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Perfectly conducting incompressible fluid model of a wire array implosion
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An incompressible perfectly conducting magnetohydrodynamic model is applied to describe a
multiwire array implosion on the (r ,u) plane using the theory of analytic functions. The plasma
columns emerging from the electrical explosion of individual wires move and change the shape of
their cross section in the magnetic field produced by the currents flowing on the surfaces of the
columns and closing through a cylindrical return current can. Geometry of both the ‘‘global’’ and
‘‘private’’ magnetic fields and self-consistent distributions of the electric currents on the conducting
surfaces are determined for any wire array configuration including nested wire arrays, wires close
to the return current can, etc. The coupled equations of motion and magnetostatics for an essentially
two-dimensional problem are reduced to one-dimensional parametric governing equations, written
for the boundary of the fluid contours. The implosion dynamics is shown to be driven by a
competition between the implosion pressure, making the array converge to the axis as a set of
individual plasma columns, and the tidal pressure that makes the wires merge, forming an annular
conducting shell. Their relative roles are determined by the gap-to-diameter ratiopRc(t)/NRw(t).
If this ratio is large at early time, then the array implodes as a set of individual plasma columns.
Otherwise, when the ratio is aboutp or less, the tidal forces prevail, and the plasma columns tend
to form a shell-like configuration before they start converging to the axis of the array. The model
does not allow the precursor plasma streams to be ejected from the wires to the axis, indicating that
this process is governed by the finite plasma conductivity and could only be described with a proper
conductivity model. ©2002 American Institute of Physics.@DOI: 10.1063/1.1452104#
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I. INTRODUCTION

The achievements of high current Z-pinch physics in
cent years have been spectacular. Record values of
x-ray energy output;2 MJ, peak total power.250 TW,
argon~3.3 keV!, and titanium~4.8 keV! K-shell yields over
270 and 125 kJ, respectively, have been produced on th
MA ‘‘Z’’ facility at Sandia National Laboratories.1–3 To
maximize the radiative performance of ‘‘Z’’ and othe
multi-MA current drivers, a careful design of the radiatin
loads is required. The actual Z-pinch plasma radiat
sources~PRS! load designs used to obtain record-high yie
and power emerged from a sustained effort of improv
radiative properties of PRS through mitigating the Rayleig
Taylor ~RT! instability of implosion. The RT instability miti-
gation increases the radial compression of the pinch,
thereby the density of the radiating plasma, enhances
driver energy deposition to the plasma. The developmen
the gas-puff loads has progressed from annular puffs to
form fills to the section of a gas jet produced by a reces
double-shell nozzle3,4 that combines the features of doub
shells and tailored density profiles.5,6 The wire array load
design advanced through a significant increase in the num
of wires in a cylindrical array,7 and the use1 of nested instead
of single wire arrays.8,9
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To advance further in the wire array load design, a be
understanding of the implosion physics is needed. Being
sentially a three-dimensional~3D! process,10 a wire array
implosion at the moment cannot be modeled numerica
without sacrificing much of the relevant physics. Simplifie
two-dimensional~2D! models permit more detailed numer
cal and analytical investigation. The 2D (r ,z) magnetohy-
drodynamic~MHD! modeling is fairly advanced,5,11,12 and
capable of capturing many essential features of the imp
sions, including the growth of the fastestm50 RT and MHD
instability modes and enhanced energy coupling to the pi
plasma.11,13However, since a wire array load is not an ann
lar plasma shell, at least initially,14 there are some importan
phenomena affecting the radiative performance, which c
not be described by the 2D (r ,z) modeling. The most impor-
tant of them are formation of the imploding plasma sh
from the individual wire plasmas, ejection of the precurs
plasma streams that converge to the axis prior to the im
sion of the main plasma mass15 and current splitting and/o
switching between the components of the load in the nes
wire arrays ~including the case when it operates in th
‘‘transparent inner’’ mode!8,9,16 or in hybrid loads like
gas-puff-on-wire-array.17 These 2D effects have to be mod
eled on the (r ,u) plane.
6 © 2002 American Institute of Physics
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The 2D (r ,u) MHD modeling is possible~see Refs. 10,
14–16 and references therein! but still quite complicated. It
is not certain yet how well the 2D MHD can reproduce so
essential features of implosions, such as collisions betw
plasma layers, reconnection of magnetic field and switch
of current between components of a nested load. This is
simplified approaches could be helpful, like the simple wi
dynamic model8,9 used to study the implosion kinematics a
current switching in nested wire array loads. The magne
static effects due to finite sizes of the wire plasmas are
yond the thin-wire approximation used in Refs. 8 and 9 a
could only be treated numerically.18

Our present study extends the results of Refs. 8, 9,
18. We investigate the (r ,u) dynamics of finite-size perfectly
conducting plasma columns in a periodic array. Distribut
of current density on the surfaces of the plasma columns
on the return current can, as well as the magnetic field
vacuum, are calculated self-consistently with the tim
dependent cross-sectional shapes of the columns. This
proach could be regarded as an alternative to the direct
merical integration of the MHD equations. Numerically, it
quite economical and has an attractive capacity of treatin
plasma-vacuum boundary explicitly. Using the theory of a
lytic functions, one can describe 2D plasma dynamics in
global magnetic field of the wire array by integrating on
dimensional~1D! equations that refer to the field and plasm
parameters on the surface of a plasma column. Thus we
tain a virtually exact solution, which provides a better insig
into the physics of our simplified model. A similar analytic
method has been applied in Ref. 19 to study nonlinear
namics of the free surface of an ideal fluid.

This paper is structured as follows. In Sec. II we der
the equations that self-consistently describe the shape
motion of perfectly conducting incompressible fluid colum
on the (x,y)—same as (r ,u)—plane. Section III presents th
derivation of magnetic field and current distributions and f
mulas for self- and mutual inductance for plasma colum
arranged as in a single or nested wire array inside a cylin
cal return current can. Dynamics of wire array implosio
described by this model is investigated numerically in S
IV. In Sec. V, we conclude with a discussion.

II. PLASMA DYNAMICS

A. Formulation of the problem

Consider a two-dimensional—(x,y) or (r ,u)—motion
of the wire plasmas during an implosion of a periodicN-wire
array. The wire plasma is modeled as a perfectly conduct
incompressible, irrotational, inviscid fluid. Physically, the a
sumption of perfect conductivity means that the curren
concentrated in a thin skin layer on the plasma surface. T
is not typical for high-current implosions, where the thic
ness of an imploding shell or individual wire is of the ord
of its skin depth, the magnetic Reynolds number being
order unity rather than very large, as required by the per
conductivity assumption. The incompressibility assumpt
is not realistic either. Indeed, the plasma temperature du
the run-in phase for most wire materials is controlled
radiation losses, and therefore the actual plasma density
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to increase roughly as the magnetic pressure driving its
plosion. Our plasma model is admittedly highly idealiz
and not directly applicable to the experimental conditio
The idealization of the problem, however, permits us to stu
it analytically, highlighting certain physics issues relevant
the general case, as well as generating virtually exact s
tions, which could be used, in appropriate parameter ran
to benchmark the hydrocodes. It should be added that
results pertaining to magnetostatics~current splitting be-
tween the components of a nested wire array, distribution
the return current on the surface of a cylindrical can, etc.! are
not sensitive to the distributions of current and mass in in
vidual wires. The corresponding formulas are therefore
plicable whenever the impedance of the wire array load
mainly inductive, see below.

