Total Collision Cross Sections for the Interaction of Molecular Beams of Cesium Chloride with Gases. Influence of the Dipole-Dipole Force upon the Scattering

HUGO SCHUMACHER, RICHARD B. BERNSTEIN, AND ERHARD W. ROTHE*

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan

(Received January 22, 1960)

Total cross sections (Q) for the interaction of beams of CsCl with a number of molecules were measured using an apparatus of ca 4' angular resolution in which the temperature of the scattering gas could be varied from 200°-735°K. The temperature dependence of Q was studied for Ar, CH4, CH2F2, CHF3, CF4, NO, H2S, NH₃, and for cis- and trans-CHCl=CHCl. Relative values of Q at 300°K were measured for eight additional gases.

The data were correlated using the Massey-Mohr theory, assuming an intermolecular potential V(r) = $-C/r^8$, so that $Q=b(C/v_r)^{2/5}$, where v is the relative velocity and b a known constant; the potential constant C was estimated from formulas for the dispersion, dipole-induced dipole, and dipole-dipole forces.

For the nonpolar gases the observed small temperature dependence of Q agrees within experimental error $(\pm 3\%)$ with that expected from the temperature dependence of v_r . The theoretical values of Q differ by a nearly constant factor from the experimental results; thus relative cross sections (Q^*) are predicted with fair accuracy.

For the polar gases the Q's are large, decreasing significantly with increasing temperature. Because of the large dipole-dipole interaction, the approximate theoretical treatment (based on the limiting temperature-dependent dipole-dipole contribution to C) accounts only semiquantitatively for the observations.

INTRODUCTION

TN a previous paper¹ total collision cross sections (Q)**I** for the interaction of atomic beams of K and Cs with a number of molecules (polar and nonpolar) were reported. The results were correlated with the Massey-Mohr theory² for an attractive intermolecular potential $V(\mathbf{r}) = -C/\mathbf{r}^6$.

The present paper describes experiments on the scattering of beams of the dipolar molecule CsCl. Studies with dipolar beam molecules are of interest because of the possibility of observing directly the influence of the dipole-dipole forces upon the scattering.

An approximate theoretical equation has been presented¹ for the estimation of elastic scattering cross sections for dipolar molecules. The assumptions in its development are such as to limit its applicability to cases where the interaction energy is small relative to kT, corresponding to low dipole moments and/or high temperatures. It will be seen that although the experimental results may be accounted for in a semiquantitative way by the limiting theory, considerable further theoretical development is needed before precise a priori calculations of cross sections can be made.

EXPERIMENTAL

The apparatus was that described by Rothe and Bernstein¹ (hereafter referred to as I) with the following modifications: The oven was supplied with additional

heaters and surrounded by a water-cooled radiation shield. The oven slit was set at 0.005 cm. The scattering chamber (SC) was constructed of copper, with a Kovarto-Pyrex seal leading to the external gas inlet system. It was attached to a Monel heater plate containing internal heating coils. This plate was itself in contact with a copper cooling plate through which liquid nitrogen could be passed. The SC was thermally insulated from its support by means of Vycor plates and rings. Three thermocouples located in suitable wells in the SC indicated that temperature gradients were negligible. Steady temperatures ranging from -130° to 465°C could readily be obtained; however, for other reasons the low-temperature limit of the experiments was set at 200°K.

The collimating slit on the SC was set at 0.005 cm. The calculated half-width of the unscattered beam at the detector (0.0025 cm diam) was 0.015 cm. The observed value varied somewhat with the temperature of the SC, but was in the range 0.02-0.03 cm. The resolution³ of the apparatus is taken to be 4' of arc (compared to 2' with the arrangement used in I).

