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An incompressible perfectly conducting magnetohydrodynamic model is applied to describe a
multiwire array implosion on ther(#) plane using the theory of analytic functions. The plasma
columns emerging from the electrical explosion of individual wires move and change the shape of
their cross section in the magnetic field produced by the currents flowing on the surfaces of the
columns and closing through a cylindrical return current can. Geometry of both the “global” and
“private” magnetic fields and self-consistent distributions of the electric currents on the conducting
surfaces are determined for any wire array configuration including nested wire arrays, wires close
to the return current can, etc. The coupled equations of motion and magnetostatics for an essentially
two-dimensional problem are reduced to one-dimensional parametric governing equations, written
for the boundary of the fluid contours. The implosion dynamics is shown to be driven by a
competition between the implosion pressure, making the array converge to the axis as a set of
individual plasma columns, and the tidal pressure that makes the wires merge, forming an annular
conducting shell. Their relative roles are determined by the gap-to-diametermRi{ad)/NR,(t).

If this ratio is large at early time, then the array implodes as a set of individual plasma columns.
Otherwise, when the ratio is abotutor less, the tidal forces prevail, and the plasma columns tend

to form a shell-like configuration before they start converging to the axis of the array. The model
does not allow the precursor plasma streams to be ejected from the wires to the axis, indicating that
this process is governed by the finite plasma conductivity and could only be described with a proper
conductivity model. ©2002 American Institute of Physic§DOI: 10.1063/1.1452104

I. INTRODUCTION To advance further in the wire array load design, a better

h hi ¢ hiah inch bhvsics | understanding of the implosion physics is needed. Being es-
The achievements of high current Z-pinch physics in rég ntially a three-dimensiondBD) process? a wire array
cent years have been spectacular. Record values of tot

plosion at the moment cannot be modeled numerically
X-ray energy output-2 MJ, peak total power>250 TW, . e ) o
argon(3.3 keV), and titanium(4.8 keV) K-shell yields over without sacrificing much of the relevant physics. Simplified

270 and 125 kJ, respectively, have been produced on the éwo-dlmensmngl(ZD_) mod_els_perm|t more detailed numeri-
MA “Z" facility at Sandia National Laboratoried™® To cal and analytical investigation. The 2D,¢) maglglnleztohy-
maximize the radiative performance of “Z” and other drodynamlc(MHD? modeling is falr_ly advanceth™ and
multi-MA current drivers, a careful design of the radiating €aPable of capturing many essential features of the implo-
loads is required. The actual Z-pinch plasma radiatiorpionS: including the growth of the fastest=0 RT and MHD

sourcesPRS load designs used to obtain record-high yie|d|nstabilit1ylgnodes and enhanced energy coupling to the pinch
and power emerged from a sustained effort of improving?/asma:""*However, since a wire array load is not an annu-
radiative properties of PRS through mitigating the Rayleigh—1ar Plasma shell, at least initially, there are some important
Taylor (RT) instability of implosion. The RT instability miti- Phenomena affecting the radiative performance, which can-
gation increases the radial compression of the pinch, anBot be described by the 2D ) modeling. The most impor-
thereby the density of the radiating plasma, enhances thi@nt of them are formation of the imploding plasma shell
driver energy deposition to the plasma. The development ofom the individual wire plasmas, ejection of the precursor
the gas-puff loads has progressed from annular puffs to unplasma streams that converge to the axis prior to the implo-
form fills to the section of a gas jet produced by a recessegion of the main plasma maSsand current splitting and/or
double-shell nozzfe* that combines the features of double switching between the components of the load in the nested
shells and tailored density profilé§.The wire array load wire arrays (including the case when it operates in the
design advanced through a significant increase in the numbétransparent inner” modg®® or in hybrid loads like

of wires in a cylindrical array,and the uskof nested instead gas-puff-on-wire-array’ These 2D effects have to be mod-
of single wire array$:° eled on the (,6) plane.
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The 2D (r,6) MHD modeling is possiblésee Refs. 10, to increase roughly as the magnetic pressure driving its im-
14-16 and references thergiout still quite complicated. It plosion. Our plasma model is admittedly highly idealized
is not certain yet how well the 2D MHD can reproduce someand not directly applicable to the experimental conditions.
essential features of implosions, such as collisions betweefhe idealization of the problem, however, permits us to study
plasma layers, reconnection of magnetic field and switchingt analytically, highlighting certain physics issues relevant in
of current between components of a nested load. This is whthe general case, as well as generating virtually exact solu-
simplified approaches could be helpful, like the simple wire-tions, which could be used, in appropriate parameter ranges,
dynamic modét® used to study the implosion kinematics and to benchmark the hydrocodes. It should be added that our
current switching in nested wire array loads. The magnetoresults pertaining to magnetostatiésurrent splitting be-
static effects due to finite sizes of the wire plasmas are between the components of a nested wire array, distribution of
yond the thin-wire approximation used in Refs. 8 and 9 andhe return current on the surface of a cylindrical can,) et
could only be treated numericaft. not sensitive to the distributions of current and mass in indi-

Our present study extends the results of Refs. 8, 9, andidual wires. The corresponding formulas are therefore ap-
18. We investigate the (#) dynamics of finite-size perfectly plicable whenever the impedance of the wire array load is
conducting plasma columns in a periodic array. Distributionmainly inductive, see below.
of current density on the surfaces of the plasma columns and Initially, the wires are cylindrical columns equidistantly
on the return current can, as well as the magnetic field irdistributed over a circle whose radiusRs(0). Theinitial
vacuum, are calculated self-consistently with the time-rotational symmetry of th&lth order, as well as the transla-
dependent cross-sectional shapes of the columns. This apenal symmetry with respect to the displacements along the
proach could be regarded as an alternative to the direct naxis, are supposed to be conserved during the implosion.
merical integration of the MHD equations. Numerically, it is Denote the projection of theth plasma column onto the
quite economical and has an attractive capacity of treating aomplex planez=x+iy at the moment by R,(t) with its
plasma-vacuum boundary explicitly. Using the theory of anaboundaryy,(t). Due to the rotational symmetry of the sys-
lytic functions, one can describe 2D plasma dynamics in theem, one can write, omitting the subscript 1 for the first
global magnetic field of the wire array by integrating one-plasma column,
dimensional1D) equations that refer to the field and plasma B .
parameters on the surface of a plasma column. Thus we ob- (0= y(Oexg 2 (n—1)/N]. @)
tain a virtually exact solution, which provides a better insight ~ The Riemann theorefhistates that whiléi(t) remains a
into the physics of our simplified model. A similar analytical simply connected domain, for any instainthere exists a
method has been applied in Ref. 19 to study nonlinear dyeonformal mappingz=ZE(zy,t) of the interior of the unit
namics of the free surface of an ideal fluid. circle, |zg)<1 on the complex plane,=Xy+iy, onto the