Initially, the wires are cylindrical columns equidistant
distributed over a circle whose radius isRc(0). The initial
rotational symmetry of theNth order, as well as the transla
tional symmetry with respect to the displacements along
z axis, are supposed to be conserved during the implosio

Denote the projection of thenth plasma column onto the
complex planez5x1 iy at the momentt by Rn(t) with its
boundarygn(t). Due to the rotational symmetry of the sy
tem, one can write, omitting the subscript 1 for the fi
plasma column,

gn~ t !5g~ t !exp@2p i ~n21!/N#. ~1!

The Riemann theorem20 states that whileR(t) remains a
simply connected domain, for any instantt there exists a
conformal mappingz5J(z0 ,t) of the interior of the unit
circle, uz0u<1 on the complex planez05x01 iy0 onto the
interior of the domainR(t). The complex functionJ(z0 ,t),
as well as all its derivatives with respect to both argumen
z0 and t, is analytic@moreover,]J(z0 ,t)/]z0[Jz0

Þ0] in
the interior of the unit circle. This conformal mapping
determined by three parameters. Since the boundary of
unit circle exp(iu), 0<u<2p, is mapped to the boundar
contour,g(t), we can introduce a complex function of a re
argumentu that also defines the boundary of the doma
R(t):

g~ t !5J~eiu,t !5j~u,t !5§~u,t !1 il~u,t !. ~2!

If the real axisx is the axis of symmetry of the domai
R(0) at the initial moment, this mirror symmetry will b
conserved at later timet due to the global rotational symme
try of the system. So one can assume that the points of
unit circle that belong to the real axisx0 will be transformed
by the conformal mappingJ to the points of the domain
R(t) on the real axisx: At any momentt,

Im@z5J~z0 ,t !#50 if Im~z0!50. ~3!

Thus we can fix two arbitrary parameters of the conform
mapping z5J(z0 ,t) by eliminating an arbitrary rotation
with respect to the center of the unit circlez050:

l~0,t!50 and l~p,t !50. ~4!

Schwartz integral20 recovers the value of an analyti
functionJ(z0 ,t) in the interior of the domainR(t) from the
real part of its boundary value,§(u,t):
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J~z0 ,t !5
1

2pE0

2p

§~u,t !
eiu1z0

eiu2z0

du1 iC, ~5!

whereC is an arbitrary real constant. From Eqs.~2! and ~5!
the imaginary part of the complex functionj(u,t) can be
expressed via its real part in terms of an integral operatorĤ,

l~u,t !5Ĥ§~u,t !5E
0

2p

§~w,t !cotS u2w

2 Ddw1C. ~6!

The time derivative of the functionj(u,t) is the bound-
ary value of another analytic function,J t[]J(z0 ,t)/]t,

]

]t
j~u,t ![j t5J t~eiu,t !5V~u,t !, ~7!

where V(u,t) is the complex velocity of the point of th
boundary contour with coordinateu. This complex vector
can be expressed through its real components,Vuu andV' ,

V~u,t !5euuVuu~u,t !1e'V'~u,t !. ~8!

Here,euu ande' are complex unit vectors, and the frame
reference is tied to the contourj(u,t), see Fig. 1,

euu5
ju

ujuu
, e'5 i

ju

ujuu
, ju[

]

]u
j~u,t !. ~9!

The components of the complex velocity are readily e
pressed viaj and its derivatives

Vuu~u,t !5Re~j tēuu!5ujuuRe~j t /ju!, ~10!

V'~u,t !5Re~j tē'!52ujuuRe~ i j t /ju!. ~11!

In Eqs.~10!–~11! and below, the bar denotes a complex co
jugate value,z̄5x2 iy .

On the complex planez5x1 iy a potential flow of an
incompressible fluid in the domainzPR(t) is described by
two real functions of complex argument; the velocity pote
tial F(z,t) and the stream functionQ(z,t),

vx5
]F

]x
5

]Q

]y
, vy5

]F

]y
52

]Q

]x
, ~12!

wherevx andvy are, respectively, real and imaginary part
the complex velocity of the fluid,v5vx1 ivy . The fluid is
incompressible (“•v50) and irrotational (“3v50),
which implies that both functions satisfy the Laplace eq
tion

“

2F50, “

2Q50. ~13!

FIG. 1. The reference frame tied to the contourj(u,t).
-

-

-

-

Defining the complex velocity potential as

X~z,t !5F~z,t !1 iQ~z,t !, ~14!

we find that Eqs.~12! are the Cauchy–Riemann condition
which ensure that the complex functionX(z,t) and all its
derivatives with respect to both arguments are analytic fu
tions in the domainR(t).

The velocity potentialF(z,t) at the boundary of the do
mainR(t) could be expressed as a function of the coordin
u and time,

F~j~u,t !,t !5C~u,t !. ~15!

This equation is generalized for the complex velocity pote
tial in terms of the integral operatorĤ introduced in Eq.~6!,

X~j~u,t !,t !5~11 iĤ !C~u,t !. ~16!

The analytic function]X/]z and the complex velocity of the
fluid are complex conjugate functions inR(t),

]

]z
X~z,t !5 v̄~z,t !, zPR~ t !. ~17!

Thusv(z,t) is an antianalytic function inR(t), its real and
imaginary parts satisfying the Cauchy–Riemann conditio
with inverted signs@e.g., compared to~12!#. The boundary
value of the analytic functionv̄(z,t) at the pointu is

v̄~j~u,t !,t !5
]X

]z U
z5j

5
1

ju
~11 iĤ !Cu~u,t !, ~18!

because the integral operatorĤ is commutative with the dif-
ferential operator]/]u,

]

]u
ĤC~u,t !5Ĥ

]

]u
C~u,t ![ĤCu . ~19!

With the aid of Eq.~9! we express the boundary value
the fluid velocity via its real componentsv uu andv' as

v~j~u,t !,t !5euuv uu~u,t !1e'v'~u,t !, ~20!

where the longitudinal componentv uu(u,t) equals

v uu~u,t !5Re~euuv̄~j,t !!5ReS ju

ujuu
]X

]z U
z5j

D 5
Cu

ujuu
, ~21!

and the normal componentv'(u,t) equals

v'~u,t !5Re~e'v̄~j,t !!52
ĤCu

ujuu
. ~22!

B. Equation of motion for the fluid contour

In Sec. II A, two complex functions have been intr
duced at the point of the boundary contourj with coordinate
u: the velocity of motion of this point,V(u,t), and the fluid
velocity at this point,v(j(u,t),t). Generally, they are no
equal to each other,V(u,t)Þv(j(u,t)). Indeed, the first
function characterizes the conformal mappingJ(z0 ,t), and
the second one is the physical velocity. Moreover,V(u,t) is
the boundary value of an analytic functionJ t , whereas the
function v(z,t) is antianalytic inR(t). Nevertheless, in the
reference frame~9! tied to the contourj, the normal compo-
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nents of these two velocities are the same,v'(u,t)
5V'(u,t). Therefore, the equation of motion for the conto
follows from ~11! and ~22!:

ReS i j t

ju
D5

ĤCu

ujuu2
. ~23!

The left-hand side of Eq.~23! is the real part of the boundar
value of a functiong(z0 ,t), which is defined in the interior
of the unit circle,uz0u<1,

i j t~u,t !

ju~u,t !
5g~z0 ,t !uz05exp(iu) . ~24!

Sincej(u,t) is the boundary value ofJ(z0 ,t) on the unit
circle z05eiu, the following relations hold:

j t~u,t !5J t~z0 ,t !uz05exp(iu) , ~25!

ju~u,t !5S ]z0

]u

]J

]z0
D

z05exp(iu)

5~ iz0Jz0
!z05exp(iu) . ~26!

