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A two-parameter family of exact axially symmetric solutions of the Navier-Stokes equations for
vortices contained within conical boundaries is found. The solutions depend upon the same
similarity variable, equivalent to the polar angle ¢ measured from the symmetry axis, as flows
previously discussed by Long and by Serrin, but are distinct from the cases they treated. The
conical bounding stream surfaces of the present solution can be located at any angle ¢ = ¢,, where
0 < ¢, < 7. The flows in all of these cases, when solutions exist, are finite everywhere except at the
cone vertex which is a source of axial momentum, but not of volume. Solutions are of three types,
flow may be (a) towards the vertex on the axis and away from the vertex at the conical boundary,
(b) towards the vertex both on the axis and at the cone, or (c) away from the vertex on the axis and
towards it at the bounding cone. In the first and second case, strong shear layers form on the cone
walls for high Reynolds numbers. In case (c), a region of strong axial shear and strong axial
vorticity forms near the axis, even for low Reynolds numbers. The qualitative nature of the
possible solutions is deduced, using methods of argument due to Serrin, and examples of flows are
numerically computed for cone half-angles of 7/4, /2 (flows above the plane z = 0), and 37/4.
Regions of the parameter space where solutions are proven not to exist are given for the cone half-

Conical vortices: A class of exact solutions of the Navier-Stokes equations®

angles given above, as well as regions where solutions are proven to exist.

I. INTRODUCTION

Known exact solutions of the Navier-Stokes equations
representing steady axially symmetric flows with swirl fall
into three classes. One class constitutes those solutions for
which radial component u and the azimuthal component v of
the velocity vector expressed in cylindrical (r,6,z) coordi-
nates are allowed to depend only upon r (time dependence
may also be permitted). This class has been explored by Don-
aldson and Sullivan'; special cases had been discovered ear-
lier by Burgers” and by Rott,® and has been further consi-
dered by Bellamy-Knights.** A second interesting class, not
in similarity form, represents vortices with arbitrary stream
surfaces for which the azimuthal velocity v = Ar~ 'y, and
the azimuthal vorticity { = Av, where A is a constant and # is
the Stokes stream function. The swirl components of these
flows, which were discovered by Trkal® (cf. Berker’) decay
like exp( — vA 27), where v is the kinematic viscosity, and the
asymptotic states are axially symmetric irrotational flows.
The third class of exact solutions is that considered here, the
“conical” vortices.

It is easy to show (see Sec. II) that solutions of the coni-
cal form are the only similarity solutions allowing the azi-
muthal velocity to vary along the axis of symmetry. This

* This paper is an amalgamation of two independent efforts. The first, by
Yih and Wu, dealt with flows above a plane surface, and was completed
some months before the second, by Garg and Leibovich, which dealt with
the same problem, but in the context of general conical boundaries. The
methods used in the two papers were slightly different, but mathematical-
ly equivalent.

® Permanent address: Chinese Univ. of Science and Technology, Hofei,
People’s Republic of China.
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class of flows is the generalization of the Landau-Squire®!!

round jet to permit an azimuthal component of the velocity.
The first work on conical vortices apparently can be traced
to Loitsianskii'? (in a boundary-layer approximation) and,
independently, to Long."?

Many different flows are embraced by this conical form
depending upon the conditions imposed on the solution of
the similarity equations. Long'? imposed the condition that
the circulation, I', about the axis tend to a constant as r— o0,
where r is the cylindrical radius. In addition, but without
explicitly stating so, he imposed the condition that the flow
be symmetric in z. This can be interpreted either as a sym-
metric flow with a sheet of sources of variable strength on the
plane z =0, or as a continuous flow with a porous wall at
z = O with a prescribed variable normal velocity. The flow in
either event is smooth in the upper half plane, and numerical
solutions to a boundary-layer approximation of the govern-
ing equations have been given by Long'* and by Burggraf
and Foster.'” These solutions are very interesting and repre-
sent vortices concentrated near the symmetry axis that close-
ly resemble vortices observed in laboratory experiments.

