), imply that the trace of the 2-form
contributions in the energy-momentum tensor vanishe$(Al},—x AlZ) (A™t 47—y AiZ#7)
+ e“’SA'MZV Al2#=0. Note that the imposition of the constraiis) is sufficient to ensure thail
the type 1IB equations of motion are consistently satisfied by the afEatancluding the internal
and mixed components of the Einstein equations.

It is useful to observe that the equations of mot{@8) can be derived from the Lagrangian,
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Ls=Rr1— gxdpAdgp— 3e*?*dyx/N\dy— 392’ * (A3~ x AG) N (AG— X Ab)
— 207" P AG/N\AG)— g dAG)\AG) + 1297 ¢ . (%0

Finally, we note that the brane-world Kaluza—KIlein reduction of the previous subsection, now
expressed as a reduction frdin=5 to D=4, is given by

ds2=e /4 ds2+dZ,

) 1 ) :
Ap=_,9 te e P FiytxFe), (1)

o1 .
i2 _ -1,k i
Ap=59 "¢ R,

with ¢ and y just reducing directly. One can easily verify that this reduction ansatz is indeed
compatible with the constraintd8).

C. Branes on the D3-brane

One can construct electric and magnetic black holes, strings and instantbns4nN=4
supergravity. They become branes on the D3-br@mehe near-horizon regionwhen they are
lifted back toD=10. We analyze these solutions in this section.

Case 1:SL(2/7) dyonic black holes on the D3-bran#/e can use one of the six 2-form field
strengths to construct an electric or magnetic black hole. As a concrete example, let us consider an
electric black hole supported by the field stren@b). Once the solution is lifted back tb
=10, it becomes

d¥=e XA —H 1d2+H(dr2+r2dQ%)]+d2+g 2dQZ,

|3(5)= 49~ *Qs+4g e M2 r2H dtAdrAQ,,

A Q _
A(lz):EQ e M u; Oy, (22

N 1
A(Zz)zﬁgfle*”z‘ wq dtAdH L,

e?=H, H:l+$,

where i, is one of the coordinateg; for S° appearing in the ansat7), corresponding to our
choice to consider a black hole supportedde). Starting with the electric black hole, we can
then apply the SL(&) symmetry to get a multiplet of dyonic black holes, where the electric and
magnetic charges are carried by the same 2-form field strength. The metric of this dyonic solution
remains unchanged, but the charge configuration alters.

Case 2: Threshold dyonic black holes on the D3-brdneD =4, N=4 supergravity, one can
also construct a multicharge black hole solution, where the electric charge is carried by one 2-form
field strength, saf(lz), and the magnetic charge is carried by another,l-'{:gy8 [Note that the
generating technique, as employed, for example, for the four-charge sdlafitsroidally com-
pactified heterotic string, may allow for a construction of more general dyonic black holes with all
the U(1) charges turned drlifting this solution back toD =10, it becomes
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d¥,=e 24— (H;H,) " 1dt?+HH, (dr2+r2dQ3) ]+ dZ+g 2 dQ2,

Fisy=40 4 Qs+4g e ™7 r2(H H,) dtAdrAdQ,,

Al 1 -1 o—k|Z| 1
A= ;9 e (Qe 1 Qp+ pp dtAdH; ),

A2 _t “Le Kz (4 dtAdHT M+ 1o Q)
() {29 M1 1 TH2WUmil2),

H
ef=_1 H1=1+%, H2=1+%. (23
H, r r

Case 3: String on the D3-brané& magnetic stringfour-dimensional domain wallsupported
by the axion, exists in the four-dimensional supergravity theory. Lifting this solution baEk to
=10, we have a string living on the D3-brane,

d&;=e KA —dt?+ dx®+ H(dr?+r2d¢?)]+d 2 +g2dO2,
Fsy=49 * Q5 +4g e 4 rH dtAdx/\dr/Ade,
e’=H1 x=Q9,
H=1+Qlogr. (24)

This solution is a non-standard intersection of a D3-brane and D7-brane, where there is no overall
transverse space. It should be distinguished from the solution describing a D3-brane in the D7-
brane, which has a two-dimensional overall transverse space.

Case 4: Instanton on the D3-bran@he axion in theD=4 theory also supports a BPS
instanton solution when the theory is Euclideanized. The axitsecomes imaginary under this

procedure, the metridsf1 becomes purely flat Euclidean space, ﬁrag becomes complex, since
in ten Euclidean dimensions a real 5-form cannot be self-dual.

lll. N=1 SUPERGRAVITY IN D=9 FROM MASSIVE TYPE IIA

A. D8-brane in massive type IIA theory

The highest dimensional D-brane that can be found in any supergravity theory is the D8-brane
in massive type IlA supergravity. This theory was constructed in Ref. 10, but in a formulation
where there is not a straightforward massless limit to ordinary type llA supergravity. However, it
is simply a matter of performing a field redefinition to resolve this probleithe Lagrangian for
the bosonic sector of the massive type IIA supergravity can then be written as the following
differential form??