The Knudsen-gauge (KG) sensitivity was improved to a value of 2.0×10^{-6} mm Hg/mm scale deflection by increasing the heater temperature and the optical path. The working range of pressures in the SC was from 1×10^{-6} to 5×10^{-5} mm Hg. Since the SC was at a

^{*} Present address: Physics Section, Convair San Diego, Divi-sion of General Dynamics Corporation, San Diego, California. ¹ E. W. Rothe and R. B. Bernstein, J. Chem. Phys. **31**, 1619 (1959). Errata are as follows: The exponent in Eq. (2) should read -17. The first bracket in Eq. (2) of Appendix Using the interval read -17. The first bracket in Eq. (e) of Appendix II is to be deleted. A more correct estimate of the angular resolution is 2' of arc (see footnote 3 of the present paper). ² H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London)

A144, 188 (1934).

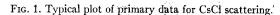
³ P. Kusch (private communication, January 18, 1960) has developed an equation for calculating the efficiency of detection of scattering in terms of apparatus parameters, e.g., beam width and detector width. He suggests a reasonable definition of resolution as the minimum scattering angle for which the efficiency of detection of scattering is 50%. This criterion has been adopted here. Note added in proof. Application of this analysis to the experimental arrangements of two other previous workers (foot-note references 2 and 10 of I) showed their resolution (at the 50% level) to be appreciably worse than their stated "resolution."

different temperature than the KG, the pressure readings required correction for the thermal transpiration effect, $P_{\rm SC} = P_{\rm KG} (T_{\rm SC}/T_{\rm KG})^{\frac{1}{2}}$. The ideal square root of T factor was used in view of calculations based on Liang's⁴ empirical formula for thermal transpiration, using the present experimental parameters ($P < 5 \times 10^{-6}$ mm, tubing diam 9 mm i.d., T_{SC} 200–735°K, and T_{KG} = 300°K). The calculated factors agreed within 1% with the ideal $T^{\frac{1}{2}}$ factor used.

Larger liquid-nitrogen traps made it possible to maintain pressures $<3\times10^{-7}$ mm Hg in the oven chamber and $<2\times10^{-7}$ mm Hg in the detector chamber with both the oven and SC at high temperatures.

The operating procedure was similar to that described in I. Before each series of experiments with a new scattering gas, however, the SC was heated and thoroughly degassed. For each individual cross-section determination the beam intensity was measured for 20 or more values of the scattering gas pressure corresponding to 0-50% attenuation of the beam. Plots of $\log(I/I_0)$ vs $P_{\rm SC}$ were accurately linear in this range $(I/I_0 > 0.5).$

Argon was used as a standard "reference" gas; for comparison purposes the Q for argon was determined at least once during any series of measurements with another gas. In I, relative cross sections were reported (using argon as the reference). In the present work, whenever the argon cross section differed significantly from the "standard" argon curve (Fig. 2) all Q's of that series were adjusted accordingly (by amounts ranging from 0 to 14%). All data as reported are thus mutually consistent with the "standard" curve for argon.


MATERIALS

All scattering gases were purified (mostly by distillation) and were characterized before use. They are believed to contain less than 1% impurity. We used cp cesium chloride (Fairmount Chemical Company), stated to contain <0.5% impurity (most of which is KCl), for the beam. Based on the results of Kusch⁵ it is unlikely that the abundance of dimeric or polymeric molecules in the beam is greater than 1-2%.

RESULTS

Figure 1 shows a typical plot of primary data. The calculation of the cross section from the slopes of such graphs is outlined in I.

The absolute cross sections for CsCl-argon are subject to uncertainty because of numerous sources of possible systematic errors.¹ For the earlier measurements⁶ (Set A, beam temperature 876° K) the average value of O for argon at 300°K was 395 A² with a maximum value of 450 A². However, for the subsequent, more

reliable determinations (Set B, beam temperature ca 790°K) most of the values for Q of argon at 300°K were between 540 and 560 A²; all of these determinations lay within a total range of 15%. All the data on the temperature dependence of the cross section as reported are consistent with the "Set B" measurements for argon. 2011 2.2 14.