This paper is structured as follows. In Sec. Il we deriveinterior of the domairik(t). The complex functiorE (zy,t),
the equations that self-consistently describe the shape ara$ well as all its derivatives with respect to both arguments,
motion of perfectly conducting incompressible fluid columnsz, andt, is analytic[moreover,aE(zo,t)/&zoEEzoaﬁ 0] in
on the &,y)—same asi(, §)—plane. Section Ill presents the the interior of the unit circle. This conformal mapping is
derivation of magnetic field and current distributions and for-determined by three parameters. Since the boundary of the
mulas for self- and mutual inductance for plasma columnsunit circle expiu), O<u<2, is mapped to the boundary
arranged as in a single or nested wire array inside a cylindricontour, y(t), we can introduce a complex function of a real

cal return current can. Dynamics of wire array implosionsargumentu that also defines the boundary of the domain
described by this model is investigated numerically in Secg(t):

IV. In Sec. V, we conclude with a discussion. o .
y()=E(e",t)=£&(u,t)=s(u,t) +ik(u,t). 2

Il. PLASMA DYNAMICS If the real axisx is the axis of symmetry of the domain
R(0) at the initial moment, this mirror symmetry will be
conserved at later timedue to the global rotational symme-
Consider a two-dimensional-«(y) or (r,6)—motion try of the system. So one can assume that the points of the
of the wire plasmas during an implosion of a perioNievire  unit circle that belong to the real axkg will be transformed
array. The wire plasma is modeled as a perfectly conductindyy the conformal mappinge to the points of the domain
incompressible, irrotational, inviscid fluid. Physically, the as-2’(t) on the real axis: At any momentt,
sumption of perfect conductivity means that the current is —_ :
concF:antratedF)in a thin skin Iayetryon the plasma surface. This Im[z=Z(20,)]=0 ifim(z9)=0. ®)
is not typical for high-current implosions, where the thick- Thus we can fix two arbitrary parameters of the conformal
ness of an imploding shell or individual wire is of the order mapping z==(z,,t) by eliminating an arbitrary rotation
of its skin depth, the magnetic Reynolds number being ofwith respect to the center of the unit circg=0:
order umt_y rather tha_n very Iarge, as reqw.re.q by the per_fect NOD=0 and A(m.t)=0. @
conductivity assumption. The incompressibility assumption
is not realistic either. Indeed, the plasma temperature during Schwartz integréf recovers the value of an analytic
the run-in phase for most wire materials is controlled byfunction=Z(z,,t) in the interior of the domaifR(t) from the
radiation losses, and therefore the actual plasma density hasal part of its boundary value(u,t):

A. Formulation of the problem
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A y (u l) Defining the complex velocity potential as
E X(z,t)=D(z,t)+i0O(z1), (14
I E we find that Egs(12) are the Cauchy—Riemann conditions
L which ensure that the complex functiof(z,t) and all its
R(t) derivatives with respect to both arguments are analytic func-
X) tions in the domainR(t).
_ P U T 0 The velocity potentiatb(z,t) at the boundary of the do-
U= - mainfi(t) could be expressed as a function of the coordinate
FIG. 1. The reference frame tied to the contd(u,t). u and time,
P (&(u,t),)=V(u,t). (15
_ This equation is generalized for the complex velocity poten-
= (20.) 1 J2w wi) e'“JrzoOIthiC 5 tial in terms of the integral operatét introduced in Eq(6),
=(Zp, a5 S )
~ % X(£(u,t),t)=(1+iH)W¥(u,t). (16)

whereC is an arbitrary real constant. From E@&) and (5)
the imaginary part of the complex functiaf(u,t) can be

expressed via its real part in terms of an integral opetator

The analytic functior¥X/dz and the complex velocity of the
fluid are complex conjugate functions M(t),

9 _
EX(z,t)=v(z,t), zeR(1). (17

. 2m u—w
)\(u,t)=Hg(u,t)=J g(w,t)cof(T dw+C. (6)
0
. o . _ Thusv(z,t) is an antianalytic function ifi(t), its real and
The time derivative of the functiod(u,t) is the bound-  imaginary parts satisfying the Cauchy—Riemann conditions
ary value of another analytic functiol,=dJ=(z,,t)/dt, with inverted signge.g., compared t¢12)]. The boundary

value of the analytic function_(z,t) at the pointu is

14 .
SrEUD=E6=E(e" )=V(u), (7) DD X 1 T "
u1 il == = I u1 il
where V(u,t) is the complex velocity of the point of the v(&l Iz|,_; u( ul

boundary contour with coordinate. This complex vector

can be expressed through its real componentsandV, , because the integral operatdris commutative with the dif-

ferential operatos/Jdu,

V(U,t):q‘VH(U,t)+eLVL(U,t). (8) 5 P
Here,e ande, are complex unit vectors, and the frame of ﬁl:ﬂlf(u,t)zﬂﬁllf(u,t)zﬂ\lfu. (19
reference is tied to the contogfu,t), see Fig. 1,

¢ ¢ p With the aid of Eq(9) we express the boundary value of
%:ﬁ’ e =i ﬁ £,=—¢&ut). (9)  the fluid velocity via its real components; andv, as
u u
ut),t)= ut)+e u,t), 20

The components of the complex velocity are readily ex- v(&u) ). Q|1.J||( Jeo, (U (20
pressed vig and its derivatives where the longitudinal componeuﬂ(u,t) equals

Vij(ut) =Re(ée) =& Rel&/£,), A0y (uH=Reep(1)=R |§u| = ): e

J— u u
Vo(ut)=Re(&e) = —|&[Reli & /&), (1) ‘

and the normal component (u,t) equals
In Eqs.(lO)—(_ll) and below, the bar denotes a complex con-

jugate valuez=x-—1iy.

On the complex plang=x+iy a potential flow of an
incompressible fluid in the domaine R(t) is described by
two real functions of complex argument; the velocity poten-B. Equation of motion for the fluid contour
tial ®(z,t) and the stream functio®(z,t),

v, (ut)=Re(ev(é,1)= (22

|§u|

In Sec. IIA, two complex functions have been intro-
b 90 b 00 duced at the point of the boundary cont@uwith coordinate
, U -—, (12) . . . . . .

ox ay y= ﬁy IX u: the velocity of motion of this pointy(u,t), and the fluid
velocity at this point,w(&(u,t),t). Generally, they are not
equal to each othetV(u,t)#v(&(u,t)). Indeed, the first
function characterizes the conformal mappigz,,t), and
the second one is the physical velocity. MoreoW,t) is
the boundary value of an analytic functi@y, whereas the
functionv(z,t) is antianalytic inf3(t). Nevertheless, in the
V2d=0, V?0=0. (13 reference framg9) tied to the contouk, the normal compo-

Ux=

wherev, andv, are, respectively, real and imaginary part of
the complex velocity of the fluidy =v,+iv,. The fluid is
incompressible Y¥-v=0) and irrotational ¥ Xv=0),
which implies that both functions satisfy the Laplace equa-
tion
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From Eg.(10), we find the longitudinal component of the

=V, (u,t). Therefore, the equation of motion for the contour velocity of the point with coordinata on the boundary con-

follows from (11) and (22):
i&) AW,
Re(— = ) (23
Sy |§u|2

The left-hand side of Eq23) is the real part of the boundary
value of a functiorg(zg,t), which is defined in the interior
of the unit circle,|zg| <1,

igt(uvt)
&u(uyt)