‘ClO: AR; ] - %;‘\d(}l)/\d(’\ﬁ_ %63/2‘75'* ﬁ(z)/\'&(z)_ %e7¢; IE(3)/\IE(3)_ %ell2¢% IE(4)/\'E(4)
- %dA(g,)/\dA(g)/\A(z)_ %m dAg)/\(A(Z))a_ %mz (A(z))s_ %mz 85/2(/)”“1, (25)
where the field strengths are given in terms of potentials by
Fo=dAntmAg), F@E=dAg),

IE(4): dA(g)‘f’A(l)/\dA(z)'f‘ %m A(z)/\A(z) . (26)
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The Bianchi identities for the field strengths are therefore
dF o =mFgs, dF=0, dF,=F@u/\Fgs), (27
and the field equations are
dFe)=—F@/\Fay. dFg=—Fe/\Fe).
dF 7)== 3F@/\Fy~m Fe=F o)/ \Fe). (28)
A% dd=— 3 )/ \F o= 2/ \Fg)— 3F (o) \F )+ Em2 5203,
where we have defined the dual field strengths
Fo=eU3E ), Fe=e"2%E,, Fg=e *Ey). (29
This massive type IlA theory supports a “vacuum’ solution, namely, the D8-brane,
d25=W2Bdxedx, +d,  et=w~ (49, (30
where the one-dimensional harmonic function is given by

625
_ 2_ 2
W=1+Kz, K=oz, (31

In fact the sign ofm must be opposite on opposite sides of the domain wall,

16
sek, z>0,

g:
— 8k, z<0,

(32
wherek is assumed to be positive. This means that one cannot strictly speaking view the domain
wall as a solution within the massive type IIA theory as formulated in Ref. 10, sincertheye
fixed parameter in the Lagrangian. However, the theory can be re-expressed in a formulation
wherem is replaced by a 10-form field, with the mass parameter now arising as a constant of
integration. It now makes sense for the parameter to be only piecewise constant. In what follows,
we shall implicitly assume that we are working with this reformulation of the theory, which allows
(32) to hold.

Note that the nine-dimensional flat Minkowskian spacetdwmédx,, of the solution(30) can
be replaced by any Ricci-flat Minkowski-signatured space—fitn®n the other hand, it was
observed that domain walls associated with-Branes withp=6 cannot trap gravity. Neverthe-
less, one can still obtain gravity on the world-volume in such a case by locating the branes at
orbifold points, so that the space—time is compdotthis case, we would expect that the resulting
theory on the world-volume of the D8-brane would be the ungaldged, D=9 supergravity.
We shall prove in the next subsection that this can indeed be obtained from the massive type IIA
theory via a consistent brane-world Kaluza—Klein reduction.

B. N=1 supergravity in D=9 from massive type IIA

We find that the following Kaluza—Klein ansatz for the ten-dimensional massive type IIA
fields yields a consistent reduction to nine dimensions,
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d‘sioz e (5116277 ¢ \\/(2125 ds§+ e(35/16\(27) ¢ dZ,

. .1 .1
— — 16/25 — 32/25
Aw=0, Ap=5-WIF (), Ag=7_W22PFg, (33)

eb—\W~ (415 o= (782N,

whereW is given by(31) andg is related tok by (32). Substituting this ansatz into the massive
type IIA equations of motion, we find that they are all satisfied provided that the nine-dimensional

fieldsds%, ¢, Foy=dA;y andF 5=dA;)— %A(l)/\F(z) satisfy the equations of motion of nine-
dimensional ungauged simple supergravity. These equations can be derived from the Lagrangian,

Lo=R*1— $xdp/\dp—3e NP xE o AF 5 — e @D F , AF (). (34

C. Branes on the D8-brane

Having consistently embedded the ungaudedl, D=9 supergravity in massive type IIA
supergravity, we can lift all the solutions of this nine-dimensional theory bad&=dl0. The
nine-dimensional theory supports BRSbranes such as the string, 4-brane, black hole and
5-brane. These solutions are straightforward and well known. When they are lifted back to mas-
sive type IIA supergravity using the ansdt#3), they can be viewed as branes living on the
D8-brane.

Case 1: String on the D8-branethe solution of theD=9 string lifted back toD=10
becomes

d&fo= W[ H~ 8 (—dt?+dx?) + H¥&dr?+r2dQg) ]+ H ™ ®dZ,

.1
A= WH2dtAdxN\dH ™, (35

el =W~ (U =14 rQ—s

This solution can be viewed as a D2-brane ending on the D8-brane, with the end points forming
a string. To see this, it is helpful to introduce a new coordinaia place ofz, defined bydy
= 2w~ (1257 and hence

W=(1+k|y|)** (36)

Using this variable, thg-dependence of the metric is extracted as an overall conformal factor, and
we have

d&2,=(1+k|ly)YTH™ O®(—dt?+dx?+dy?) +H¥&dr2+r2dQ3)]. (37)

Case 2: 4-brane on the D8-bran&he D =9 4-brane solutiorithe magnetic dual of the string
solution), lifted back toD =10, becomes

dASf():WZ/ZﬁH* (319 dX“dXM-f—H5/8(dr2+r2dQ§)]+H5’8dzz,

. _Q
A=z W05, (38

ef=W- (- W 14 rgz

Using the same coordinate transformati@6), the metric can be re-expressed as
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d&o=(1+K|yD™H™ @O dx“dx, + H¥(dy?+dr2+r2dQ3)]. (39

Thus the solution can be viewed as a D4-brane intersecting with a D8-brane, with the D4-brane
uniformly delocalized on the one-dimensional transverse space of the D8-brane.

In Case 1 above, the intersection of the D2-brane and the D8-brane is such that the overall
world-volume is a string, and the solution describes a D2-brane ending on the D8-brane. In Case
2, the intersection of the D4-brane and D8-brane is such that the overall world-volume is the entire
4-brane, and so the solution describes a D4-brane living in the D8-brane.