Table I summarizes the results of the study of the influence of temperature on the scattering of CsCl beams by various polar and nonpolar gases. Here T_1 and T_2 represent the temperatures (°K) of the scattering gas and beam, respectively; $\bar{T}=2T_1T_2/(T_1+T_2)$, v_r (cm/sec) is the average relative velocity as defined in I, and Q (cm²) is the cross section. The potential constant C (erg cm⁶) is obtained¹ from the Massev-Mohr formula,

$$C = 6.738 \times 10^{-30} v_r Q^{5/2}. \tag{1}$$

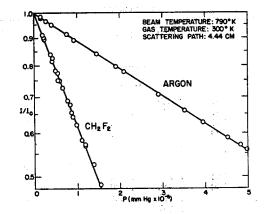

Listed in the table are the dipole moments μ (debyes) and polarizabilities α (A³) of the various gases [see Rothe (footnote 6) for sources of data].

Table II presents data on the relative cross sections for the scattering of CsCl beams by various nonpolar gases at 300°K. Set A summarizes the most reliable determinations from the earlier study.6 The data of Set B are derived from Table I. The relative cross section Q^* is defined (as in I) by the ratio

$$Q^* = Q_{12}/Q_{Ar2},$$
 (2)

where Q_{12} and Q_{Ar2} are the total cross sections for the beam 2 with gas 1 and argon, respectively. The calculated relative cross sections are obtained from the equations [(6) and (7) of I] for the C_{ind} and C_{disp} terms, using the dipole moment of CsCl and the listed polarizabilities of the scattering gases.

The data are presented graphically in Figs. 2-12. Where different symbols for experimental points appear, they represent different series of measurements. Dashed lines through the data are "experimental," while solid lines show either the calculated fit to the data or the theoretical lines, as indicated. The dotted

⁴ S. C. Liang, J. Phys. Chem. 57, 910 (1953).
⁸ P. Kusch, J. Chem. Phys. 25, 860 (1956).
⁶ E. W. Rothe, Ph.D. thesis, University of Michigan, 1959. Available from University Microfilms, Inc., Ann Arbor, Michigan.

TABLE I. Temperature dependence of the cross section for the scattering of CsCl beams (CsCl: $\mu_2 = 10.42$; $\alpha_2 = 5.912$).