Since ¢(u,t) is the boundary value 0E(z,,t) on the unit
circle z;=¢€'Y, the following relations hold:

29(201t)|20:exp0u) . (24)

ft(uyt):Et(ZOat)|zO:exp0u)’ (25)
9z I

gu(uat):<__> :(izOEz )z =exp(u) * (26)
au dzy 7= explu) 0’ %0

In Eq. (26) the dependencey(u)=e', initially defined on
the unit circle boundaryzy|= 1, was analytically continued
in the interior of the unit circle, so thaty=|z,|€", and
dzgldu=iz, for |zo|<1. Thus we have

E(2o,1)
E20(201t) ’

1
9(Zo,t)=z—0>< |zol=<1 (27)
Obviously,g(zg,t) is not an analytic function in the interior
of the unit circle, since it has a pole1/z;, at the pointz,
=0 (note that=, #0 for |zo|<1). However, one can con-
struct an auxiliary functiorG(zq,t) that is analytic in the
unit circle

G(zo,t)= g—ziox lim (zo9) =9(2o, t)—(—), (28
ZO~>0 0
where
F(t)IM (29)
:zo(ZOat)lzozo

is a real-valued function, see below. Substitutipee'V, t)
expressed vi&(e'Y,t) into Eq.(23), we obtain

R |é—F(t)e '“) —F(t)cosu (30

u | u|2

Since the functiorG(zy,t) is analytic in the interior of the
unit circle |zg| <1, the imaginary part of its boundary value

can be recovered from its real part by applying the integraF

operatorﬂ to both sides of Eq(30),

(, & » ) AW,
Im|i——F(t)e ™ |=H —F(t)smu (31

|&ul?

Summing Egs(30) and(31), we obtain the equation for the
evolution of the functiorgf(u,t),

V(u,t)y=§&=

(32

& (H

| 5

tour &(u,t),

V=&l H (33

v,
PIE —2F(t)smu]
U

The denominator of the right-hand side of Eg9) is a
function of time

2 (20.0) ]z 0=F(1). (34)

This function could be found by integrating the function
Ezo(zo,t), which is analytic in the circlézo|<1, over the
contourzy=e'", using the mean-value theorem

f e Vdu.

(35

f(t)_ _f (ﬁ—«zo)zO exp(u)

If the contouré(u,t) is symmetrical with respect to the real
axis x, then

2

f(t)=% . [(Hs,)cosu—s,sinuldu. (36)

The numerator of the right-hand side of E&9) is the
velocity V(t) of the pointz,(t)=Z=(0t) representing the
image of the center of the unit circle,

d
Et(ZOytO)|zo=0: azc(t):\/c(t)- (37)
According to Eq(4), the easiest way to define the position of
the pointz. is the following:

Is(0t)+s(m,b)]. (38)

z(H)=
Equation (38) ensures that the point, always remains
within the domainfi(t), as long as it remains simply con-
nected. PostulatingB8), we fix the last free parameter of the
conformal mappingz=E(zy,t) [the other two have been
fixed by Eq.(4)]. The velocityV.(t) is found from Eq.(38),

V()=

For example, for a uniform distribution of the fluid velocity,
v(z,t)=vy, Wherev, is a real constant, Eq32) yields a
solutionV(u,t) =v, provided thatV.(t) is defined by(39);
ee Appendix A. Obviously, the functiorfgt), z.(t), and,
consequentlyV (t) andF(t)=V(t)/f(t) are real valued.

In order to reduce the number of parameters, we rewrite
the equation of motion for the fluid conto(82) in terms of
the functiong,(u,t),

%[Gt(o,t)+§t(77,t)]. (39)

dE, 9 Fei HW¥,
oyl SuH—D) PIE
Separating the real part of E10), we derive the equation
sought for

—2F(t)§usmu (40
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95 9 . Awv contour functionsg,(u,t) and ¥,(u,t). Evolution of this
—=—|s| A5——=—=—2F(t)sinu system satisfies the following conservation law:
u 2 2
ot  du si+(Hsy)
a H d ddz+ 3€ IDd 0 (48
+M. (41) dt Jo-¢ 2=¢P
sut(Hsy)

which ensures conservation of the total momentum of the
system, see Appendix B.

The perfectly conducting fluid approximation means that
the magnetic field does not penetrate into the plasma column,
and the electric current is concentrated in the infinitely thin

The partial time derivative of the contour functioh5)  skin layer adjacent to the boundary contdiu,t) with sur-

W (u,t) is expressed via the time derivative of the complexface densityd(u,t). Each wire carries N of the total cur-

The imaginary part o, A (u,t), is found from(6).

C. Equation for the velocity potential

velocity potentialX(z,t) on the boundary contouf(u,t), rentl(t), which is expressed by the normalization condition

i‘I’(u,t)=£Re{X(§(u,t),t]=£ +Re{% ‘7—1 2 _m

at at atl,_, iz, ot JO (uD]&u(u,t)|du= -~ (49
(42)

In the exterior vicinity of the contour, only the longitudinal

In the interior of the domai®i(t) the dynamics of the in- component of the magnetic field is induced by the electric
compressible inviscid fluid is described by the Bernoulli in- current

tegral
g a ) ) Bz, gy =8B (WD), z&R(r), (50)
PO+ §|v(2,t)|2+ ;P(z,t)=a(t), (43)  where
where P(z,t) is the pressure of the fluigy is the constant Bjj(u,t) = uod(u,t). (51

fluid density, anda(t) is some function of time. We can
express the time derivative of the velocity potential on th
boundary contour front43),

eThe sum of magnetic and hydrodynamic pressure should be
continuous through the thin skin layer, hence the fluid pres-
sure under the skin layer is determined by the local surface

oP 1 p current densit
i =a(t)—§(vﬁ+vi)—;, (44) Y
z=¢ 1 M
- 2 _ 70
where p(u,t)=P(&(u,t),t) is the fluid pressure on the p(“’t)_ZMOBH(“'U_?‘]Z(“’U' (52

boundary contoué(u,t). On the other hand, the second term
on the right-hand side of42) is a scalar product of two The procedure for calculating the distribution of current den-

complex vectorsy (¢(u,t),t) andV(u,t), sity J(u,t) for any given contou&(u,t) is described in the
X o& next section. . '
Re{— _} = vV +o,V, . (45  We have shpwn thatl the 2D dynamics of the wire plasma
9z 2=¢ ot in this model is described by two coupled 1D integro-

differential evolution equation$41) and (47). It must be
supplemented by the procedure of determining the distribu-
tion of current density on the surface of the plasma column

Substituting Eqs(44) and (45) into (42), we obtain an evo-
lution equation for the contour functiod (u,t),

A . Hw, ) self-consistently for its given position and the shape of its
ar - ab Y, HW—ZF(t)smu horizontal cross section.
Su Su Our approach has much in common with one developed
1 (Hq,u)z_q,ﬁ P in Ref. 19. Regularization of the singularity z=0 is done

5 2 a2 o (46)  differently here, which makes it possible for us to update the
sut(Hsy) p numerical solution for a longer time. The original formalism

The yet unknown function of timeg(t), vanishes from the ©f Ref. 19 would not be applicable here for a wire displace-

equation for the evolution of the derivativi¥,,(u,t), ment exceeding its initial diameter: the singularity would
R move through the boundary contour. The system of hydrody-
v, 4 0 HWY, 2F(t)sin namic equations derived in Ref. 19 contained three equa-

gt oul Y 95+(|:|€u)2 (t)sinu tions, with two of them being harmonically conjugated. For

this system, we were unable to obtain a stable numerical
solution even using a Lax—Friedrichs scheme with the high-
(47) est possible numerical dissipation. Such a system does not
seem to be similar to a hyperbolic system of conservation
Equationg41) and(47) form a closed system of integro- equations. On the other hand, our system of two equations
differential equations, which describe the evolution of the(41) and(47) has two characteristic velociti¢Alfven veloc-

+1<H~Pu>2—WE p
2 g5"—(H9u)2 p.
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ity with positive and negative sighsand in this sense re- L A(t)
sembles a hyperbolic system. Its numerical integration is suf- =17~ (58)
ficiently simple.