In Eq. ~26! the dependencez0(u)5eiu, initially defined on
the unit circle boundaryuz0u51, was analytically continued
in the interior of the unit circle, so thatz05uz0ueiu, and
]z0 /]u5 iz0 for uz0u<1. Thus we have

g~z0 ,t !5
1

z0
3

J t~z0 ,t !

Jz0
~z0 ,t !

, uz0u<1. ~27!

Obviously,g(z0 ,t) is not an analytic function in the interio
of the unit circle, since it has a pole;1/z0 at the pointz0

50 ~note thatJz0
Þ0 for uz0u<1). However, one can con

struct an auxiliary functionG(z0 ,t) that is analytic in the
unit circle

G~z0 ,t !5g2
1

z0
3 lim

z0→0
~z0g!5g~z0 ,t !2

F~ t !

z0
, ~28!

where

F~ t !5
J t~z0 ,t !uz050

Jz0
~z0 ,t !uz050

~29!

is a real-valued function, see below. Substitutingg(eiu,t)
expressed viaG(eiu,t) into Eq. ~23!, we obtain

ReS i
j t

ju
2F~ t !e2 iuD5

ĤCu

ujuu2
2F~ t !cosu. ~30!

Since the functionG(z0 ,t) is analytic in the interior of the
unit circle uz0u<1, the imaginary part of its boundary valu
can be recovered from its real part by applying the integ
operatorĤ to both sides of Eq.~30!,

ImS i
j t

ju
2F~ t !e2 iuD5Ĥ

ĤCu

ujuu2
2F~ t !sinu. ~31!

Summing Eqs.~30! and~31!, we obtain the equation for th
evolution of the functionj(u,t),

V~u,t !5j t5juF ~Ĥ2 i !
ĤCu

ujuu2
22F~ t !sinuG . ~32!
l

From Eq. ~10!, we find the longitudinal component of th
velocity of the point with coordinateu on the boundary con-
tour j(u,t),

Vuu5ujuuF Ĥ
ĤCu

ujuu2
22F~ t !sinuG . ~33!

The denominator of the right-hand side of Eq.~29! is a
function of time

Jz0
~z0 ,t !uz0505 f ~ t !. ~34!

This function could be found by integrating the functio
Jz0

(z0 ,t), which is analytic in the circleuz0u<1, over the
contourz05eiu, using the mean-value theorem

f ~ t !5
1

2pE0

2p

~Jz0
!z05exp(iu)du5

1

2p i E0

2p

jue2 iu du.

~35!

If the contourj(u,t) is symmetrical with respect to the rea
axis x, then

f ~ t !5
1

2pE0

2p

@~Ĥ§u!cosu2§u sinu#du. ~36!

The numerator of the right-hand side of Eq.~29! is the
velocity Vc(t) of the point zc(t)5J(0,t) representing the
image of the center of the unit circle,

J t~z0 ,t0!uz0505
d

dt
zc~ t !5Vc~ t !. ~37!

According to Eq.~4!, the easiest way to define the position
the pointzc is the following:

zc~ t !5 1
2@§~0,t !1§~p,t !#. ~38!

Equation ~38! ensures that the pointzc always remains
within the domainR(t), as long as it remains simply con
nected. Postulating~38!, we fix the last free parameter of th
conformal mappingz5J(z0 ,t) @the other two have been
fixed by Eq.~4!#. The velocityVc(t) is found from Eq.~38!,

Vc~ t !5 1
2@§ t~0,t !1§ t~p,t !#. ~39!

For example, for a uniform distribution of the fluid velocit
v(z,t)5v0 , wherev0 is a real constant, Eq.~32! yields a
solutionV(u,t)5v0 provided thatVc(t) is defined by~39!;
see Appendix A. Obviously, the functionsf (t), zc(t), and,
consequently,Vc(t) andF(t)5Vc(t)/ f (t) are real valued.

In order to reduce the number of parameters, we rew
the equation of motion for the fluid contour~32! in terms of
the functionju(u,t),

]ju

]t
5

]

]u F ju~Ĥ2 i !
ĤCu

ujuu2
22F~ t !jusinuG . ~40!

Separating the real part of Eq.~40!, we derive the equation
sought for
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]§u

]t
5

]

]u F §uS Ĥ
ĤCu

§u
21~Ĥ§u!2

22F~ t !sinuD
1

~Ĥ§u!~ĤCu!

§u
21~Ĥ§u!2 G . ~41!

The imaginary part ofj, l(u,t), is found from~6!.

C. Equation for the velocity potential

The partial time derivative of the contour function~15!
C(u,t) is expressed via the time derivative of the comp
velocity potentialX(z,t) on the boundary contourj(u,t),

]

]t
C~u,t !5

]

]t
ReFX~j~u,t !,t#5

]F

]t U
z5j

1ReF ]X

]z U
z5j

]j

]t G .

~42!

In the interior of the domainR(t) the dynamics of the in-
compressible inviscid fluid is described by the Bernoulli
tegral

]

]t
F~z,t !1

1

2
uv~z,t !u21

1

r
P~z,t !5a~ t !, ~43!

whereP(z,t) is the pressure of the fluid,r is the constant
fluid density, anda(t) is some function of time. We can
express the time derivative of the velocity potential on
boundary contour from~43!,

]F

]t U
z5j

5a~ t !2
1

2
~v uu

21v'
2 !2

p

r
, ~44!

where p(u,t)5P(j(u,t),t) is the fluid pressure on th
boundary contourj(u,t). On the other hand, the second ter
on the right-hand side of~42! is a scalar product of two
complex vectors,v(j(u,t),t) andV(u,t),

ReF]X

]z U
z5j

]j

]t G5v uuVuu1v'V' . ~45!

Substituting Eqs.~44! and ~45! into ~42!, we obtain an evo-
lution equation for the contour functionC(u,t),

]C

]t
5a~ t !1CuS Ĥ

ĤCu

§u
21~Ĥ§u!2

22F~ t !sinuD
1

1

2

~ĤCu!22Cu
2

§u
21~Ĥ§u!2

2
p

r
. ~46!

The yet unknown function of time,a(t), vanishes from the
equation for the evolution of the derivative,Cu(u,t),

]Cu

]t
5

]

]u FCuS Ĥ
ĤCu

§u
21~Ĥ§u!2

22F~ t !sinuD
1

1

2

~ĤCu!22Cu
2

§u
21~Ĥ§u!2

2
p

rG . ~47!

Equations~41! and~47! form a closed system of integro
differential equations, which describe the evolution of t
e

contour functions,§u(u,t) and Cu(u,t). Evolution of this
system satisfies the following conservation law:

d

dt Rz5j
Fdz1 R

z5j

P

r
dz50, ~48!

which ensures conservation of the total momentum of
system, see Appendix B.

The perfectly conducting fluid approximation means th
the magnetic field does not penetrate into the plasma colu
and the electric current is concentrated in the infinitely th
skin layer adjacent to the boundary contourj(u,t) with sur-
face densityJ(u,t). Each wire carries 1/N of the total cur-
rent I (t), which is expressed by the normalization conditi

E
0

2p

J~u,t !uju~u,t !udu5
I ~ t !

N
. ~49!

In the exterior vicinity of the contour, only the longitudina
component of the magnetic field is induced by the elec
current

B~z,t !uz→j(u,t)5euuBuu~u,t !, z¹R~r !, ~50!

where

Buu~u,t !5m0J~u,t !. ~51!

The sum of magnetic and hydrodynamic pressure should
continuous through the thin skin layer, hence the fluid pr
sure under the skin layer is determined by the local surf
current density

p~u,t !5
1

2m0
Buu

2~u,t !5
m0

2
J2~u,t !. ~52!

The procedure for calculating the distribution of current de
sity J(u,t) for any given contourj(u,t) is described in the
next section.