Case 3: Black hole on the D8-brang&he black hole solution of thB =9 theory can be lifted
to D=10, where it becomes

d3fo= W29 —H~ (138 g2+ H3¥dr?+r2dQ7) |+ H™ 59 d2,

.1
Ay=5 - WIS dt/AdH ™,

ef=W~ (O =14 9. (40)
I,6

Using (36), the metric can be cast into the form,
d&,=(1+k|ly)¥T —H™ B g2+ H™ 58 dy?+ H¥(dr?+r2dQ32)]. (42)

The solution can be viewed as the intersection of an NS—NS string and a DO-brane with the

D8-brane. In particular, the string NS—NS string ends on the D8-brane whilst the DO-brane lives

in the D8-brane. To see this, we note that a standard solution for the intersection of a string and a
DO-brane would be

whereH, andH, are independent harmonic functions on the eight-dimensional common trans-
verse space of the coordinates. If these two harmonic functions are set ediygs H,=H, then
we obtain the structure found i@1).
Case 4: 5-brane on the D8-bran&he 5-brane solutiofthe magnetic dual of the black hgle
can be lifted toD =10, where it becomes

d‘gfozwzlza[Hf (3/8) dX“dX,pLH13’8(dr2+r2d(12)]+H5’8d22,

A Q
A(2)=%W16’2592 ’ (43)

eP=W~ (45 -V =14 ?

Using the redefinition(36), the metric can be cast into the form
d8o=(1+k|yD™ A —H™ B dx#dx, + H¥8dy?+ H™¥4dr?+r2dQ3)). (44)

The solution can be viewed as an intersection of a NS—NS 5-brane and a D6-brane with the
D8-brane. In particular, the NS—NS 5-brane lives in the D8-brane, whilst the D6-brane ends on the
D8-brane.(The standard solution for the intersection of a 5-brane and a 6-brane would be of the
form,

dsio=Hgs M Hg M® dx* dx,+HF*'Hg M@ du?+HI*H{®dy?, (45)
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whereHs andHg are independent harmonic functions on the common transverse 3-spaceyof the
coordinates. In our case, the two harmonic functions are ebigabHg=H.)

Note that it is straightforward also to construct pp-wave and Taub-NUT solutions on the
world-volume of the D8-brane.

IV. REDUCTIONS OF SU(2)-GAUGED D=8 SUPERGRAVITY

A. Brane-world reductionto D=7

Although there is no gauged supergravity in eight dimensions that admits a maximally-
symmetric Adg solution, therds a gauged theory that arises from the dimensional reduction of
eleven-dimensional supergravity &.* Since only the gauge bosons of the left-acting Bbf
the SO(4)>SU(2)XSU(2) are retained in the truncation, the consistency of this reduction to
D=8 is guaranteed by the standard group-theoretic arguments of Ref. 15. The theory can also be
obtained from theS? reduction of type IIA theory, and the $P) is the isometry group of the
2-sphere. The eleventh coordinate is the fibre coordinate @thehich can be viewed as a(l)
bundle overs?.1® The eight-dimensional theory admits a dilatonic 6-brane domain-wall solution,
and this provides a starting-point for the construction of a brane-world Kaluza—Klein reduction to
D=7.

The bosonic sector of the eight-dimensional theory contains the metric, a dilatonic gcalar
five further scalars that can be parameterized by a unimodue8 8ymmetric matrixT;; , the
SU(2) Yang—Mills potentiaIsA'(l), three 2-form potentiaIB'(Z), and a 3-form potentiah ). The
description of the theory is a little involved, but the majority of the complications come from the
scalarsT;; and the Yang—Mills potentiaIA'(l) that will in fact be set to zero in our brane-world
Kaluza—Klein reduction td=7. It is not in general consistent iD=8 to setT;;=¢;; and
A'(1)= 0 while keeping all the other fields nonvanishing, since the retained fields will act as sources
for those that are set to zero. However, since in our brane-world reductidr-to the ansatz for
the remaining nonvanishing eight-dimensional fields will be such that these source terms vanish,
it is sufficient for our purposes to present the truncated eight-dimensional theory, together with
constraints that will be identically satisfied by the brane-world reduction ansatz. These constraints
are precisely the conditions that the sources that would have excited the truncated fields should be
zero.

It is in fact easy to obtain this truncation of the eight-dimensional gauged theory 8% an
reduction fromD=11. The ansatz is given by

dAsilz e~ W3 ds§+ e2/3¢ g2 do2,
) o (46)
A(3):A3+ 2971 B'(z)/\a'l .

The quantitieso; are the three left-invariant 1-forms on the group manifold(ZUsatisfying

doj=— }€jx 0j/\oy. In terms of these, the unit metric @ can be written aslQ3= %o, o; .
Substituting the ansatz into the bosonic equations of motion of eleven-dimensional supergravity,

dF@y=3F @/ \Fa), Run=2(Fin— &5 Omn), 47
we find that the field equation fcﬁf(4) implies
d(e? *F(4)) = — 29 B{»)/\Gyg)
d*Gig)= —49% e **B()— 29 F(a)/\B(2)— 0 €ijk Gla)/\ G, (48)

Fay/\F@&)=0,
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whereF 4, =dA3, and Gi(3)EdB‘(2). Note that the last equation {#8) is one of the constraints
that results from our having truncated out fhg andA'(l) fields. From the Einstein equation in
(47), we obtain the following eight-dimensional equations of motion:

R,uV: %ap,(P L?V(P_ %D(P g,u,V+ %e‘P [F,up(r)\ FVPU)\_ éF(ZA) g,uv]

+4[Gl,,,G,"7— §Gi3)?0,,1+29%e ¢[B!, B\ "~ &(B(2)?9,.].

mpo
De=6g”e ¢+ i5e? F{;—g’e ¢ (B(y)”, (49
together with the further constraints
€°F 41po G' "7+ 69 € G, BXP7=0,

e*G,,, Gl #*—129°B},, Bl #'=0. (50

These come from the mixed and the purely internal components of the eleven-dimensional Ein-
stein equation, respectively.