Some mathematical methods developed for the study dpirect calculation of the energy integral gives

=<

interfacial hydrodynamic instabiliti€Swere used in the deri- 1 1(1A)2

vations presented in the Appendixes. W=-—| B?dv=2 , (59
2!“’0 2 L

IIl. MAGNETOSTATICS which illustrates that the inductance is positive defiffte.

This is readily generalized for a system of parallel straight
conductors inside the same return current can. Then instead

of Eq. (58) we obtain
The results of Sec. Il apply to an arbitrary 2D potential

motion of a perfectly conducting, incompressible fluid. Here
we use theNth order rotational Symmetry to find the distri- (Here and beIOW summation over repeated indices is im-
bution of current on the surface of each plasma column, anﬁhed) The inductance matrik j, is symmetric and positive

hence, the magnetic pressure that drives the implosion.  definite?? Such a matrix can always be inverted, and effi-

The magnetic fieldB is expressed via the vector poten- cient numerical methods for its inversion are available.
tial A,

B=VXA, V-A=0. (53

sistatic(in our particular case, magnetostagipproximation: ~ ¢a"

A. Equation and boundary conditions for the
magnetic vector potential

from the Maxwell equatiorV X B= uJ, in vacuum, where Introduce an elementary curreéi,(u,t) flowing in the
there is no current density, ar{i3), we find that the mag- interval [u— su/2,u+ 6u/2] of the contouré,(u,t). Due to
netic vector potential satisfies the Laplace equation: the rotational symmetrysl ,(u,t)=4l(u,t) (recall that the

V2A=0. (54) subscript referring to the first contour is omitiedhe cur-

rent filamentsl, generates the magnetic vector potential sat-
If the current density) is directed along the wires, as is the jsfying the boundary conditionsA,(z,t)=0 at the return
case for a wire array without axial magnetic field, then thecyrrent can|z=R

vector potential has only one nonzero component in the same

direction,A(z,t), where, as aboveg=x+iy. The magnetic _ _ Mo er_gnz
field B=Bye, + Bye,, where OAn=Re(8Yn)= 5 dlnRe Ing " =5
B, and B—— 2 (55) Cwo . IRP-E
= an = — —, 0 nZ
X~ YT T ax =—d8l In0—— 61
Y 27" "R (60

The current density is assumed below to be composed
a large number of discrete thin current filaments. Therefore
A(z,t) is a real part of an analytic function with a large
number of logarithmic singularities located at the positions
of the current filaments.

The wire array is enclosed in a cylindrical, perfectly con-
ducting return current can, whose radiusRis. The vector

ci—|ere the magnetic vector potential generated by a single
élementary filament is presented as a real part of a function
S8Y, which is analytic in the exterior of the conducting con-
tour &,(u,t). This feature of Eq(61) helps in summation of
the corresponding contributions from all the other wires in
the array. Taking into account that

N

potential of the return current can is assumed zero. The value n-1
of the vector potential at the surface of the plasma columns, Hl z—¢ ex;{ 2i T) =z2N-&N, (62
A(&,t)=A(t) has a clear physical meaning, B
we obtain
=f B-dS=—IJ%dr=|A(t) (56) N =

’ n SA(ZD= sA=L04 |n|Rr2N_i)N| 63)
and s " 2w RN[ZN-¢gN|

d B 3 For large number of wires, the inequalityé[/R,)N<1 is

a¢_ ! aA(t)_ — | [VXE]-dS=U, (57 satisfied, so that Eq63) reduces to

wheredg is the magnetic flux, is the length of the wire array, 140 :

U is the voltage applied to it. The integration contour in Egs. ~ 9A(z0) =546l In ——. (64)

(56) and (57) consists of two parallel straight lines, one on |27 &

the plasma column surface, another on the return current carhis approximation can be used if the plasma column is not
surface. For a single conductor carrying a curreimiside a  too close to the return current can.

return current can, the inductance per unit length is defined The vector potentiaA given by(63) is the real part of

as an analytic functiorsY. Equation(63) could be used to de-
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termine the distribution of return current density on the carthe denominator becomé&RY *R,,RMN. Thus we obtain the
surface,J;(¢,t), wheree is the coordinate on this surface: well-known Russell's formuf@ for the inductance of a

z=R,e'?, single wire array
1 0 1 9 ol R 1 R 1 { (RC)ZN]
= —S5A= — L=-—|Ing+cint5+<SIn1—| 5 . (70
83, o o SA R &@lm((sv) 27| "R, TN"NR, TN R, (70
NS R2N_ | ¢[2N (It should be noted that a version of this formula presented in
=~ o ;1 _ 5 (65) Ref. 24 contains a typographical error reproduced later by
TR |RP— &N exp(—iNg)| some other authors: instead of the radius of the wire, the

second term in square brackets contains the wire diarheter.

Th i f th . .
e average density of the return currer(s);) The correction of order ofR./R,)?N was taken into account

=—N5l/(27R,) corresponds to the total return current in Ref. 18. In most cases. it is verv small
—Nl, which fully balances the elementary currents of all N ' Y ’

, . . . Now consider a nested wire array, a load configuration
wires, as it should. The return current density varies between ... ) .
o : N Initially suggested in Ref. 8 and then used in Refs. 1 and 16
the minimum and maximum values equal {@J;)(R,

and many other experiments. Here we consider two concen-
—[EMIRN+[EM) and (83 (RN +[€M/(RY -]V, re- y b

spectively, wherer=|¢| correspond to the center-of-mass tric rows each containiny wires located at the radi.; and
P Y. P R.», where subscripts 1 and 2 refer to the outer and inner

posmqn of thg wires. Th_e. maximums are located exaCtlyarrays, respectively. Denote the complex coordinates of the

opposite the wires, the minimums are located between ther?i‘rst wires in each array by, and£,, respectivel

Variation of the return current density is negligible provided y by, 2 P Y.

that (£]/R,)N<1, i.e., when the approximatici#4) applies. £ =R+ Ryjexpliu), j=1,2. (72)
The total contribution to the vector potential from all the

contour currents could be found from integrati(@B) over

the coordinatay,

Vector potential of the global magnetic field in the case
of nested wire array configuration is a sum of contributions
from the two arrays