We have shown that the 2D dynamics of the wire plas
in this model is described by two coupled 1D integr
differential evolution equations~41! and ~47!. It must be
supplemented by the procedure of determining the distri
tion of current density on the surface of the plasma colu
self-consistently for its given position and the shape of
horizontal cross section.

Our approach has much in common with one develop
in Ref. 19. Regularization of the singularity atz050 is done
differently here, which makes it possible for us to update
numerical solution for a longer time. The original formalis
of Ref. 19 would not be applicable here for a wire displac
ment exceeding its initial diameter: the singularity wou
move through the boundary contour. The system of hydro
namic equations derived in Ref. 19 contained three eq
tions, with two of them being harmonically conjugated. F
this system, we were unable to obtain a stable numer
solution even using a Lax–Friedrichs scheme with the hi
est possible numerical dissipation. Such a system does
seem to be similar to a hyperbolic system of conservat
equations. On the other hand, our system of two equat
~41! and~47! has two characteristic velocities~Alfvén veloc-
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ity with positive and negative signs!, and in this sense re
sembles a hyperbolic system. Its numerical integration is
ficiently simple.

Some mathematical methods developed for the stud
interfacial hydrodynamic instabilities21 were used in the deri
vations presented in the Appendixes.

III. MAGNETOSTATICS

A. Equation and boundary conditions for the
magnetic vector potential

The results of Sec. II apply to an arbitrary 2D potent
motion of a perfectly conducting, incompressible fluid. He
we use theNth order rotational symmetry to find the distr
bution of current on the surface of each plasma column,
hence, the magnetic pressure that drives the implosion.

The magnetic fieldB is expressed via the vector pote
tial A,

B5“3A, “•A50. ~53!

Neglecting the displacement currents, we arrive to the q
sistatic~in our particular case, magnetostatic! approximation:
from the Maxwell equation“3B5m0J, in vacuum, where
there is no current density, and~53!, we find that the mag-
netic vector potential satisfies the Laplace equation:

“

2A50. ~54!

If the current densityJ is directed along the wires, as is th
case for a wire array without axial magnetic field, then t
vector potential has only one nonzero component in the s
direction,A(z,t), where, as above,z5x1 iy . The magnetic
field B5Bxex1Byey , where

Bx5
]A

]y
and By52

]A

]x
. ~55!

The current density is assumed below to be compose
a large number of discrete thin current filaments. Therefo
A(z,t) is a real part of an analytic function with a larg
number of logarithmic singularities located at the positio
of the current filaments.

The wire array is enclosed in a cylindrical, perfectly co
ducting return current can, whose radius isRr . The vector
potential of the return current can is assumed zero. The v
of the vector potential at the surface of the plasma colum
A(j,t)5L(t) has a clear physical meaning,

f5E B•dS52 l E ]A

]r
dr5 lL~ t ! ~56!

and

d

dt
f5 l

d

dt
L~ t !52E @¹3E#•dS5U, ~57!

wheref is the magnetic flux,l is the length of the wire array
U is the voltage applied to it. The integration contour in E
~56! and ~57! consists of two parallel straight lines, one o
the plasma column surface, another on the return current
surface. For a single conductor carrying a currentI inside a
return current can, the inductance per unit length is defi
as
f-

of

l

d

a-

e
e

of
e,

s

-

ue
s,

.

an

d

L

l
5

f

I l
5

L~ t !

I
. ~58!

Direct calculation of the energy integral gives

W5
1

2m0
E B2 dV5

1

2

~ lL!2

L
, ~59!

which illustrates that the inductance is positive definite22

This is readily generalized for a system of parallel straig
conductors inside the same return current can. Then ins
of Eq. ~58! we obtain

L jkI k5 lL j . ~60!

~Here and below, summation over repeated indices is
plied.! The inductance matrixL jk is symmetric and positive
definite.22 Such a matrix can always be inverted, and e
cient numerical methods for its inversion are available.

B. Vector potential of current filaments in a cylindrical
can

Introduce an elementary currentdI n(u,t) flowing in the
interval @u2du/2,u1du/2# of the contourjn(u,t). Due to
the rotational symmetry,dI n(u,t)5dI (u,t) ~recall that the
subscript referring to the first contour is omitted!. The cur-
rent filamentdI n generates the magnetic vector potential s
isfying the boundary conditiondAn(z,t)50 at the return
current can,uzu5Rr ,

dAn5Re~dYn!5
m0

2p
dI n ReF ln

Rr
22 j̄nz

Rr~z2jn!
G

5
m0

2p
dI ln

uRr
22 j̄nzu

Rr uz2jnu
. ~61!

Here, the magnetic vector potential generated by a sin
elementary filament is presented as a real part of a func
dYn which is analytic in the exterior of the conducting co
tour jn(u,t). This feature of Eq.~61! helps in summation of
the corresponding contributions from all the other wires
the array. Taking into account that

)
n51

N Fz2j expS 2p i
n21

N D G5zN2jN, ~62!

we obtain

dA~z,t !5 (
n51

N

dAn5
m0

2p
dI ln

uRr
2N2~ j̄z!Nu

Rr
NuzN2jNu

. ~63!

For large number of wires, the inequality (uju/Rr)
N!1 is

satisfied, so that Eq.~63! reduces to

dA~z,t !5
m0

2p
dI ln

Rr
N

uzN2jNu
. ~64!

This approximation can be used if the plasma column is
too close to the return current can.

The vector potentialdA given by~63! is the real part of
an analytic functiondY. Equation~63! could be used to de
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termine the distribution of return current density on the c
surface,Jr(w,t), wherew is the coordinate on this surface
z5Rre

iw,

dJr5
1

m0

]

]r
dA5

1

m0Rr

]

]w
Im~dY!

52
NdI

2pRr

Rr
2N2uju2N

uRr
N2jN exp~2 iNw!u2

. ~65!

The average density of the return current̂dJr&
52NdI /(2pRr) corresponds to the total return curren
2NdI , which fully balances the elementary currents of
wires, as it should. The return current density varies betw
the minimum and maximum values equal to^dJr&(Rr

N

2ujuN)/(Rr
N1ujuN) and ^dJr&(Rr

N1ujuN)/(Rr
N2ujuN), re-

spectively, wherer 5uju correspond to the center-of-ma
position of the wires. The maximums are located exac
opposite the wires, the minimums are located between th
Variation of the return current density is negligible provid
that (uju/Rr)

N!1, i.e., when the approximation~64! applies.
The total contribution to the vector potential from all th

contour currents could be found from integrating~63! over
the coordinateu,

A~z,t !5
m0

2pE0

2p

Jujuu ln
uRr

2N2~ j̄z!Nu

Rr
NuzN2jNu

du. ~66!

Substitution of~66! into the boundary condition for the mag
netic vector potential on the plasma columnA(j,t)5L(t)
yields the integral equation

L~ t !5
m0

2pE0

2p

Jujuu ln
uRr

2N2@ j̄~u,t !j~w,t !#Nu

Rr
Nuj~w,t !N2j~u,t !Nu

du ~67!

which holds for anyw between 0 and 2p. Solving ~67! for
the current densityJ(u,t) and applying the normalization
condition ~49!, we find both the distribution of the curren
density and the inductance from Eq.~58!. The return current
densityJr(w,t) is expressed as

Jr~w,t !52
N

2pRr
E

0

2p Jujuu~Rr
2N2uju2N!

uRr
N2jNexp~2 iNw!u2

du. ~68!