T ₁	T_2	$10^3/\bar{T}$	10 ⁻⁵ ×v _r	1016×Q	10 ⁶⁰ ×C	T_1	T_2	$10^3/ar{T}$	10-5×vr	1016×Q	10 ⁶⁰ ×C		
		I	Argon			******		Difluorom	ethane (co	nt.)			
223.5 227.5 263 300 300 300	$(\mu_1=0, a)$ 791 2.869 791 2.830 791 2.533 789 2.300 790 2.300 790 2.300		2.830 0.505 593 2.533 0.523 562 2.300 0.541 551 2.300 0.541 558	593 291 562 264 551 260 558 268	613 642 698 708 728 729.5	792 787 787 788 790 790	1.447 1.414 1.352 1.340 1.320 1.318	0.619 0.628 0.646 0.649 0.656 0.656	1818 1818 1757 1903 1677 1735	5881 5962 5631 6908 5084 5545			
300 300	791 793	2.299 2.297	0.542 0.542	551 543	260 251	Fluoroform $(\mu_1 = 1.64, \alpha_1 = 2.77)$							
381 390.5 520 531 555 635 699 731	790 793 787 791 791 784 791 782	1.945 1.911 1.597 1.573 1.533 1.425 1.347 1.323	0.580 0.584 0.639 0.644 0.654 0.655 0.710 0.721 ethane $r_{4i} = 2.56$	525 505 523 500 510 504 498 486	247 226 269 243 258 263 264 252 259 (av)	201 221 222 246 266.5 300 300 331 388 501 619 702	794 791 794 794 794 794 794 794 794 793 791 790	3.117 2.894 2.882 2.662 2.506 2.296 2.296 2.140 1.918 1.628 1.440 1.345	$\begin{array}{c} 0.444\\ 0.450\\ 0.451\\ 0.459\\ 0.465\\ 0.476\\ 0.476\\ 0.476\\ 0.485\\ 0.503\\ 0.535\\ 0.567\\ 0.588 \end{array}$	2281 2238 2178 1854 1811 1734 1679 1653 1600 1598 1529 1570	7431 7180 6724 4574 4376 4011 3703 3633 3633 3466 3680 3493 3871		
230 300	230 788 2.808 0.661 589 300 789 2.300 0.727 560 351 792 2.056 0.773 522	2.808	0.661	661 589	589 560	589 560	375 363	730	790	1.318	0.595 Noroethyler	1413 14	3010
351 465		522 536	325 387				$89; \alpha_1 = 8.08$						
574 695 723	792 792 792	1.502 1.351 1.323	0.944 1.025 1.043	496 515 467	349 415 332 	273 300 335 390 394 456	793 793 793 791 791 794	2.462 2.297 2.123 1.914 1.901 1.726	0.442 0.449 0.457 0.470 0.470 0.470 0.485	2818 2766 2661 2579 2615 2403	12560 12170 11250 10690 11090 9249		
			tetrafluorio, $\alpha_1 = 2.82$)			524	791 794	1.586	0.499 0.502	2379 2370	9289 9254		
214 300 406 530 537 616 667	792 792 792 792 788 792 792	2.968 2.298 1.863 1.575 1.566 1.443 1.380	0.433 0.456 0.483 0.512 0.513 0.532 0.543	786 734 686 740 727 741 663	505 448 401 513 492 536 414	535 571 273 300 331	789 795 795 795 795	$(\mu_1 = 0)$ 2.460 2.296 2.140	0.509 chloroethyle $\alpha_1 = 8.08$) 0.443 0.449 0.456	2242 ene 1395 1255 1299	8162 2167 1689 1871		
		Difluo	romethane		473 (av)	397 474 528	795 795 794	$1.888 \\ 1.684 \\ 1.577$	0.472 0.489 0.501	1340 1332 1250	2088 2133 1864		
			$\alpha_1 = 2.69$			528 563	794 793	1.519	0.508	1250	1684		
209.5 218	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.473	3 2667 117	10910 11710			Nit	ric oxide		1928 (av)			
218 236 250		2.923 0.474 25 2.750 0.481 26	2572 2669 2789	572 10710 669 11920				$16, \alpha_1 = 1.70$))				
250 269 276.5 300 300 326 332 347 395 409 467 493 582.5	794 794 793 791 792 794 794 794 794 791 794 791 793 791	2.630 2.489 2.441 2.438 2.299 2.298 2.296 2.163 2.137 2.071 1.898 1.852 1.703 1.645 1.490	$\begin{array}{c} 0.487\\ 0.495\\ 0.498\\ 0.507\\ 0.507\\ 0.507\\ 0.507\\ 0.517\\ 0.520\\ 0.526\\ 0.543\\ 0.549\\ 0.569\\ 0.579\\ 0.609\end{array}$	2789 2487 2616 2547 2330 2344 2412 2175 2214 2088 2040 1962 1983 1936 1937	10290 11740 10980 8951 9083 9763 7696 8071 7053 6882 6307 6717 6433 6776	$\begin{array}{c} 213\\ 213\\ 262.5\\ 300\\ 300\\ 373\\ 427\\ 445.5\\ 545.5\\ 581\\ 637.5\\ 689\\ 730\\ 735\end{array}$	792 792 792 794 792 792 792 792 792 792 792 791 788 790 790	$\begin{array}{c} 2.979\\ 2.979\\ 2.536\\ 2.298\\ 2.298\\ 1.972\\ 1.802\\ 1.754\\ 1.548\\ 1.492\\ 1.416\\ 1.360\\ 1.318\\ 1.313\end{array}$	$\begin{array}{c} 0.534\\ 0.534\\ 0.565\\ 0.588\\ 0.588\\ 0.630\\ 0.660\\ 0.669\\ 0.720\\ 0.737\\ 0.764\\ 0.787\\ 0.805\\ 0.807 \end{array}$	750 737 642 602 608 578 573 545 545 540 542 554 538 522 482	554 531 398 352 361 341 349 313 329 340 371 356 337 278		