27 RN - (2" -
A(Z,t)= 5_0 ‘J|§u||n| ';\‘ N o |du. (66) A(Zat)_Al(Zat)+A2(Zat)a (72)
o Rr|z"—¢" where
Substitution of(66) into the boundary condition for the mag- o |R2N_(EZ)N|
netic vector potential on the plasma colurAiié,t) = A(t) Aj(zt)= ﬂf ‘]j|§ju||nrN—JNdu- (73
yields the integral equation 2m RN =&
o RN _[E(u.t HIV Since both arrays are connected to the same electrodes,
A(t)= Ho J|§u||n| L [£(u.DEw.D]] u (67 the magnetic vector potential has the same value for all the
2mJo RN &(w,n)N=&(u,H)M| wires,
which holds for anyw between 0 and 2. Solving (67) for A(g D=A;()=A(), j=1.2 (74

the current densityd(u,t) and applying the normalization
condition (49), we find both the distribution of the current
density and the inductance from E&8). The return current

densityJ,(¢,t) is expressed as

This condition allows one to find the distribution of currént
between the inner and the outer components of the nested
array, |+ 1,=1. Applying the thin-wire approximation to
both arrays(i.e., assumingR,,j<Rq., j.k=1,2, andJ;|&;,|

N (2r J|E(RN=|¢|2Ny =1;/2mN), one can present the system of E60) in a ma-
Ji(p,t)=— Zerf (68) trix form

u.
o |RY—&Nexp(—iNg)|?
- - - I
equ:ejJ Udt=8IA=220 0y, j k=12, (79
C. Thin-wire approximation for single and nested 2m

arrays ~ . . o
4 Wheree]:(b is the unit column andl ;c are the elements of

Before describing a general method that we use for solvthe dimensionless inductance matrix
ing the integral equatio(67), consider an important approxi-
mation which assumes the current to be uniformly distrib- ﬁ--zln&+ iln
uted over the surface of a thin cylindrical conductor whose R N
radius isR,, i.e.,

Rej
NRy;

2N
Ry

2N
I:zr

1

. ~ 1 RMN-RYR} (70

E=R.+R,expiu) (69 Lo=mln—— K
KTN RN|RN__RN '

and J|&,|=1/2nN. Here, R, is the distance from the wire riel ek

axis to the axis of symmetry of the array. The thin-wire ap-Here, the diagonal elements of the matrix are self-

proximation is valid ifR,<R./N, R,—R.. Then, of course, inductances of the component arrays, and the off-diagonal

R,<R., hence the numerator of argument of logarithmicterm is the mutual inductandén this case of a 22 matrix,

function in Eq.(67) is approximated byR?N— RN, whereas  the mutual inductance Is,,=L,;). The inductance matrix is
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symmetrlc and positive definifé, thus the inverted matrix l,71 Thin wires L /Lo

L ! always exists. Presenting the normalization condition ing 2 approximation Exact solution —0.9
a vector form

I=1,8=11+1,, (77
we obtain a general solution of Eq§5) and(77),
0.1
2w -
l=—- ol le g (78
The total inductance is
I 1
R . 79 00 | T T 0.6
S 2wl N10 20 30 40 50 60
and combining this witi{78), we find FIG. 2. Fraction of current in the inner arrdy/l and normalized induc-
tance of the nested arrdy/L, (Lo= uol/27) vs number of wires in both
NP arrays N, for R, /R;;=2, R.1 /R.,=2, R.1 IR,1 =R, /R, ,=64. Lines rep-
ij € resent exact values found numerically, symbols—the thin-wire approxima-
=1 . (80 fion,
eijk ej
All the derivations for the nested arrays were performed 1 R
in a general vector form, and therefore are valid for any =
amount of wires in arrays consistent with tNeh order ro- |_2= N1~ NiRw; 83)
tational symmetry(for instanceN wires in the inner an@N I R 1 Rc1 1 Rer
wire in the outer array I”R_cz + N_llanRwl + N_zlnNszz

For an important  particular case  when , . .
(R /RN, (Rea/R)N<1 we can further simplify(76) to According to(81), the numerator of the right-hand side of
give (83 is the excess of the self-inductance of the outer array

over the self-inductance of a perfectly conducting shell of the
Re1 . R, 1 Re2 same radiuf.; . A perfectly conducting shell would provide
Li=Ing—+ —Ine——, Lyp=Ing—+=In ) a perfect screenind,= 0. Equation(83) also implies that a
R Ny NiRy1’ Reo N NoRyo ; . ) ; .
perfect screening—no current in the inner array—is achieved

A . R (81) when the argument of the logarithm is unity, i.e., the gap-to-
L12=L21=In—r. diameter ratio is
Rea
"
In the thin-wire approximation, Eq81) is valid under above D_g =m, (84)

assumptions for arbitrary numbers of wiftdg andN, in the i

component arrays. The self-inductance for each of them iwhererq=2mR;/N; is the gap between the centers of the
given by the Russell's formula. The mutual inductance in thisheighboring wiresD,,; = 2R, is the outer wire diameter. In
approximation simply equals a self-inductance of a conductfact, the current in the inner array does not vanish v
ing shell whose radius equals the radius of the outer arrays satisfied, see below. Rather, £f4) indicates the gap-to-
Physically, this is quite clear: the outer array generates théliameter ratio below which the thin-wire approximation is
same magnetic flux in the contour formed by the inner array?© longer valid. For typical experimental conditions of, say,
and the return current can as a conducting shell of the sanfdef. 1 N1 =240,N,=120,R;; =2 cm,R;;=1 cm,R,,; and

radiusR,; would. Rw. varied between 20 and 5@m), the current fraction in
For a two-component nested wire array, the solutiondhe inner array varies between 0.8% and 0.3%. Our explicit
(79) and (80) could be presented in a scalar form expressions for self- and mutual inductance of single and

nested wire arrays can help in obtaining a simple zero-
dimensional(0OD) description of their implosion dynamics,
see Appendix C.
Figure 2 compares the current fraction in the inner array
o o (82 and the total induction found using the thin-wire approxima-
. Loo— Ly - Liz— L tion and with the aid of Eq(74) solved exactly, as described
Yot l,-20y, 7 Lpytla-20, in the next section. HerR, /R;;=2, Re1 /Rez=2, Ry /Run
=R:,/R,»=64, and the number of wires in both arrays,
Using the approximatiof81) for the self- and mutual induc- N;=N,=N is varied. The conditior{84) corresponds tiN
tance, one determines the fraction of the total current flowing=64. We see thai83) is a good approximation fdr, /I up to
in the inner array to be N~50. For larger number of wires, this approximation

_,U«_o| |:11|:22_ |A—§2
27 L+ Lpp—204,
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breaks down for the obvious reason: distribution of the cur- | Lilé_
rent density on the surface of a conducting plasma column Ik:N = 1_11 . (89
cannot be assumed uniform when the distance between the eijk €

neighboring columns is comparable to the column diameter. Using the formulag86)—(88) and (89), the distribution