The eight-dimensional equations of motion admit a domain-wall “ground-state” solution,
where all fields excepids; and ¢ are set to zero, and

dsi=W?Rdx-dx+dZ, e*=W? (51)
where
W=1+k|z|, k?’=2g2 (52
Specifically,
2k, z>0,
o= -2k, z<0 53

(As usual,g is allowed to have the necessary sign-change across the domain-wall provided that
one thinks of obtaining the eight-dimensional gauged theory & aeduction fromD =11, since
theng arises as a constant of integration, rather than as a fixed parameter in the eight-dimensional
Lagrangian).

This motivates the construction of the following brane-world reduction ansatz, to give un-
gauged seven-dimensiorsdl= 2 supergravity from the gauged eight-dimensional theory,

d‘§= e (112/5) ¢W2’3ds§+ e(526 2

o 1 .
i —1\p\AB

A(a):A(s) . ef= W2 (V572 ¢ ,

where we have now placed hats on all the eight-dimensional fields.

Substituting this ansatz into the equations of motion for the eight-dimensional gauged theory
given above, we find that they are satisfied provided that the seven-dimensional fields satisfy the
equations of motion of ungauged seven-dimensidival supergravity. Specifically, these can be
derived from the Lagrangian,
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1
L,=Rx1— dp/N\dop— ze\<8’5>¢*|:(4)/\|:(4) e V@De (2)/\F(2) (2)/\F(2)/\A(3)
(55

It should be noted also that the ansgi4) identically satisfies the constraint equation$48) and
(50), and so indeed our assumption that these would eventually be satisfied in the brane-world
reduction is justified. Note that the theory naturally arises with a 4-form field strength rather than
the 3-form field strength that would naturally come from Thereduction of the heterotic theory.
This suggests that the former and the latter can be related by a strong/weak duality.

Having obtained the brane-world reduction from eight-dimensional gauged supergravity, we
may now lift it back toD=11, by using theS® reduction ansat#46). Thus we find that the
eleven-dimensional fields are given in terms of seven-dimensional fields by

d82,=e YO0 42+ o584 W~ (23 24+ g~ 2 WH3d 2], (56)

N 1 .
_ —2\\/4/3
A(3)—A(3)+ v g W FI(Z)/\O'i .

It is interesting to note that if we perform a coordinate transformation zdgor, defined by
W~ ¥ dz=dr, and hence

W=(gr)?? (57
then this ansatz for the reduction frdin=11 toD=7 becomes
d82,=e ¥ g2+ 5% (dr2+r2d02),
(59
A=A+ ——r2FL A
(3) (3) 43 (2) |

This is recognizable as a standard type of Kaluza—Klein reductioffpin which a truncation to
the fields ofN=2 supergravity irD=7 has been performed.

B. Brane-world reduction to D=7, from type IIA supergravity

Taking the results of the previous subsection, we can perform an addigbialuza—Klein
reduction on the Hopf fibers of the compactifying 3-sphere that was used in the reduction from
D=11toD =8, thereby allowing us to obtain a brane-world reductio®te 7 that can be viewed
as coming from type lIA supergravity compactified first h

To implement this procedure, we first specialize some results for the Hopf reduct®rituit
were obtained in Ref. 17. In terms of Euler angl@sp,#), the three left-invariant 1-forms of
SU(2) can be written as

o,=cosydf+singsindde,
o,=—siny dh+cosysinfdde, (59
o3=dy+cosfde.

Clearlydlogp is a Killing vector for the 3-sphere metriiﬂ3 30, 0y, and it also leaves the 3-form
ansatz in(56) invariant. Letu; be three coordinates dit subject to the constraint; ;= 1, given
in terms of # and ¢ by

pmi=sinésing, u,=sinfcosy, uz=Cosh. (60)
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It is easily seen that in terms of these we can write the left-invariant 1-forms as
0=~ €jj mj dugt pi (de+cosf dy). (61)

We can now perform a Kaluza—KleBt reduction of the eleven-dimensional expressiie
on the Hopf fiber coordinate, using the standard ansatz,

dAS%l: e~ (UB® d§0+ e@d® (o + Z(l))2’

A =Aa+ A/ \(de+ Ay, (62)

where® is the type IIA dilaton. Using61), we therefore obtain the following reduction ansatz for
the fields of type IlA supergravity:

d?lO: W16 [e (9/8/10) ¢ § 534_ W (213 (15/8/10) ¢ 424 1g2 W3 g(15/8/T0) ¢ ng],

N 1 -2 4/3 j
A(s):A(s)JFEg W€ i Floy/\d sy,

_ 1 .
A(2)2E971W4/3Mi Fla): (63
Z(l)= 19 tcosody,

e® =\ 5410 &

where the unit 2-sphere metniiﬂ% is given by
dQ3=du; duj=d6?+sir? 6 dy?. (64)

The “vacuum” solution, corresponding to the metri63) with ¢=0, can be viewed as the
near-horizon limit of a D6-brane.