C. Thin-wire approximation for single and nested
arrays

Before describing a general method that we use for s
ing the integral equation~67!, consider an important approx
mation which assumes the current to be uniformly distr
uted over the surface of a thin cylindrical conductor who
radius isRw , i.e.,

j5Rc1Rw exp~ iu ! ~69!

and Jujuu5I /2pN. Here, Rc is the distance from the wire
axis to the axis of symmetry of the array. The thin-wire a
proximation is valid ifRw!Rc /N, Rr2Rc . Then, of course,
Rw!Rc , hence the numerator of argument of logarithm
function in Eq.~67! is approximated byRr

2N2Rc
2N , whereas
n

l
n

y
m.

-

-
e

-

the denominator becomesNRc
N21RwRr

N . Thus we obtain the
well-known Russell’s formula23 for the inductance of a
single wire array

L5
m0l

2p F ln
Rr

Rc
1

1

N
ln

Rc

NRw
1

1

N
lnH 12S Rc

Rr
D 2NJ G . ~70!

~It should be noted that a version of this formula presented
Ref. 24 contains a typographical error reproduced later
some other authors: instead of the radius of the wire,
second term in square brackets contains the wire diame!
The correction of order of (Rc /Rr)

2N was taken into accoun
in Ref. 18. In most cases, it is very small.

Now consider a nested wire array, a load configurat
initially suggested in Ref. 8 and then used in Refs. 1 and
and many other experiments. Here we consider two conc
tric rows each containingN wires located at the radiiRc1 and
Rc2 , where subscripts 1 and 2 refer to the outer and in
arrays, respectively. Denote the complex coordinates of
first wires in each array byj1 andj2 , respectively,

j j5Rc j1Rw j exp~ iu !, j 51,2. ~71!

Vector potential of the global magnetic field in the ca
of nested wire array configuration is a sum of contributio
from the two arrays

A~z,t !5A1~z,t !1A2~z,t !, ~72!

where

Aj~z,t !5
m0

2pE0

2p

Jj uj juu ln
uRr

2N2~ j̄ j z!Nu

Rr
NuzN2j j

Nu
du. ~73!

Since both arrays are connected to the same electro
the magnetic vector potential has the same value for all
wires,

A~j j ,t !5L j~ t !5L~ t !, j 51,2. ~74!

This condition allows one to find the distribution of currenI
between the inner and the outer components of the ne
array, I 11I 25I . Applying the thin-wire approximation to
both arrays~i.e., assumingRw j!Rck , j ,k51,2, andJj uj juu
5I j /2pN), one can present the system of Eq.~60! in a ma-
trix form

êjf5êjE U dt5êj lL5
m0l

2p
L̂ jkI k , j ,k51,2, ~75!

whereêj5(1
1) is the unit column andL̂ jk are the elements o

the dimensionless inductance matrix

L̂ j j 5 ln
Rr

Rc j
1

1

N
lnF Rc j

NRw j
S 12

Rc j
2N

Rr
2ND G ,

~76!

L̂ jk5
1

N
ln

Rr
2N2Rc j

N Rck
N

Rr
NuRc j

N 2Rck
N u

, j Þk.

Here, the diagonal elements of the matrix are se
inductances of the component arrays, and the off-diago
term is the mutual inductance~in this case of a 232 matrix,
the mutual inductance isL̂125L̂21). The inductance matrix is
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symmetric and positive definite,22 thus the inverted matrix
L̂ jk

21 always exists. Presenting the normalization condition
a vector form

I 5I j êj5I 11I 2 , ~77!

we obtain a general solution of Eqs.~75! and ~77!,

I k5
2pf

m0l
L̂ jk

21êj . ~78!

The total inductance is

L5
f

I
5

m0l

2p

1

êkL̂ jk
21êj

~79!

and combining this with~78!, we find

I k5I
L̂ jk

21êj

êkL̂ jk
21êj

. ~80!

All the derivations for the nested arrays were perform
in a general vector form, and therefore are valid for a
amount of wires in arrays consistent with theNth order ro-
tational symmetry~for instance,N wires in the inner and2N
wire in the outer array!.

For an important particular case whe
(Rc1 /Rr)

N, (Rc2 /Rr)
N!1 we can further simplify~76! to

give

L̂115 ln
Rr

Rc1
1

1

N1
ln

Rc1

N1Rw1
, L̂225 ln

Rr

Rc2
1

1

N2
ln

Rc2

N2Rw2
,

~81!

L̂125L̂215 ln
Rr

Rc1
.

In the thin-wire approximation, Eq.~81! is valid under above
assumptions for arbitrary numbers of wiresN1 andN2 in the
component arrays. The self-inductance for each of them
given by the Russell’s formula. The mutual inductance in t
approximation simply equals a self-inductance of a condu
ing shell whose radius equals the radius of the outer ar
Physically, this is quite clear: the outer array generates
same magnetic flux in the contour formed by the inner ar
and the return current can as a conducting shell of the s
radiusRc1 would.

For a two-component nested wire array, the solutio
~79! and ~80! could be presented in a scalar form

L5
m0l

2p

L̂11L̂222L̂12
2

L̂111L̂2222L̂12

,

~82!

I 15I
L̂222L̂12

L̂111L̂2222L̂12

, I 25I
L̂112L̂12

L̂111L̂2222L̂12

.

Using the approximation~81! for the self- and mutual induc
tance, one determines the fraction of the total current flow
in the inner array to be
n

d
y

is
s
t-
y.
e
y
e

s

g

I 2

I
5

1

N1
ln

Rc1

N1Rw1

ln
Rc1

Rc2
1

1

N1
ln

Rc1

N1Rw1
1

1

N2
ln

Rc2

N2Rw2

. ~83!

According to ~81!, the numerator of the right-hand side o
~83! is the excess of the self-inductance of the outer ar
over the self-inductance of a perfectly conducting shell of
same radiusRc1 . A perfectly conducting shell would provide
a perfect screening,I 250. Equation~83! also implies that a
perfect screening—no current in the inner array—is achie
when the argument of the logarithm is unity, i.e., the gap-
diameter ratio is

r g

Dw1
5p, ~84!

where r g52pR1 /N1 is the gap between the centers of t
neighboring wires,Dw152Rw1 is the outer wire diameter. In
fact, the current in the inner array does not vanish when~84!
is satisfied, see below. Rather, Eq.~84! indicates the gap-to-
diameter ratio below which the thin-wire approximation
no longer valid. For typical experimental conditions of, sa
Ref. 1 (N15240,N25120,Rc152 cm,Rc251 cm,Rw1 and
Rw2 varied between 20 and 50mm!, the current fraction in
the inner array varies between 0.8% and 0.3%. Our exp
expressions for self- and mutual inductance of single a
nested wire arrays can help in obtaining a simple ze
dimensional~0D! description of their implosion dynamics
see Appendix C.

Figure 2 compares the current fraction in the inner ar
and the total induction found using the thin-wire approxim
tion and with the aid of Eq.~74! solved exactly, as describe
in the next section. HereRr /Rc152, Rc1 /Rc252, Rc1 /Rw1

5Rc2 /Rw2564, and the number of wires in both array
N15N25N is varied. The condition~84! corresponds toN
564. We see that~83! is a good approximation forI 2 /I up to
N;50. For larger number of wires, this approximatio

FIG. 2. Fraction of current in the inner arrayI 2 /I and normalized induc-
tance of the nested arrayL/L0 (L05m0l /2p) vs number of wires in both
arrays,N, for Rr /Rc152, Rc1 /Rc252, Rc1 /Rw15Rc2 /Rw2564. Lines rep-
resent exact values found numerically, symbols—the thin-wire approxi
tion.
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breaks down for the obvious reason: distribution of the c
rent density on the surface of a conducting plasma colu
cannot be assumed uniform when the distance between
neighboring columns is comparable to the column diame
Note that the expression for the total inductanceL remains a
good approximation even when the thin-wire approximat
becomes formally invalid.