NoiEhat the_ expression foring total ||_1duc_tanoeema|ns a  of the current density on the surface of a conductor with
good apprOX|mat|o.n even when the thin-wire apprOx'mat'onarbitrary shape of its cross section can be calculated numeri-
becomes formally invalid. cally. In the plasma dynamics problem described in Sec. I,
D. Arbitrary shape of the boundary contour: the cross section is represented by a given congbuit) on
Distribution of current in discrete filaments a complex plane. We can thus find the fluid pressure in Eq.
(52) p=px=p(ug,t) for the given complex coordinate

The technique described in Sec. Il C allows us to de
'qu ! ! ws U (t) = &(uy ,t) of a boundary contour,

velop a general method of calculating the current densit;fk
distribution on the surface of a conductor with arbitrary 2
: - : - Mo Mo ik 1

shape of its cross section. For this, we approximate the con- p(u,,t)=—="J2(uy,t)= — .
ducting surface with a large number of thin current filaments 2 2 (Au)? [£,(ug,b)]?
and treat these filaments as separate wires connected in par
allel to the same electrodes. Therefore, all these filaments are
at the same vector potential. Assuming the radii of these
filaments much less than the cross-sectional dimension of the
plasma columnR,,, one can use the symmetrical, positive— IV. DYNAMICS OF A SINGLE WIRE ARRAY IMPLOSION
definite inductance matrix derived above in the thin-wire ap-

proximation to determine the distribution of the current be- , e
contour functionsé,(u,t) and ¥ ,(u,t). Numerical integra-

tween the filaments. , ) .
Here we describe this calculation for a single wire arraytIon of Egs. (41) and (47) is performed using a space-

(it is readily generalized for a nested wire aayhe inter- centered explicit predictor—correctorALax—Wendroff scheme
val [0,27r] for the variableu is split into a large numbe ~ Of second order. The integral operatdris calculated using
>1 of subintervals[u,—(1/2)Au,u,+(1/2)Au], where the algorithm of fast Fourier transforfsee Appendix D for
Au=2m/K. It is assumed that the complex coordinate of thedetails.

middle point of thekth subintervalg,(t) = &(uy,t) defines The wire array is characterized by its effective radius
the position of thekth filament, which carries a curreht ~ Re(t) [associated with the position of the pomn{(t) intro-
=J(u,t)|&Au, and its effective radius isq, duced by Eq(38)] the average radiug,(t) of the conduct-

= (1/2)| &/ Au<R,,. Thus the solutior{75) obtained in the INg contouré(u,t) representing the cross section of a plasma
thin-wire approximation, remains valid, column, the numbeN of wires in the array, and the radits

of the return current can. The initial shape of the domain
M(t=0) is a circle with the radiu®,(0), whose center is
on the real axis at=R;(0). Ourmodel equations could be
coupled to an arbitrary circuit equation, but here we assume
the current driver to be sufficiently stiff, so that the current

ductance matrix is similar t676), but its elements now refer wave form is independent from the implosion dynamics and
to the current filaments on the surface of a single plasm%omd be presented as

column rather than to the inner and outer components of a

(90

is closes the MHD model presented in this paper.

We apply dicretization to both argumenisandt of the

A Mol - .
ej(ﬁ:ele:%L]‘klk, j,k=1,...,K, (85)

whereéj is now a unit column containing rows. The in-

nested wire array, ) at
[(t)=I maxsmz(TK) . (91)
LN R | &l &[N ma
Lij=N n@Jr n Ng; 1= W ' This approximation is good for the experiments on the
B (8  MAGPIE facility in the Imperial College#~1® for MAGPIE,
R |Rr2N—(§k§j)N| . | max Varies between 1 and 1.4 MA, ang,, is about 240 ns.
k=In—w—n— 17k We choose the initial parameters closeliat not exactly the
Rel&]— &l same apthose of thevaGPIE experiments. The initial radius
The normalization conditiofi77) becomes of the wire array is taken to bR.(0)=8 mm, the radius of
. the plasma corona after the explosion of adfm Al wire
Nle=1. (87) R, (0)=125 um, t,.is taken between 250 and 300 ns, the

number of wires in the array is varied from 8 to 64. The

radius of the cylindrical return current caR,=10 mm, is

intentionally taken much less than that of the return current

ol 1 structure ofMAGPIE (4 to 8 posts at about 75 mm from the

= (88) axis). The corresponding ratio that we have chosen,
R, /R.(0)=1.25, is more typical for Z" and other

and the current in each filament is given by a formula similamulti-MA generators, which are softer thamagrie and

to (80), thereby require low-inductance loads. Proximity of the return

The total inductance of thid-wire array is given by an equa-
tion similar to(79),

TN &,
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0 2 4 6 8 10 N ) ]

X, mm FIG. 5. Same as in Fig. 3 for a 64-wire array wik,(0)=125 um,

R.(0)=8 mm,R,=10 mm.
FIG. 3. Magnetic force lines for a 8-wire array witR,(0)=125 um,
R.(0)=8 mm, R, =10 mm, at early timg¢— +0, before the motion and

deformation of the array started. Bold lines show the conducting contours ic field i ffectivel d f .
&1,&,.&5 and the return current can. magnetlc e Is effective y Screene rom penetratlon

through the gaps between the plasma columns. In this case
most of the current flows through the outer area of the con-
current structure to the imploded wire array can make thejucting surface(Fig. 6): J(7)/J(0)=12%, and, conse-
nonuniformity of the return current an issue, which we arequently, p(7)/p(0)=1.4%.
going to address below. Figure 7 shows that the distribution of the current den-
The main parameter determining the configuration ofsity J,(¢) on the return current can surface is not uniform
magnetic field in the wire array is the gap-to-diameter ratiodue to proximity of the plasma columns to the can wall. The
7R(0)/NR,(0), cf. Eq. (84). If N=8 this parameter is function J,(¢) has N maximums ate=2m(n—1)/N, n
large enough, about 25. In this case, as shown in Fig. 3, &1,...N, just opposite to the plasma columns. If the return
substantial part of the magnetic flux penetrates the interwirgurrent radius is increased to 20 mm, then the distribution of
gaps towards the axis of the array. Figure 4 shows that thghe return current becomes almost uniform, whereas the dis-
current density tends to be concentrated on the outer part efibution of current density on the plasma surface would re-
the plasma column surfacéseaking atu=0), although its  main virtually unchanged.
distribution is close to uniform3()/J(0)~80%. The periodic pressure functign(u,t) shown in Figs. 4
In the other limitN=64 (Fig. 5 the neighboring con- and 6 is expanded into the Fourier series
ducting contours are closerR.(0)/NR,(0)=, and the 0(U,1) = Po(t) + Po(t) COSU+ Pa(t)COS Aut - - 92
The first term in the expansiof®2), py(t) describes a uni-
I, P/py form pressure distribution. This corresponds to the contribu-

1.2 J(w.l) —1.3 tion to the pressure provided by the “private” magnetic filed
~ _—— p(u,t) -~
JW, p/p,
25— ... Juy —5
4 - _—— plut) B