T_1	T_2	$10^3/\bar{T}$	10 [−] ⁵ ×v _r	1018×Q	10 ⁸⁰ ×C	T_1	<i>T</i> ₂	$10^3/ar{T}$	10 ^{−5} ×vr	1018×Q	106°×C
		Hydro	gen sulfide					Ar	nmonia		
		$(\mu_1 = 1.0)$	2, $\alpha_1 = 3.61$)				$(\mu_1 = 1.4)$	$47, \alpha_1 = 2.16$)	
197 226 260 300 429.5 549 635 727	794 794 794 793 793 791 790 788	$\begin{array}{c} 3.168\\ 2.842\\ 2.553\\ 2.296\\ 1.794\\ 1.542\\ 1.420\\ 1.322 \end{array}$	$\begin{array}{c} 0.508\\ 0.525\\ 0.544\\ 0.567\\ 0.633\\ 0.689\\ 0.727\\ 0.765\\ \end{array}$	1453 1444 1301 1191 1080 993 863 793	2750 2800 2241 1868 1635 1444 1070 913	204 226 259 300 300 376 459 552 705 717	793 791 794 790 793 793 794 794 794 790 792	3.082 2.845 2.560 2.300 2.300 2.297 1.960 1.719 1.536 1.342 1.329	0.623 0.644 0.675 0.712 0.712 0.712 0.775 0.839 0.905 1.005 1.005	1217 1169 1132 1128 1090 1078 1066 1058 1070 946 1078	2168 2029 1960 2049 1879 1829 1936 2059 2287 1862 2603

TABLE 1 Continued.

TABLE II. Relative cross sections for scattering of CsCl beams by nonpolar molecules at 300°K.

Scattering gas	α_1	<i>T</i> ₂	$10^3/ar{T}$	$10^{-5} \times v_r$	Q_{obs}^{*}	Q_{calo}^*
			Set A	an a fille da de ante a construir en		
Ar	1.64	876	2.237	0.555	(1.000)	(1.000)
He	0.206	876	2.237	1.32	0.37	0.32
Ne	0.408	876	2.237	0.68	0.60	0.55
Kr	2.49	876	2.237	0.475	1.35	1.24
Xe	4.02	876	2.237	0.446	1.55	1.51
H,	0.806	876	2.237	1.816	0.52	0.46
D ₂ SF ₆	0.796	876	2.237	1.313	0.55	0.52
SF6	4.48	876	2.237	0.441	1.74	1.68
SiCl4	11.27	876	2.237	0.434	2.24	2.34
			Set B			
Ar	1.64	790	2.300	0.541	(1,000)	(1.000)
CH4	2.56	789	2.300	0.727	1.01	1.04
CF4	2.82	792	2.298	0.456	1.33	1.37
trans-C ₂ H ₂ Cl ₂	8.08	795	2.296	0.449	2.27	2.00

lines merely serve to connect different regions of the drawing.

DISCUSSION

A. Scattering by Nonpolar Gases

By inspection of Table I it is seen that the small observed temperature dependence of the cross section is entirely accounted for by the temperature dependence of v_r . The solid lines in Figs. 2-4 represent the calculated fit to the data (Q vs T_1) for Ar, CH₄, CF₄ and *trans*-CHCl=CHCl, based on Eq. (4) of I,

$$Q \sim (C/v_r)^{\frac{3}{2}}.$$
 (3)

The temperature invariance of C [calculated from Q with Eq. (1)] is illustrated in Fig. 5 for Ar, Fig. 7 for CH₄ and CF₄, and Fig. 8 for *trans*-CHCl=CHCl.

It is of interest to compare these "observed" C values with those calculated¹: $C_{calc} = C_{d isp} + C_{ind}$. Table III shows this comparison; the listed values of C_{obs} are the average C values from Table I.

The results are shown graphically in Figs. 5, 7, and 8 with C_{cale} indicated by a horizontal (solid) line.

In terms of the reverse calculation (i.e., Q from C_{calc}) for the worst case, CH₄, Q_{calc} differs from Q_{obs} by some 18%. Thus the agreement is fair, but there is much room for improvement. A discussion formulating possible sources for differences is presented in I.