D. Arbitrary shape of the boundary contour:
Distribution of current in discrete filaments

The technique described in Sec. III C allows us to d
velop a general method of calculating the current den
distribution on the surface of a conductor with arbitra
shape of its cross section. For this, we approximate the c
ducting surface with a large number of thin current filame
and treat these filaments as separate wires connected in
allel to the same electrodes. Therefore, all these filaments
at the same vector potential. Assuming the radii of th
filaments much less than the cross-sectional dimension o
plasma column,Rw , one can use the symmetrical, positive
definite inductance matrix derived above in the thin-wire a
proximation to determine the distribution of the current b
tween the filaments.

Here we describe this calculation for a single wire arr
~it is readily generalized for a nested wire array!. The inter-
val @0,2p# for the variableu is split into a large numberK
@1 of subintervals @uk2(1/2)Du,uk1(1/2)Du#, where
Du52p/K. It is assumed that the complex coordinate of t
middle point of thekth subintervaljk(t)5j(uk ,t) defines
the position of thekth filament, which carries a currentI k

5J(uk ,t)ujkuuDu, and its effective radius is qk

5(1/2)ujkuuDu!Rw . Thus the solution~75! obtained in the
thin-wire approximation, remains valid,

êjf5êj lL5
m0l

2p
L̂ jkI k , j ,k51,...,K, ~85!

where êj is now a unit column containingK rows. The in-
ductance matrix is similar to~76!, but its elements now refe
to the current filaments on the surface of a single plas
column rather than to the inner and outer components
nested wire array,

L̂ j j 5N ln
Rr

uj j u
1 lnF uj j u

Nqj
S 12

uj j u2N

Rr
2N D G ,

~86!

L̂ jk5 ln
uRr

2N2~ j̄kj j !
Nu

Rr
Nuj j

N2jk
Nu

, j Þk.

The normalization condition~77! becomes

NIkêk5I . ~87!

The total inductance of theN-wire array is given by an equa
tion similar to ~79!,

L5
m0l

2pN

1

êkL̂ jk
21êj

~88!

and the current in each filament is given by a formula sim
to ~80!,
r-
n
he
r.

n

-
y

n-
s
ar-
re
e
he

-
-

y

e

a
a

r

I k5
I

N

L̂ jk
21êj

êkL̂ jk
21êj

. ~89!

Using the formulas~86!–~88! and ~89!, the distribution
of the current density on the surface of a conductor w
arbitrary shape of its cross section can be calculated num
cally. In the plasma dynamics problem described in Sec
the cross section is represented by a given contourj(u,t) on
a complex plane. We can thus find the fluid pressure in
~52! p5pk5p(uk ,t) for the given complex coordinate
jk(t)5j(uk ,t) of a boundary contour,

p~uk ,t !5
m0

2
J2~uk ,t !5

m0

2

I k
2

~Du!2

1

uju~uk ,t !u2
. ~90!

This closes the MHD model presented in this paper.

IV. DYNAMICS OF A SINGLE WIRE ARRAY IMPLOSION

We apply dicretization to both argumentsu and t of the
contour functionsju(u,t) and Cu(u,t). Numerical integra-
tion of Eqs. ~41! and ~47! is performed using a space
centered explicit predictor–corrector Lax–Wendroff sche
of second order. The integral operatorĤ is calculated using
the algorithm of fast Fourier transform~see Appendix D for
details!.

The wire array is characterized by its effective radi
Rc(t) @associated with the position of the pointzc(t) intro-
duced by Eq.~38!#, the average radiusRw(t) of the conduct-
ing contourj(u,t) representing the cross section of a plas
column, the numberN of wires in the array, and the radiusRr

of the return current can. The initial shape of the dom
R(t50) is a circle with the radiusRw(0), whose center is
on the real axis atx5Rc(0). Ourmodel equations could be
coupled to an arbitrary circuit equation, but here we assu
the current driver to be sufficiently stiff, so that the curre
wave form is independent from the implosion dynamics a
could be presented as

I ~ t !5I maxsin2S pt

2tmax
D . ~91!

This approximation is good for the experiments on t
MAGPIE facility in the Imperial College;14–16 for MAGPIE,
I max varies between 1 and 1.4 MA, andtmax is about 240 ns.
We choose the initial parameters close to~but not exactly the
same as! those of theMAGPIE experiments. The initial radius
of the wire array is taken to beRc(0)58 mm, the radius of
the plasma corona after the explosion of a 15mm Al wire
Rw(0)5125 mm, tmax is taken between 250 and 300 ns, t
number of wires in the array is varied from 8 to 64. Th
radius of the cylindrical return current can,Rr510 mm, is
intentionally taken much less than that of the return curr
structure ofMAGPIE ~4 to 8 posts at about 75 mm from th
axis!. The corresponding ratio that we have chos
Rr /Rc(0)51.25, is more typical for ‘‘Z’’ and other
multi-MA generators, which are softer thanMAGPIE and
thereby require low-inductance loads. Proximity of the retu
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current structure to the imploded wire array can make
nonuniformity of the return current an issue, which we a
going to address below.

The main parameter determining the configuration
magnetic field in the wire array is the gap-to-diameter ra
pRc(0)/NRw(0), cf. Eq. ~84!. If N58 this parameter is
large enough, about 25. In this case, as shown in Fig.
substantial part of the magnetic flux penetrates the interw
gaps towards the axis of the array. Figure 4 shows that
current density tends to be concentrated on the outer pa
the plasma column surfaces~peaking atu50), although its
distribution is close to uniform:J(p)/J(0)'80%.

In the other limitN564 ~Fig. 5! the neighboring con-
ducting contours are close,pRc(0)/NRw(0)5p, and the

FIG. 3. Magnetic force lines for a 8-wire array withRw(0)5125 mm,
Rc(0)58 mm, Rr510 mm, at early timet→10, before the motion and
deformation of the array started. Bold lines show the conducting cont
j1 ,j2 ,j3 and the return current can.

FIG. 4. Relative variation of the current densityJ(u,t) and fluid pressure
p(u,t) normalized toJ05I (t)/2pNRw andp05m0J0

2/2, respectively, vs the
contour parameteru, for the conditions of Fig. 3. The derivativepu

5]p/]u is also shown in arbitrary units with its zero level marked by t
dashed–dotted line. The positions defined asu50 andu5p correspond to
points of the contour, which are farthest from and closest to the axis, res
tively ~cf. Fig. 1!.
e
e

f
o

a
re
e
of

magnetic field is effectively screened from penetrati
through the gaps between the plasma columns. In this c
most of the current flows through the outer area of the c
ducting surface~Fig. 6!: J(p)/J(0)512%, and, conse-
quently,p(p)/p(0)51.4%.

Figure 7 shows that the distribution of the current de
sity Jr(w) on the return current can surface is not unifor
due to proximity of the plasma columns to the can wall. T
function Jr(w) has N maximums atw52p(n21)/N, n
51,...,N, just opposite to the plasma columns. If the retu
current radius is increased to 20 mm, then the distribution
the return current becomes almost uniform, whereas the
tribution of current density on the plasma surface would
main virtually unchanged.

The periodic pressure functionp(u,t) shown in Figs. 4
and 6 is expanded into the Fourier series

p~u,t !5p0~ t !1p1~ t !cosu1p2~ t !cos 2u1••• . ~92!