08 1 ‘ I | ) I 1 07
0.0 0.5 1.0 1.5 2.0
u/m

FIG. 4. Relative variation of the current densityu,t) and fluid pressure L.
p(u,t) normalized taly=1(t)/27NR, andp0=,u0JS/2, respectively, vsthe (.0 I I T = “r 0
contour parameteu, for the conditions of Fig. 3. The derivativp,
=dpldu is also shown in arbitrary units with its zero level marked by the 0.0 0.5 1.0 1.5 2.0
dashed—dotted line. The positions definedias) andu= 7r correspond to u/

points of the contour, which are farthest from and closest to the axis, respec-

tively (cf. Fig. 1. FIG. 6. Same as in Fig. 4, for the conditions of Fig. 5.
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JH, R,=10mm R, =20 mm J, /<d,> I(t), MA Rg(t), mm V,(t), mm/ns
1.2 S ; —1.6 10 8~ —— — —0.3
i | 6
—1.3 1 —0.2
i 05— 4— -
—1.0 } —0.1
= - 2._.
07 00_ 0 ll’l‘l’lllll'llll‘[llllll'll 00
0.0 0.5 1.0 1.5 2.0 0 50 100 150 200 250
u/m, N/t t, ns

FIG. 7. Relative variation of the current densityu,t), normalized as in  F|G. 8. Implosion dynamics of a wire array whose initial configuration is

Fig. 4, and of the return current density(¢,t) [normalized with respect to  shown in Fig. 3: the average radius of the arRayt), the implosion veloc-
(Jy=1(t)/2R,], for the conditions of Fig. 3, and the same for the radius ity V (t)=|R (t)] and the current wave fort(t).
of return current camR, =20 mm. ¢ ¢

mation of the boundary contours becomes noticeablg.at

of the individual wire, which would result in its pinching ifit ~1-2 mm. At this point the gap-to-diameter ratio is about 2,

were compressible. Obviously, this component does noimd,the magnetic field cqnfiguration is similar to one shown

change the shape of the boundary contour and causes HbFI9: 5- However, the wire plasmas by this moment already

acceleration of the plasma column. have a high inward radial velocity, and the shell formation is
The second ternmp,(t)cosu, is due to the force that is only completed wherlRCmO_.S mm. .

responsible for the implosion of the wire array. This force is. In the case of a 64-wire array, .the tidal force plgys an

caused by the interaction of the surface current with the gloiMpPortant role from the very beginning,(0)=0.36. Fig-

bal magnetic field and accelerates each wire towards the axi4€ 10 demonstrates that the column cross sections are al-
of the array[at all time, p;(t)>0] without affecting its 'cady substantially deformed at the moment ,,,/4, when
cross-sectional shape. the columns have barely moved from their initial positions

The third componentp,(t)cos 21, approximates the in- toward the axis of the array. The distributions of current den-

teraction between the surface current in the neighboring
plasma columns by a local tidal force. This force deforms the y, mm
boundary contoué(u,t), squeezing it along the realaxis

and expanding it along the imaginayyaxis, without accel- 1.5
erating the plasma column as a whole. The tidal force causes '\
the plasma columns to merge, to form a uniform shell during T
the implosion of the array. 1 )

Thus, dynamics of the plasma columns is defined by a 1
competition between the implosion and tidal forces. The 1.0 —
relative role of the tidal force could be estimated by the .
variable p,4(t) = p,(t)/p1(t). This parameter is mostly af- -
fected by the gap-to-diameter ratioR.(t)/NR,(t) during i
the implosion. i

We simulated the implosion of an 8-wire array, taking 0 5_>
I max=1 MA andt,,,=310 ns in Eq(91). At the initial mo- '
mentp,4(0)=0.04, and the implosion force dominates over
the tidal force responsible for the annular shell formation. At
the early stage of implosion, the plasma columns retain their
initial circular shapes as they accelerate towards the axis.
The functionR,(t) shown in Fig. 8 reproduces the well- 0.0 e  LANLAL A H S m s |
known 0D solution[cf. Appendix C, Eq.(C2)] for the im- 0.0 0.5 1.0 1.5
plosion of a thin conducting shell driven by a curréat). X, mm

At the later stage of the implosion, as the gap_tO_FIG. 9. Cross sections of the plasma colungpsé,, andé; at the instants

diameter ratio 77'Rc(t)”\l_Rw(t) d.ecreases, the tidal force whenR,(t) =1.2 mm(dashed lingsand 0.5 mm(solid lineg for the implo-
gradually becomes dominant. Figure 9 shows that the defosion whose time history is shown on Fig. 8.
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y, mm ’ the plasma inward. It is well known, however, that the ex-

2.0 ploded wire plasma is highly nonhomogeneous. As predicted

. in Ref. 25 and confirmed in later studiésee Ref. 10 and

N references thereinelectrical explosion of a solid wire pro-

] ( \ duces a plasma column, which contains high-density core

1.5— < and low-density corona regions, with the skin depth compa-
rable to the thickness of the corona. Assuming the corona

1 thickness at early time much less than the core diameter, we

can roughly estimate the longitudinal component of 38

1.0— acting on some parts of the coronal plasma by

] () e;-[IJXB]=xJ(u t)iB (u t)oci (ut)y= (93
. \ % I 8 g DI D 5y PUUD=Py-

0.5 Qualitative profiles of the derivativp, are shown in Figs. 4
- and 6. This function is zero at=0 andu= 7 and has two
7 maximums neau= /2 andu= 3/2. At both maximums of
] [\T p, the longitudinal component of th#&XB force is directed
0.0 | T /I ] I\ : to the axis of the wire array. Since the density of coronal
plasma is much lower than the core density, and it is free to
7.0 7.8 xsrhom 8.5 9.0 move away from the core, such a force configuration would
' produce precursor jets streaming to the pinch #§How-
FIG. 10. Early-time implosion dynamics of a wire array whose initial con- ever, neither the process of generation nor the dynamics of

figuration is shown in Fig. 5. Solid lines show the cross sections of theihage jets could be treated in the incompressible fluid ap-
plasma columng;, &, and ¢; at t=t.,/4; dashed lines refer to their proximation

initial shapes and positions &t 0.

V. CONCLUSION
sity and pressure at this moment shown in Fig. 11 are very The implosion d . £ Wi h
close to the step functions characteristic of an annular shell € Implosion cynamics of wire arrays on the, ) .
implosion. plane has been studied with the aid of a perfectly conducting,

Our analysis demonstrated a competition between thg(_:ompkr)es;sr;ble fluid t_r?odebl. tThe mplo_smln qunamlcs IS
imploding force, making the array implode as a set of indi- riven Ly the competition between the Implosion pressure,
which makes the array converge to the axis as a set of indi-

vidual wires, and the tidal force making the wires merge into™" )
an annular shell. Formation of precursor plasma stream%'dual plasma columns, and the tidal pressure that makes the

flowing to the axis ahead of the main plasma mass is no‘f\'ires Merge, forming an annulgr conducting shell. The rgla—
described by the present model. The reason for this is seébH’e roles of the implosion and tidal pressure are determined

from Eq. (50): only the normal component of thEXB force y the gap-to-diameter ratioR.(t)/NR,(1). If this ratio is

acts on the boundary surface of the plasma column, pUShin@gglfsataenadrht/h“emstuhslzéﬁ’;’v?:rrr]ntlzz tg”\;gﬁ;ﬂﬁﬁ:gﬁg@”

implodes as a set of individual plasma columns. In the op-
J/ p/p posite_ Iimi_t, when thi_s ra_tio i_s about or_Iess at early 'Fim_e,

0 0 the thin-wire approximation is not applicable—the distribu-
—3.0 tion of current over the plasma surface is very nonuniform,
i peaked at the outer side. Then the tidal forces prevail in the
- early-time dynamics, and the plasma columns tend to form a
B shell-like configuration before they start converging to the
__2-0 axis of the array.