C. Branes on the D6-brane

The D=7, N=2 supergravity admits membrane and string solutions supported by electric or
magnetic charges fof4). When lifted back toD=11, the membrane becomes an M2-brane
delocalised on a 4-hyperplane, whilst the string can be viewed as an M5-brane wrapped on the
4-hyperplane. The seven-dimensional theory also admits black hole and 3-brane solutions, which
can be viewed as intersections of two M2-branes, and intersections of two M5-branes, respec-
tively. From the type IlA point of view, they can be viewed as membranes, strings, black holes or
3-branes living in a D6-brane.

V. REDUCTIONS OF GAUGED MAXIMAL D=7 SUPERGRAVITY

A. Gauged maximal seven-dimensional supergravity

The bosonic Lagrangian for maximal $8)-gauged supergravity iD=7 can be written as

Lr=R¥1— 4T+ DTYAT DT — T T P4 F /ARG — 3T 2S5\ S,

T N
3)" "2

~ Adal fa ] l
AFlARlslay 2 o vg], 65
29 2 g @ ©9

8g i1 s @ " @
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where
Hiy=DS(5=dSs+9 ALy\Ss, - (66)
The potentiaV is given by
V=39%2T; Tij—(Ti)?), (67)
and{) 7y is a Chern—Simons-type of term built from the Yang-Mills fields, which has the prop-
erty that its variation with respect Wy}, gives

_ 3 dl2izlapiiia A Fliio A £l Akl
80 )= 3 8UAI F AR AR N oA, (689)

An explicit expression fof) 7y can be found in Ref. 18 Note that tl%) are viewed as funda-
mental fields in the Lagrangian. The symmetric unimodula(S@alued tensofl;; describes the
14 scalar fields. )

Let us now set the S@G) Yang—Mills potentiaIsA'('l) to zero, and take the scalars to be trivial

also,Tj;= g;; . This is not in general a consistent truncation, since the remaining %ﬁwould
act as sources for the Yang—Mills and scalar fields that have been set to zero. If we impose that
these source terms vanish, i.e.,

S0/ \S(5=0,  #83/\§5)=0, (69

then the truncation will be consister{fds we shall see below, these sources terms will indeed
vanish in the brane-world reduction that we shall be considgrifige remaining equations of
motion following from (65) are then

d*S5=0, d§5=9%S),
e (70)
Rag=%(SacpSe~ — %(Sl(s))ngB)_ 39%Uns-

B. Chiral N=(2,0) supergravity from D=7

We find that the following Kaluza—Klein ansatz for the seven-dimensional fields yields a
consistent reduction to six dimensions,

d&¥=e *ldds2+d2,
Sw=e "V Fiy), (71
Aly=0. Tij=4;.
where the constark is related to the gauge coupling constgriby

-2k, z>0,

| +2k, z<o. (72

g

Substituting this ansatz into the field equations of seven-dimension@&)-$@uged supergravity,
we find that all the equations are consistently satisfied provided that the six-dimensiona]skﬁelds
and F'(3) satisfy the equations of motion of six-dimensional ungauged 2,0) chiral supergrav-
ity, namely,

Fisy=*F5, dF5=0, R,,=iF,,F.,”. (73)

upo
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Note that the self-duality of the 3-forms ensures that the constrd@gtsire indeed satisfied, since
F(s)/\F{3)=0 for any pair of self-dual 3-forms. Of course the self-duality of Fjg, fields also
implies one cannot write a covariant Lagrangian for this theory.

Since we know the exact embedding of seven-dimensional maxim@&))$@uged supergrav-
ity in D=11, via theS* reduction, we can lift the above ansatz to an embedding in eleven-
dimensional supergravity. Using ti8 reduction ansatz, we therefore obtain

d8,=e *dd+d2+g ?du; du;,

(74)
- 1 -1 -2k |z| i
F(4):8—gs € ig iy AN Adug —g7 T d(ui e Fla)
where u; are coordinates oR®, subject to the constraint
Mi mi=1, (75

which defines the unit 4-sphere.

C. Five-dimensional N=4 ungauged supergravity from SO (5)-gauged D=6
supergravity

By dimensionally reducing the embeddifigf}) of six-dimensional chiraN=(2,0) supergrav-
ity on a circle in the six-dimensional space—time, we can obtain an embedding of five-dimensional
N=4 supergravity in type IIA supergravity. Thus we begin by performing a star®faktluza—
Klein reduction of the six-dimensional fields,

dsf=e 2" ¢ dg+e® ¢ (dxs+.Aq))?,
Flay=e " ?%F (5 +Fip/\dxs+ Ay, (76)

where a=1/(2/6) _and|~:i(2)=d”Ai(1). (Note that the form of the reduction ansatz for the six-
dimensional fieldst:'(g) is dictated by the fact that they are self-dudlhe theory that results from
this dimensional reduction is ungauglid= 4 supergravity irD=5. It is straightforward to show
that the equations of motion iB=5 that follow from substituting76) into (73) are derivable
from the Lagrangian,

Ls=R¥1- Fdep/\dp— e 2 P%F () /\F )~ 565 9% Fp)/\Fio)— %|~=i(2)/\|~=‘(2)AA(1),(
7

Wheref(2)= dA(l) .
We now substituté76) into (74), and compare it with a standard Kaluza—Kl&hreduction
fromD=11toD=10,

d&=e” WP g+ (dxs+Ag))?,
(78)
IE(4): F(4)+ F(S)/\(dXS-i- A(l)) .