B. Scattering by Polar Gases

The average potential for a system of two classically rotating ideal dipoles is given by the Keesom formula⁷:

$$\langle V(\mathbf{r}) \rangle_{Av} = -2\mu_1^2 \mu_2^2 / 3k T \mathbf{r}^6$$
 (4)

valid in the limit when

$$(\mu_1\mu_2/r^3)/kT\ll 1$$
 (5)

(i.e., $T \rightarrow \infty$; μ_1 , $\mu_2 \rightarrow 0$; and/or $r \rightarrow \infty$).⁸ For the molecular beam case it seems reasonable⁶ to replace T by $\overline{T} = 2T_1T_2/(T_1+T_2)$, so that

$$C_{d-d} = 2\mu_1^2 \mu_2^2 / 3kT. \tag{6}$$

⁷ W. Keesom, Physik. Z. 22, 129 (1921).

⁸ As noted in I, the condition for validity of Eq. (4) is equivalent to $r \gg r_{\min} = (\mu_1 \mu_2 / kT)^{1/3}$. For $\mu_1 = 1$ debye, $\mu_2 = 10$ debyes, $T = 300^{\circ}$ K, $r_{\min} = 6.2$ A. Thus the conditions are hardly satisfied for the present experimental situation.

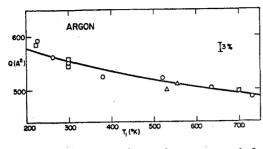


FIG. 2. Q vs temperature of scattering gas: ---- calc fit.

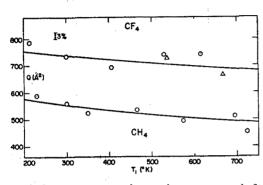


FIG. 3. Q vs temperature of scattering gas: ---- calc fit.

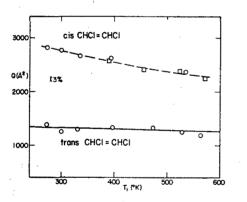


FIG. 4. Q vs temperature of scattering gas: ---- calc fit; --- exptl.

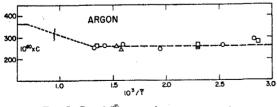


FIG. 5. C vs $1/\bar{T}$: —— theor; —— exptl.

TABLE III. C_{eale} vs C_{obs} for scattering by nonpolar molecules.

	$\times [C_{disp}]$	C_{ind}	C_{calc}	$C_{\rm obs}$]
Ar	186 267	178	364 544	259
CH_4 CF ₄	363	306	544 669	364 473
trans-CHCl=CHC	835	878	1713	1928

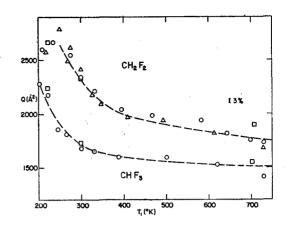


FIG. 6. Q vs temperature of scattering gas: --- exptl.

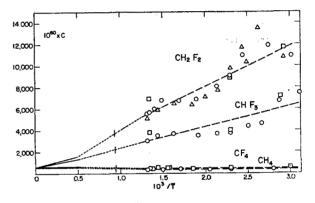
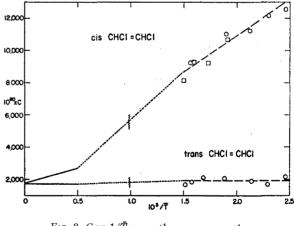



FIG. 7. $C \text{ vs } 1/\overline{T}$: —— theor; —— exptl.