The first term in the expansion~92!, p0(t) describes a uni-
form pressure distribution. This corresponds to the contri
tion to the pressure provided by the ‘‘private’’ magnetic file

rs

c-

FIG. 5. Same as in Fig. 3 for a 64-wire array withRw(0)5125 mm,
Rc(0)58 mm,Rr510 mm.

FIG. 6. Same as in Fig. 4, for the conditions of Fig. 5.
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of the individual wire, which would result in its pinching if i
were compressible. Obviously, this component does
change the shape of the boundary contour and cause
acceleration of the plasma column.

The second term,p1(t)cosu, is due to the force that is
responsible for the implosion of the wire array. This force
caused by the interaction of the surface current with the g
bal magnetic field and accelerates each wire towards the
of the array @at all time, p1(t).0] without affecting its
cross-sectional shape.

The third component,p2(t)cos 2u, approximates the in-
teraction between the surface current in the neighbo
plasma columns by a local tidal force. This force deforms
boundary contourj(u,t), squeezing it along the realx axis
and expanding it along the imaginaryy axis, without accel-
erating the plasma column as a whole. The tidal force cau
the plasma columns to merge, to form a uniform shell dur
the implosion of the array.

Thus, dynamics of the plasma columns is defined b
competition between the implosion and tidal forces. T
relative role of the tidal force could be estimated by t
variable p21(t)5p2(t)/p1(t). This parameter is mostly af
fected by the gap-to-diameter ratiopRc(t)/NRw(t) during
the implosion.

We simulated the implosion of an 8-wire array, takin
I max51 MA and tmax5310 ns in Eq.~91!. At the initial mo-
mentp21(0)50.04, and the implosion force dominates ov
the tidal force responsible for the annular shell formation.
the early stage of implosion, the plasma columns retain t
initial circular shapes as they accelerate towards the a
The function Rr(t) shown in Fig. 8 reproduces the wel
known 0D solution@cf. Appendix C, Eq.~C2!# for the im-
plosion of a thin conducting shell driven by a current~91!.

At the later stage of the implosion, as the gap-
diameter ratiopRc(t)/NRw(t) decreases, the tidal forc
gradually becomes dominant. Figure 9 shows that the de

FIG. 7. Relative variation of the current densityJ(u,t), normalized as in
Fig. 4, and of the return current densityJr(w,t) @normalized with respect to
^Jr&5I (t)/2pRr ], for the conditions of Fig. 3, and the same for the radi
of return current canRr520 mm.
ot
no

-
xis

g
e

es
g

a
e

r
t
ir
is.

-

r-

mation of the boundary contours becomes noticeable aRc

'1.2 mm. At this point the gap-to-diameter ratio is about
and the magnetic field configuration is similar to one sho
in Fig. 5. However, the wire plasmas by this moment alrea
have a high inward radial velocity, and the shell formation
only completed whenRc'0.5 mm.

In the case of a 64-wire array, the tidal force plays
important role from the very beginning:p21(0)50.36. Fig-
ure 10 demonstrates that the column cross sections ar
ready substantially deformed at the momentt5tmax/4, when
the columns have barely moved from their initial positio
toward the axis of the array. The distributions of current de

FIG. 8. Implosion dynamics of a wire array whose initial configuration
shown in Fig. 3: the average radius of the arrayRc(t), the implosion veloc-

ity Vc(t)5uṘc(t)u and the current wave formI (t).

FIG. 9. Cross sections of the plasma columnsj1 ,j2 , andj3 at the instants
whenRc(t)51.2 mm~dashed lines! and 0.5 mm~solid lines! for the implo-
sion whose time history is shown on Fig. 8.
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sity and pressure at this moment shown in Fig. 11 are v
close to the step functions characteristic of an annular s
implosion.

Our analysis demonstrated a competition between
imploding force, making the array implode as a set of in
vidual wires, and the tidal force making the wires merge in
an annular shell. Formation of precursor plasma strea
flowing to the axis ahead of the main plasma mass is
described by the present model. The reason for this is s
from Eq. ~50!: only the normal component of theJÃB force
acts on the boundary surface of the plasma column, pus

FIG. 10. Early-time implosion dynamics of a wire array whose initial co
figuration is shown in Fig. 5. Solid lines show the cross sections of
plasma columnsj1 , j2 , and j3 at t5tmax/4; dashed lines refer to thei
initial shapes and positions att50.

FIG. 11. Relative variation of the current densityJ(u,t) and fluid pressure
p(u,t) normalized as in Fig. 4, for the contours shown by the solid lines
Fig. 10.
ry
ll

e
-
o

s
ot
en

ng

the plasma inward. It is well known, however, that the e
ploded wire plasma is highly nonhomogeneous. As predic
in Ref. 25 and confirmed in later studies~see Ref. 10 and
references therein!, electrical explosion of a solid wire pro
duces a plasma column, which contains high-density c
and low-density corona regions, with the skin depth com
rable to the thickness of the corona. Assuming the cor
thickness at early time much less than the core diameter
can roughly estimate the longitudinal component of theJÃB
acting on some parts of the coronal plasma by

euu•@JÃB#}J~u,t !
]

]u
Buu~u,t !}

]

]u
p~u,t ![pu . ~93!

Qualitative profiles of the derivativepu are shown in Figs. 4
and 6. This function is zero atu50 andu5p and has two
maximums nearu5p/2 andu53p/2. At both maximums of
pu the longitudinal component of theJÃB force is directed
to the axis of the wire array. Since the density of coron
plasma is much lower than the core density, and it is free
move away from the core, such a force configuration wo
produce precursor jets streaming to the pinch axis.10,16How-
ever, neither the process of generation nor the dynamic
these jets could be treated in the incompressible fluid
proximation.

V. CONCLUSION

The implosion dynamics of wire arrays on the (r ,u)
plane has been studied with the aid of a perfectly conduct
incompressible fluid model. The implosion dynamics
driven by the competition between the implosion pressu
which makes the array converge to the axis as a set of i
vidual plasma columns, and the tidal pressure that makes
wires merge, forming an annular conducting shell. The re
tive roles of the implosion and tidal pressure are determi
by the gap-to-diameter ratiopRc(t)/NRw(t). If this ratio is
large at early time~this is when the thin-wire approximatio
works, and the Russell’s formula is valid!, then the array
implodes as a set of individual plasma columns. In the
posite limit, when this ratio is aboutp or less at early time,
the thin-wire approximation is not applicable—the distrib
tion of current over the plasma surface is very nonunifor
peaked at the outer side. Then the tidal forces prevail in
early-time dynamics, and the plasma columns tend to for
shell-like configuration before they start converging to t
axis of the array.

The approximation of perfectly conducting incompres
ible fluid does not describe the precursor plasma jets
stream to the axis ahead of the heavier wire cores. These
driven by the longitudinal component of theJÃB force,
which we were able to estimate. This force peaks at the s
of the plasma columns and is directed to the axis of the ar
To describe the jet formation on the (r ,u) plane, one there-
fore needs adequate models of the plasma conductivity
its equation of state.

Our model, being admittedly simplified, has the adva
tages of physical transparence and numerical efficiency
could be used to benchmark the MHD hydrocodes on
(r ,u) plane, where no exact solutions were available for t

e
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purpose until now. This model could also be applied to so
other problems of relevance for the inertial confinement
sion. For instance, it could be used for modeling the non
ear stages of Rayleigh–Taylor and Richtmyer–Meshkov
stabilities, where it might have some advantages over
existing analytical and semianalytical approaches~see Refs.
26 and references therein!.
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APPENDIX A: A PARTICULAR SOLUTION OF THE
EQUATION OF MOTION FOR THE CONTOUR;
UNIFORM VELOCITY

Complex velocity potentialX(z,t)5zv0 , wherev0 is a
real constant, corresponds to a uniform distribution of
fluid velocity: v(z,t)5v0 . In this case the boundary valueC
of the velocity potentialF(z,t)5v0 Re(z) is

C~u,t !5v0 Re@j~u,t !#, Cu5v0 Re@ju#. ~A1!