By doing this, we arrive at the ansatz for the embedding of the five-dimensional unghluged
=4 supergravity in type lIA supergravity,
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ds%o: e (94k|z~ (54 a ¢ d”s§+ e~ WAkKlZ+ (B ad g2y g 2e (V4K |z|+ (3/4) a ¢ due; dus

! “1,-4a ¢ —2k |Zlx Ei
F(4):@?§€il--~isﬂildﬂiz/\'"/\dﬂis_g € d(uie *F2),

| (79
Fay=—9 td(me *1F,),

Fo=Fa)., eP—o (k|2 g9 a ¢

D. Chiral N=(2,0) supergravity from type IIA NS5-brane

We showed in Sec. V B that the chird,0) six-dimensional supergravity can be obtained as
a brane-world Kaluza—Klein reduction from maximal gauged supergraviy=#¥, and in turn,
this can be obtained as @&t reduction fromD=11. It was shown recently that one can take a
singular limit of theS* reduction of eleven-dimensional supergravity, in which the 4-sphere
degenerates t8°x R.'° The reduction can then be reinterpreted asSameduction of type IIA
supergravity, yielding a maximal S@-gauged supergravity iD =7 that admits a domain-wall,
but notAdS;, as a solution. One may refer to this theory as a “domain-wall” supergravity.

By applying this limiting procedure in the context of the brane-world reduction tq2/@
supergravity irD =6 that we constructed in Secs. V A and V B, we can now obtain a brane-world
reduction of theD =7 domain-wall supergravity to th@,0) theory inD =6. Furthermore, we can
lift this back, via itsS® embedding, to an ansatz for type IIA supergravity. Rather than repeating
the details of how the singular limit is taken here, we shall simply quote and make use of the
general results already obtained in Ref. 19.

We begin by considering the brane-world reduction of the maximal seven-dimensiog@ SO
gauged domain-wall supergravity. As in our previous examples, many of the fields are set to zero
in the brane-world reduction, and so rather than presenting the full seven-dimensional theory
obtained in Ref. 19, we shall instead give it in an already-truncated form, where all but the
participating fields have already been set to zero. As usual, we should add the cautionary remark
that one cannot in general consistently set these fields to zero while allowing the remaining fields
to take generic configurations. But in anticipation of the fact that the brane-world reductidre
consistent, we can make the truncation provided that we take note also of the consequent required
constraints, which will be satisfied by the brane-world reduction ansatz.

In this spirit, we therefore set to zero all the fields of the seven-dimensiongl)-$@uged
domain-wall supergravity constructed in Ref. 19 except for the metric, the dilatonic scalapfield
and the 3-formsS(s, and S5, . Note thatS’s is viewed as a 3-form field strength that is derived
from a 2-form potential, whilst the four 3-forn&;, are viewed as independent fields in their own
right, which satisfy first-order equations of motion. Definipg: \2/5, we read off from Ref. 19
that the equations of motion for these remaining fields will be

dtdg=—ye 27?3 NS + Fyell 7St ASE —4yg2er ?31,

(80)
dS(3)=g €7 7% sfy),

Run=3me dnd+ %e_zy(ﬁ[s(l\)/lPQSaPQ_ %(S?S))ZQMN]
+ %e(llz)yqs[SﬁAPQsﬁ Fe— %5(5?3))2@MN]_ s9°e” *Qun-

(Note that we have placed hats on all quantities associated with the seven-dimensional metric, in
anticipation of the upcoming brane-world reductioniie-6.)
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We may first note that these equations of motion admit a domain-wall solution given by
d&=W2dx-dx+dz, e ??=W? whereW=1+k|z| andk?=4g?/25. This provides the basis
for the brane-world reduction ansatzo=6. Specifically, we find that all the equations given in
(80) are satisfied if we make the following ansatz:

d¥=W2dsi+dZ?, e 7¢=W?
. . (81)
_ a 2 —«a
St3=F)y  Sia=WPF),

where the fieldsjs§ and Fi(s) satisfy the equations of motion of ungauged six-dimensi¢24)
supergravity, as given i(73). Note that here, the indeix on F'(3) runs over the five values
=(0,a).

We can also use the results in Ref. 19 to lift the seven-dimensional fields to those of ten-
dimensional type IlA supergravity. For the truncated system that we are considering here, we find
that the embedding is simply given by

dgoz e(3® 7¢d3§+ g*2 e (5/9 7¢dQ§,

e?=e97? A, =0,
B (82
F(4): - e(l/2> v e Mo S€3)+ gil S(aS)/\dlu“a ’

F3=20° Q) +g ' S,

whereu,, denote Cartesian coordinates Bfi subject to the constraini, u,=1 that defines the
unit 3-sphere with metridQ3 and volume form(}5y. The barred fields are those of type IIA
supergravity, with® being the type IIA dilaton.