Thus one may write a "limiting" equation,

$$C = C_{\infty} + \gamma / \bar{T}, \tag{7}$$

where

$$C_{\infty} = C_{\rm d\,isp} + C_{\rm ind} \text{ and } \gamma = dC/d(1/\bar{T}) = \frac{2}{3}\mu_1^2\mu_2^2/k.$$
 (8)

For $\mu_2 = 10.42$ debyes, expressing μ_1 in debyes, \overline{T} in °K, and C in erg-cm⁶, Eq. (7) becomes

$$C = C_{\infty} + 5.244 \times 10^{-55} \mu_1^2 / \tilde{T}.$$
 (9)

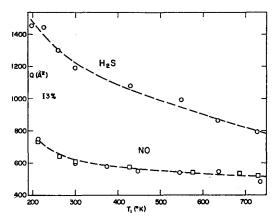

Molecule	μ_1 (debyes)	$10^{60} imes$	C_{disp}	C_{ind}	C_{∞}]	$10^{55} \times$	[Yeale	γ_{obs}]
NO	0.16		202	185	387		0.13	(0.4)
H_2S	. 1.02		350	398	748		5.46	8.6
CHF3	1.64		347	316	663		14.1	19.
CH_2F_2	1.96		326	314	640		20.1	37.
cis-C ₂ H ₂ Cl ₂	1.89		835	899	1734		18.7	45.
NH ₃	(1.47)		233	247	480		(11.3)	(0.0)

TABLE IV. Comparison of parameters for scattering by polar molecules.

Table IV lists calculated values of C_{disp} , C_{ind} , C_{∞} , and γ . The slopes of the dashed lines drawn through the experimental points in Figs. 7, 8, 10, and 12 are listed for comparison. The solid lines near the intercepts (at $1/\bar{T}=0$) are a priori calculated lines based on the results given in Table IV.

For the first three (low-dipole) scattering gases, the discrepancy between the observations and the calculations is only moderate. For the next two (high-dipole) molecules, the cross sections and the "observed" C values are appreciably greater than calculated. This may indicate the departure from the limiting assumptions previously discussed.

The anomalous (small) temperature dependence of the C for NH_3 may possibly be associated with the inversion tunneling. Additional cross-section measure-

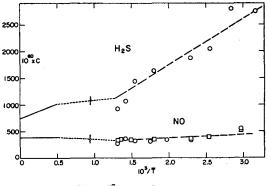


FIG. 9. Q vs temperature of scattering gas: --- exptl.

FIG. 10. C vs $1/\bar{T}$: —— theor; —— exptl.

ments with ND₃ and PH₃ would be desirable in order to clarify this point experimentally.

It is of interest to consider the possible origin of the difficulty with the high-dipole gases in terms of the other limiting situation (low temperature, small r) when the approaching dipoles "lock in" at close distances. Here the Keesom⁷ potential becomes

$$V(r) = -C'/r^3$$
, with $C' = 2\mu_1\mu_2$, (10)

independent of the temperature. Thus at a given rthe potential is more negative. In addition, for this assumed potential the relation between O and C' is not the same as that between Q and C [Eq. (3)], but rather

$$Q = 1.788 \times 10^{28} (C'/v_r), \tag{11}$$

(upon evaluation of the Massey-Mohr equation for s=3) with the numerical constant consistent with the units employed here throughout. Sample calculations for typical cases show that the use of Eq. (11) yields calculated O's considerably larger than obtained from Eq. (3), as expected, with a quite different temperature dependence.

A more rigorous theoretical approach is thus required in order to interpret more quantitatively the dipole-dipole scattering. The quantum mechanical

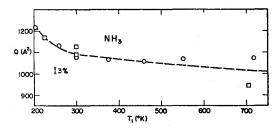


FIG. 11. Q vs temperature of scattering gas: — — exptl.

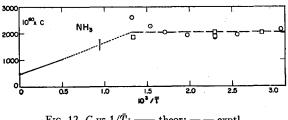


FIG. 12. C vs $1/\bar{T}$: —— theor; —— exptl.

treatment of scattering by an angle-dependent potential (together with the problem of rotational energy transfer) is, however, a formidable one, beyond the scope of the present work.

CONCLUSIONS

(1) The cross sections for the elastic scattering of CsCl beams by nonpolar molecules may be predicted with fair accuracy from the Massey-Mohr formula, using the Slater-Kirkwood approximation for the dispersion term and the Debye equation for the induction force.

(2) The influence of the dipole-dipole force upon the scattering is appreciable and may be directly observed.

The scattering cross sections for the *dipolar* molecules are large and decrease significantly with increasing temperature.