Substituting the above distribution ofCu into Eq. ~32!,
we obtain

ĤCu

ujuu2
52v0 ImS 1

ju
D ,

~A2!

Ĥ
ĤCu

ujuu2
5v0 ReS 1

ju
D1

2v0

f ~ t !
sinu,

V~u,t !5j t5v01
2ju

f ~ t !
@v02Vc~ t !#sinu.

If the functionVc(t) satisfies~39!,

§ t~0,t !5§ t~p,t !5v0 , Vc~ t !5v0 . ~A3!

ThusV(u,t)5v0 for any shape of the boundary conto
j(u,t).

APPENDIX B: INTEGRAL OF MOTION

Let us calculate the following integral:

P5
d

dt Rz5j
F dz1 R

z5j

P

r
dz

5
d

dtE0

2p

Cju du1E
0

2pp

r
ju du

5E
0

2pFjuS ]C

]t
1

p

r D2Cuj tGdu. ~B1!

Substituting Eqs.~32! and~46! into ~B1!, we obtain that

P5E
0

2pFa~ t !2
~Cu2 iĤCu!2

2ujuu2
Gju du. ~B2!
e
-
-
-
e

t-
r

n

e

Obviously,

a~ t !E
0

2p

ju du5a~ t ! R
z5j

dz[0 ~B3!

and

ju

~Cu2 iĤCu!2

ujuu2
5F ]X̄~ z̄!

] z̄
G

z̄5 j̄

2

5@v~ z̄,t !# z̄5 j̄
2 . ~B4!

If we change the argument of the antianalytic functi
v(z,t) to its complex conjugate, this function becomes
analytic function v( z̄,t) which satisfies the Cauchy–
Riemann conditions. Thus, according to the Cauchy theor

P52
1

2 R
z̄5 j̄

v2~ z̄,t !dz̄50. ~B5!

Therefore Eq.~48! holds during the evolution of the system
described by Eqs.~41! and ~47!.

APPENDIX C: DYNAMICS OF SINGLE AND NESTED
WIRE ARRAYS IN A THIN-WIRE APPROXIMATION

Our expressions for self- and mutual inductance lead
simple 0D description of the implosion dynamics in a thi
wire approximation. Equations of motion are derived from
Lagrangian, which for a single wire array has the form

L5K2U5
m

2
Ṙc

21
L~Rc!

2
I 2. ~C1!

Here,m is the mass of the array,K is its kinetic energy,U is
the potential or free energy given by the formulaU
52LI 2/2 from Ref. 22. Substituting the Russell formu
~70! into the Lagrange equation (d/dt)(]L/]Ṙc)5]L/]Rc ,
we obtain the well-known 0D equation of motion

mR̈c5
I 2

2

]L

]Rc
52

m0l ~N21!

4pNRc
I 2 ~C2!

~the currentI is treated here as an independent variab!.
Equation~C2! says that each wire is pushed to the axis
the Ampère force due to the interaction of its current,I /N,
with the azimuthal magnetic field produced by the remain
N21 wires. Note that the radial acceleration of the wires
given by ~C2! even if the wires are not distributed equidi
tantly on a circle whose radius isRc .

For a nested wire array, the corresponding Lagrangia

L5
m1

2
Ṙc1

2 1
m2

2
Ṙc2

2 1
L~Rc1 ,Rc2!

2
I 2

5
m1

2
Ṙc1

2 1
m2

2
Ṙc2

2 1
m0l

4p
@ L̂11~Rc1!I 1

2

12L̂12~Rc1 ,Rc2!I 1I 21L̂22~Rc2!I 2
2#, ~C3!

wherem1 andm2 are the masses of the two components
the wire array, and its inductance is given by Eqs.~81! and
~82!. In the ‘‘transparent inner’’ mode of interaction,8,9,16 the
imploding outer array 1 can penetrate inside the inner ar
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2, and their respective roles will then be reversed. To t
this into account, we generalize the expression~81! for the
mutual inductance,

L̂12~Rc1 ,Rc2!5L̂21~Rc1 ,Rc2!5 ln
Rr

max~Rc1 ,Rc2!
. ~C4!

The equations of motion derived from~C3! with the aid of
~81!, ~82!, ~C4! are

m1R̈c15
m0l

4p
I 2

]

]Rc1
L

5
m0l

4p
S I 1

2 ]L̂11

]Rc1
12I 1I 2

]L̂12

]Rc1
D

52
m0l I 1

4pRc1
F ~N121!I 1

N1
12I 2u~R12R2!G ,

~C5!

m2R̈c25
m0l

4p
I 2

]

]Rc2
L

5
m0l

4p
S I 2

2 ]L̂22

]Rc2
12I 1I 2

]L̂12

]Rc2
D

52
m0l I 2

4pRc2
F ~N221!I 2

N2
12I 1u~R22R1!G ,

where u(z) is the Heaviside step function. Equations~C5!
demonstrate that the inner array is imploded by its own c
rent, whereas the outer array is additionally pushed to
axis by the interaction of its current with the azimuthal ma
netic field generated by the current in the inner array.

APPENDIX D: FOURIER REPRESENTATION OF THE
OPERATOR Ĥ

The function X(z0 ,t), which is analytic in the unit
circle, is thereby equal to the sum of its Taylor series

X~z0 ,t !5 (
k50

`

ck~ t !z0
k , ~D1!

whereuz0u<1 and the coefficientsck are given by

ck~ t !5
1

2p i R X~z0 ,t !

z0
k11

dz0 , ~D2!

where the integration contour is within the unit circle. At th
boundary of the unit circle, Eqs.~14!, ~15!, ~D1! and ~D2!
yield

X~z0 ,t !uz05exp(iu)5C~u,t !1 iQ~j~u,t !,t !

5 (
k50

`

ck~ t !eiku,

~D3!

ck~ t !5
1

2pE0

2p

@C~w,t !1 iQ~j~w,t !,t !#e2 ikwdw.

Separating the real and imaginary parts of Eq.~D3! and tak-
ing into account the Fourier expansion
e

r-
e
-

C~u,t !5 (
k50

`

@ak~ t !cosku1bk~ t !sinku#, ~D4!

where

ak~ t !5
1

pE0

2p

C~w,t !cos~kw!dw,

~D5!

bk~ t !5
1

pE0

2p

C~w,t !sin~kw!dw,

one can obtain the following definition of the integral oper
tor Ĥ:

ĤC~u,t !5 (
k50

`

@ak~ t !sinku2bk~ t !cosku#

5
1

pE0

2p

C~w,t !F (
k51

`

sink~u2w!Gdw ~D6!

is equivalent to its original definition~6!. Indeed,

ĤC~u,t !5
1

pE0

2p

C~w,t !ImF (
k51

`

eik(u2w)Gdw

5
1

pE0

2p

C~w,t !ImF ei (u2w)

12ei (u2w)Gdw

5
1

2pE0

2p

C~w,t !cotS u2w

2 Ddw. ~D7!

Comparing Eqs.~D4! and~D6!, we see that the operato
Ĥ applied to a Fourier-series expansion of a real-valu
function, changes the basis of the Fourier representatio
follows: Ĥ(cosku,sinku)5(sinku,2cosku).
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