Substituting our brane-world reduction anséi) into this, we obtain the following brane-
world embedding of six-dimensioné2,0) supergravity in type IIA supergravity:

dsio=WO (dss+ W~ 2dZ+g 72 d0f,),

e‘D=W* (5/2), K(1)=0,
_ (83
Fay=—W3u,F+g "W FE Adu,,

F3=20° Q@)+ ' Fl,

E. Chiral N=(1,0) supergravity from heterotic 5-brane

It was shown in Refs. 20, 21, 19 that one can obtain the chira(1,0) theory from theN
=2 SU(2)-gauged supergravity iD =7 that admits a\dS; vacuum solution, via a brane-world
Kaluza—Klein reduction. There is also an @Wgauged supergravity D=7 that admits a
domain wall instead oAdS, as a vacuum solution. This theory can be obtained fromShe
reduction ofN=1 supergravity irD =10, and its domain-wall solution is therefore t&&reduc-
tion of the heterotic 5-brane. Clearly it can also obtained from the truncation &f thé SQ4)-
gauged maximal supergravity discussed in the previous subsection. It is straightforward to reduce
the seven-dimensional theory or the heterotic theot® #0110 on the world-volume of the 5-brane
and obtain the chirdN=(1,0) supergravity. The reduction ansatz is identical to that of Sec. VD,
but with all the fields that carry the index set to zero.

Both the(2,0) and(1,0) theories admit a self-dual string solution = 6. This solution can
be lifted toD=11, where it becomes a self-dual string living in the world-volume of M5-brane,
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which can also be viewed as an open membrane ending on the M5%vehen lifted back to
D =10 instead, it can be viewed as a self-dual string living in the NS5-brane or the heterotic
5-brane.

F. N=(1,1) supergravity from D=7 gauged supergravity

So far, we obtained the chiral ungauged supergravitlp n6 from gauged supergravity in
D=7, which itself can be obtained froBf reduction of M-theory, or th&® reduction of the type
IIA or heterotic theories. There also exist gauged supergraviti€=iY that give rise instead to
the N=(1,1) nonchiral theory in six dimensions, through a brane-world Kaluza—Klein reduction.
One example is the SB)-gauged supergravity that is tt& reduction of eight-dimensional
SU(2)-gauged supergravity, which itself can be obtained from $iereduction of eleven-
dimensional supergravitl, as we discussed in Sec. IV. This is because the brane-world reduction
of the eight-dimensional gauged supergravity gives ris&lte2 supergravity inD=7. If we
perform a furtherS! reduction on a brane-world direction, the bulk gauged-supergravi in
=8 becomes a gauged=4 supergravity inD =7, whilst the world-volume seven-dimensional
ungauged theory becomes tNe=(1,1) ungauged theory iD=6.

There should also be an $£)-gauged supergravity iD=7 that gives rise to th&l=(1,1)
theory inD=6. This can be obtained from tH&® reduction of the type IIB theory. The bulk
T-duality of the type IIA and type IIB theories then translates into a T-duality betweeilNthe
=(1,1) andN=(2,0) theories in the 5-brane world-volume.

VI. CONCLUSION

In this paper, we have constructed several new examples of brane-world Kaluza—Klein re-
ductions. Our focus was to construct the reductions with larger supersymmetry and in diverse
dimensions that in general involve consistent Kaluza—Klein reductions with dilatonic codimension
one objects, thus extending the results obtained in Ref. 3 in several ways. Specifically, we have
shown that it is possible to construct consistent brane-world reductions of five-dimenkional
=8 S(O6)-gauged supergravity to ungaugbld=4 supergravity inD=4; of massive type IIA
supergravity to ungauged=1 supergravity inrD=9; of eight-dimensionaN=2 SU2)-gauged
supergravity to ungauged=2 supergravity inD=7; and of seven-dimension&l=4 SQ5)-
gauged supergravity to ungaugdid=2 supergravity inD=6. In all these cases, just as in the
original examples constructed in Ref. 3, the degree of ungauged supersymmetry in the lower
dimension is one-half of the gauged one in the higher dimension, and in this paper we have
focused mainly on the supergravity multiplets.

A simple calculation shows that for any brane-woftddimension onereduction ansatz of
the form

d¥=e *ldds?+d2, (84)
the Riemann tensd?ABCD of the D-dimensional metricl¥’ satisfies
RagcpRAECP= e 2 R, 4 R30I — 4Kk2 e 14 R+ 2D(D — 1) k* (85)

in the bulk, whereR,,,.4 andR are the Riemann tensor and Ricci scalar of the reduced nuific

This implies that any curvature of the lower-dimensional metric for whgh.qR**® or R is
nonzero, no matter how small, will lead to curvature singularities in the higher-dimensional metric
on the Cauchy horizons at= +. These singularities were discussed in detail for a Schwarzs-
child black hole on the brane in Ref. 22. In Ref. 23, it was argued that such curvature singularities
on the horizons arise as an artifact of considering only the zero-mode of the metric tensor, and that
if the massive Kaluza—Klein modes are taken into account they could actually become dominant
near the horizons, and may lead to a finite curvature there. The results of Ref. 3 and this paper
suggest that the phenomenon of diverging curvature on the Cauchy horizons for the AdS domain
wall reductions(or null horizons for the dilatonic domain wall reductiormeay be more severe.
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Specifically these results show that the brane-world reductions correspond to exact fully nonlinear
consistent embeddings in which the massive Kaluza—Klein modes can be consistently decoupled.
This implies that there certainly exist exact solutions on the brane-world where Kaluza—Klein
modes do not enter the picture, even at the nonlinear level. For these solutions, the curvature will
inevitably diverge at the horizons. It becomes necessary, therefore, either to live witkjrthibse
singularities or else to find a principle, perhaps based on the imposition of appropriate boundary
conditions, for rejecting the solutions of this typé&et us also remark that a deviation of the
dilatonic domain wall solutions from the flaiBPS-limit generically introduces naked
singularities®* again pointing towards difficulties with the interpretation of such solutions within

a more realistic set-uplt should be emphasized, however, that regardless of the physical ques-
tions that are prompted by these results, the brane-world Kaluza—Klein reductions remain valid
mathematical constructs in their own right. In fact as relatively simple examples of consistent
reductions that have no obvious group-theoretic explanation, they can be viewed as precursors of
the remarkable examples of consistent reductions on spheres.