(3) Owing to the large magnitude of the dipoledipole interaction with the CsCl beams, the approximate theoretical treatment accounts only semiguantitatively for the experimental observations.

ACKNOWLEDGMENTS

Thanks are due to Fred A. Morse for his assistance with some of the measurements and calculations. The authors are grateful for financial support from the Alfred P. Sloan Foundation and the U. S. Atomic Energy Commission, Division of Research.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 33, NUMBER 2

AUGUST, 1960

Infrared Spectra of Alkyldiboranes. III. 1,2-Dimethyl- and 1,2-Diethyldiboranes

WALTER J. LEHMANN,* CHARLES O. WILSON, JR., † AND I. SHAPIRO*

Research Laboratory, Olin Mathieson Chemical Corporation, Pasadena, California

(Received March 21, 1960)

The infrared spectra of three isotopic variants of 1,2-dimethyldiborane--(CH3B10H2)2, (CH3BH2)2, (CH3BD2)2-and of five 1,2-diethyldiboranes-(C2H5B10H2)2, (C2H5BH2)2, (C2H5BD2)2, (C2D5BH2)2, (C2D5BD2)2-are reported and frequency assignments are made. 1,2-Dialkyldiboranes are very stable with respect to decomposition, but on prolonged standing rearrange to 1,1-dialkyldiboranes. Appearance of absorptions at ca 2100 and 1550 cm⁻¹ is the first indication of the presence of 1, 1-dialkyldiborane impurity. Although not conclusive, the evidence favors existence of predominantly cis configurations.

INTRODUCTION

N the monoalkyldiboranes^{1,2} the vibrational character of diborane is partly preserved, in that one end of the molecule has retained both terminal hydrogens. This is not true in the 1,2-dialkyldiboranes, i.e., the sym-dialkyldiboranes, which have only a single terminal hydrogen at each end. In some respects one might expect simpler spectra for these molecules, in which both ends are alike, than for monoalkyldiboranes. However, it must be remembered that the corresponding vibrations of the two ends are not independent; they "couple," i.e., they interact with each other, producing "in-phase" and "out-of-phase" vibrations. This "splitting" may be quite considerable for some vibrations, but still, the average of the two frequencies should be relatively close to the value expected for the vibration of a single isolated unit.³ Quite often the intensity of

one member of a pair may be so weak as to escape detection or assignment as a fundamental vibration, but if we should fail to correlate properly such a split pair of frequencies, then the apparent shifts (up or down) from the single value may become quite puzzling.

The complexity of the problem is increased because the ratio of cis to trans isomers is not known in the 1,2-dialkyl compounds. Raman spectra, if available, would probably resolve the dilemma by virtue of the difference of selection rules. For cis compounds of this sort, e.g., cis-2-butene,⁴ all vibrations are Raman active and all but one species (A_2) are infrared active, yielding a large number of "coincidences." However, in trans compounds (which have a center of symmetry) infrared and Raman activities are mutually exclusive,³ allowing us to observe only one vibration of each pair.

EXPERIMENTAL

1,2-Dialkyldiborane can be prepared by direct interaction of trialkylborane with excess diborane, but the yield is so low that it is difficult to separate it from the much more abundant 1,1-dialkyldiborane. We found it more convenient to prepare 1,2-dialkyldiborane by the

^{*} Present address: Hughes Tool Company-Aircraft Division, Culver City, California

[†] Present address: National Engineering Science Company,

 ¹ W. J. Lehmann, C. O. Wilson, Jr., and I. Shapiro, J. Chem.
 ² W. J. Lehmann, C. O. Wilson, Jr., and I. Shapiro, J. Chem.
 ² W. J. Lehmann, C. O. Wilson, Jr., and I. Shapiro, J. Chem.
 ² W. J. Lehmann, C. O. Wilson, Jr., and I. Shapiro, J. Chem.
 ³ C. Horsbarr, Information of this series.
 ⁴ C. Horsbarr, Information of Polyatomic

⁸G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1945).

⁴C. M. Richards and J. R. Nielsen, J. Opt. Soc. Am. 40, 442 (1950).