The approximation of perfectly conducting incompress-
ible fluid does not describe the precursor plasma jets that
stream to the axis ahead of the heavier wire cores. These are

__1'0 driven by the longitudinal component of thEXB force,
5 which we were able to estimate. This force peaks at the sides
- of the plasma columns and is directed to the axis of the array.
I 0.0 To describe the jet formation on the, ) plane, one there-
’ fore needs adequate models of the plasma conductivity and
0.0 0.5 1.0 1.5 2.0

its equation of state.

u/T Our model, being admittedly simplified, has the advan-
FIG. 11. Relative variation of the current densitfu,t) and fluid pressure tages of phy3|cal transparence and numerical eff|C|ency. It
p(u,t) normalized as in Fig. 4, for the contours shown by the solid lines inCOUld be used to benchmark the_ MHD hydrogodes on the
Fig. 10. (r, ) plane, where no exact solutions were available for this
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purpose until now. This model could also be applied to some  Obviously,
other problems of relevance for the inertial confinement fu- o
sion. For instance, it could be used for modeling the nonlin- a(t)J &,du=a(t) 35 dz=0 (B3)
ear stages of Rayleigh—Taylor and Richtmyer—Meshkov in- 0 z=¢
stabilities, where it might have some advantages over thgnq
existing analytical and semianalytical approacte=e Refs. -
26 and references thergin (P,—iAP)? | oX(2) ? —

u | = =h@@blz B4
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APPENDIX A: A PARTICULAR SOLUTION OF THE Therefore Eq(48) holds during the evolution of the system
EQUATION OF MOTION FOR THE CONTOUR; described by Eq941) and (47).

UNIFORM VELOCITY

Complex velocity potentiaK(z,t)=zv,, wherevg is a
real constant, corresponds to a uniform distribution of theAPPENDIX C: DYNAMICS OF SINGLE AND NESTED
fluid velocity:v(z,t)=v,. In this case the boundary valde ~ WIRE ARRAYS IN A THIN-WIRE APPROXIMATION

of the velocity potentiatb(z,t)=vqRe(2) is . .
yP (z)=voRe@ Our expressions for self- and mutual inductance lead to a

Y(ut)=voRegE(u,t)], Wy=voREE,]. (Al)  simple OD description of the implosion dynamics in a thin-

Substituting the above distribution &, into Eq. (32), wire approximation. Equations of motion are derived from a
Lagrangian, which for a single wire array has the form

we obtain
“ m. L(R
v lm(i) L=K-U= R+ (2°)|2. (CD
&2 T &)

R (A2) Here,mis the mass of the arraif is its kinetic energylJ is
|:|H_‘I’u_ Re(i) N ﬂsinu the potential or free energy given by the formula
&2 M N T ' =—LI%72 from Ref. 22. Substituting the Russell formula
(70) into the Lagrange equatiord{dt) (d£/IR.) = LI IR,
we obtain the well-known 0D equation of motion

2¢&, .
V(u,t)=¢&=vo+ f(—gt)[vo—vc(t)]smu.
12 oL _ kol(N-1)

If the functionV,(t) satisfies(39), mi&\’czg R, 4nNR, 2 (C2
st =s(mt)=vo, Ve(t)=vo. (A3) (the current! is treated here as an independent varigble
ThusV(u,t)=v, for any shape of the boundary contour Equatior](CZ) says that each wire is pushed to the axis by
&(u,t). the Ampee force due to the interaction of its currehtN,
with the azimuthal magnetic field produced by the remaining
APPENDIX B: INTEGRAL OF MOTION N—1 wires. Note that the radial acceleration of the wires is
o _ given by (C2) even if the wires are not distributed equidis-
Let us calculate the following integral: tantly on a circle whose radius R .
d P For a nested wire array, the corresponding Lagrangian is
szjg <I>dz+§ ;dz L(Rut.Rey)
z=¢ z=¢ my . m;. cl:¢c2
L= 7R(2:1+ 7R§2+ le
d (2= fZ*n'p q
= — + —
dt 0 q,§Udu 0 pgu u ml.z m2.2 ,LLol ~ 2
) = 7Rcl+ 7Rc2+ E[Lll( Re1)l1
ng<w+p) v, d (B1)
= —+—| - u. - S
o [\t p v +2L 1Rt ,Re) 1112+ g Reo)1 5], (C3

Substituting Eqs(32) and(46) into (B1), we obtain that wherem,; andm, are the masses of the two components of
ol (¥ —ifW,)? the wire array, and its in_ductance is giv_en by E@;L) and
P:f a(t)— U u ] Ldu B2) (82 Inthe “transparent inner” mode of interactidr;*®the
0 2|&,)? imploding outer array 1 can penetrate inside the inner array
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2, and their respective roles will then be reversed. To take *

this into account, we generalize the expressi®i) for the ¥(u,t)= E [ay(t)cosku+b,(t)sinku], (D4)

mutual inductance, k=0

A A R, where

L1aRe1,Re2) =L21(Re1,Rep) =In——o—5—. (C4) o
MaXRe1:Re2) a(t)= if W (w,t)cog kw)dw,

The equations of motion derived frofeC3) with the aid of mJo

(81), (82), (C4) are 1 (2n (D5)

b (t)= p . W (w,t)sin(kw)dw,

. /Lol 2 Jd
MR =27 3R
m cl one can obtain the following definition of the integral opera-
Mo' j2u Il 4211 L1z tor H:
T 4w\ YoR,  TY20Ry, *
W(u,t)= >, [ax(t)sinku—by(t)cosku]
_ Holl 1 (N1_1)|1+2| o(R.—R k=0
_ 47TRC1 Nl 2 ( 1 2) ’ 1 (2a -
(Ch =—f W(w,t)| >, sink(u—w)|dw (D6)
. ol , 9 mJo k=1
MR =2 T oR
m c2 is equivalent to its original definitiof6). Indeed,
Mo' Lo, L1, 1 (2n
- |2(9R 2|1|2E) A¥(ut)=—] ¥(w)im 2 eki=W idw
0
moll 2 | (N2=1)1, i(u—w)
- - +2|10(R2_Rl) y _ 1 2m e
47TRC2 N2 —; 0 ‘P(W,t)lm l_ei(U_W) dW
where 6(z) is the Heaviside step function. Equatioft5)
demonstrate that the inner array is imploded by its own cur- 1 2”\1} u—w q D7
rent, whereas the outer array is additionally pushed to the T o 0 (w,t)co 2 W (D7)
axis by the interaction of its current with the azimuthal mag- ]
netic field generated by the current in the inner array. Comparing Eqs(D4) and(D6), we see that the operator

H applied to a Fourier-series expansion of a real-valued
function, changes the basis of the Fourier representation as
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