Finally, we again emphasize that the absolute-value sign in(&4). for the brane-world
metrics in the AdS codimension one braias well as dilatonic examples as discussed in the text
actually requires an explicit delta function source to support suzh-symmetric codimension
one object that in turn allows for the trapping of gravity on the world-volume of the biatre
=0). The understanding of such delta-function sources in the lower dimension may require a
subtle interpretation in terms of fundamental sources, such as D-brane sources of the higher
dimensional theorg® Nevertheless, the consistency of the Kaluza—Klein reduction in the(farlk
z#0) is valid quite independently of the origin of the domain wall sources.

ACKNOWLEDGMENTS

We would like to thank Gary Gibbons, Chris Hull, Jim Liu, and Kelly Stelle for discussions.
M.C. was supported in part by DOE Grant No. DE-FG02-95ER40893 and NATO Grant No.
976951. H.L. was supported in full by DOE Grant No. DE-FG02-95ER40899. C.N.P. was sup-
ported in part by DOE Grant No. DE-FG03-95ER40917.

L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. [88t4690(1999, hep-th/9906064.

2M. Cvetic and H.H. Soleng, “Supergravity domain walls,” Phys. R&82, 159 (1997, hep-th/9604090.

3H. LU and C.N. Pope, “Branes on the brane,” hep-th/0008050.

4D. Youm, “Solitons in brane worlds,” Nucl. Phys. B76, 106 (2000, hep-th/9911218.

5M. Cveti¢, H. LU, and C.N. Pope, “Domain walls with localized gravity and domain-wall/QFT correspondence,”
hep-th/0007209.

6A. Lukas, B.A. Ovrut, K.S. Stelle, and D. Waldram, “The universe as a domain wall,” Phys. R&@, B6001(1999,
hep-th/9803235.

’P. Holava and E. Witten, “Heterotic and type | string dynamics from eleven-dimensions,” Nucl. Phy60B506
(1996, hep-th/9510209.

8R. Kallosh, A. Linde, T. Ortin, A. Peet, and A. Van Proeyen, “Supersymmetry as a cosmic censor,” Phys. B&v. D
5278(1992, hep-th/9205027.

9M. Cvetic and D. Youm, “Dyonic BPS saturated black holes of heterotic string on a six torus,” Phys. R&S, 584
(1996, hep-th/9507090.

1013, Romans, “Massivé\=2a supergravity in ten dimensions,” Phys. Lett. 189, 374 (1986.

11 Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos, and P.K. Townsend, “Duality of type Il 7-brane and 8-branes,”
Nucl. Phys. B470, 113(1996, hep-th/9601150.

21.v. Lavrinenko, H. Ly C.N. Pope, and K.S. Stelle, “Superdualities, brane tensions and massive type IIA/IIB duality,”
Nucl. Phys. B555 201 (1999.

13G. Papadopoulos, J.G. Russo, and A.A. Tseytlin, “Curved branes from string dualities,” Class. Quanturt7Gtae3
(2000, hep-th/9911253.

A, Salam and E. Sezgin,d=8 supergravity,” Nucl. Phys. B58, 284 (1985.

153, Schwerk and J.H. Schwarz, “How to get masses from extra dimensions,” Nucl. PH&3 B1 (1979.

M. Cvetic, H. LG, and C.N. Pope, “Consistent sphere Kaluza—Klein reductions,” Phys. Re§2,064028 (2000,
hep-th/0003286.

M. Cveti¢, H. LU, and C.N. Pope, “Consistent warped Kaluza—Klein reductions, half-maximal gauged supergravities,
and CP" constructions,” hep-th/0007109.

M. Pernici, K. Pilch, and P. van Nieuwenhuizen, “Gauged maximally extended supergravity in seven dimensions,”
Phys. Lett. B143 103(1984.



3070 J. Math. Phys., Vol. 42, No. 7, July 2001 Cvetic, Lu, and Pope

M. Cvetic, H. LU, C.N. Pope, A. Sadrzadeh, and T.A. TranS®and S* reductions of type IIA supergravity,”

hep-th/0005137.

20M. Cvetic, J.T. Liu, H. L and C.N. Pope, “Domain wall supergravities from sphere reduction,” Nucl. Phg&B230
(1999, hep-th/9905096.

21A H. Chamseddine and W.A. SabraD'=7 SU?2) gauged supergravity fromd =10 supergravity,” Phys. Lett. B76,

415 (2000, hep-th/9911180.
22A. Chamblin, S.W. Hawking, and H.S. Reall, “Brane world black holes,” Phys. Rev6D 65007 (2000,

hep-th/9909205.
223.B. Giddings, E. Katz, and L. Randall, “Linearized gravity in brane backgrounds,” J. High Energy RI882000,

hep-th/0002091.
24M. Cveticand H.H. Soleng, “Naked singularities in dilatonic domain wall space times,” Phys. R&1, B768(1995),

hep-th/9411170.
25M. Cvetic, M.J. Duff, J.T. Liu, H. Ly C.N. Pope, and K.S. Stelle, “Randall-Sundrum branes tensions,” hep-th/

0011167.