Serrin'® has given a complete mathematical treatment
of a subclass of conical vortices representing flow above the
plane z = 0. A special case of this subclass had earlier been
discussed by Goldstik.'” The no-slip condition was imposed
on the plane, and I'—>const as »—0. Thus, this subclass re-
presents the flow of a line vortex above a plane and a singu-
larity is accepted on the axis » = 0.

In this paper, we consider the subclass of flows which
are contained within a cone with vertex at the origin and axis
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FIG. 1. Flow region.

the positive z axis, as shown in Fig. 1; the cone half-angle
may exceed 7/2. We require that solutions yield finite veloc-
ity except at the vertex of the cone, where a singularity is
inevitable. In addition, we require the conical boundaries of
the flow to be stream surfaces. The solutions are therefore
distinct from those previously found. As in the various cases
of the nonswirling exact axisymmetric solutions,®*'! it is not
possible to satisfy the no-slip condition on stream surfaces.

This difficulty is discussed in the final section of the paper.

The solutions explored constitute a two parameter fam-
ily, the parameters being a Reynolds number (defined as I" /
47rv, where I is a characteristic circulation about the sym-
metry axis), and a number representing the net momentum
flux issuing from the vertex of the cone. The qualitative be-
havior and existence of this two-parameter family of solu-
tions is explored using methods developed by Serrin,'¢
Weyl,'® together with modifications which appear to be nec-
essary for this problem. Regions of the parameter space in
which solutions exist, as well as regions in which solutions
fail to exist, are delineated.

We then construct some examples of flows in this class
by numerical integration of the governing equations, again
following the lead of Serrin and of Weyl. Boundary layers
can develop either on the axis or on the bounding conical
stream surface, depending upon the choice of parameters.
An interesting feature is that strong shear develops at low
Reynolds number for some values of the second controlling
parameter. Our numerical examples include a number of
flows existing above the plane z = 0, and one each for flows
within cones with half angles of 7/4 and 37/4, respectively.

Il. CONICAL SIMILARITY

In this section, we give a brief demonstration that coni-
cal vortices are, in fact, the only similarity form of the axially
symmetric Navier—Stokes equations that yield both finite ve-
locities at the axis and at arbitrarily great distances along the
axis and perpendicular to it.

The steady axially symmetric Navier-Stokes equations
in cylindrical coordinates (#,8,z), with velocity components
(u,v,w), may be written in the form

uK, + wK, = vDK,
ul, +wé, —2ur~'¢ —2r"’KK, =vD?*,
&= _D2¢, w=r“¢,,
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u= —ry, v=r"'K,
Dz( ):( )rr_-r_l( )r+( )zz'

Here 27K (r,z) is the circulation about the z axis, ¢ is the
azimuthal vorticity, and v is the kinematic viscosity.
This set is invariant under the change of scale

r=ar, z=>bz', Yrz)=cy'(rz),
K(rz)=yK'{r'z)
in three cases
Ma=b y=1,
)y, =K., =0,
my, 2 1% _, 01K _,
dr r or or r Or

Case (I1) admits solutions of the form

w=zwy(r) + wylr), u=u(r), v=uvr),

which is a generalized form of the similarity assumed by
Burgers,” Rott,> and Donaldson and Sullivan.' Case (II) can
be further reduced to the problems considered by these auth-
ors, since the problem for w,() can be solved separately once
u,(r), v,(r) and w,(r) are known.

In case (I1I), all solutions are of the form

w=wz), u=rwz)+ulz)/r, v=rolz)+ v,i2)/r.

With u, = v, =0, the classical Kiarman'® or Bodewadt*
forms for flow above a rigidly rotating plane or rigidly rotat-
ing flow above a stationary plane are obtained.

Case (I) leads to solutions of the form

K(":Z)=K(7l), ¢'=ZG(77)’ n=r/z

or

v=r"'K{n), u=—r"'G(y), w=z"'G'(yn).

The similarity variable is 7 = r/z = tan ¢, where ¢ is the
polar angle in spherical coordinates. There is, in addition, an
unsteady version with this spatial symmetry. If time depen-
dence is allowed, the functions X, and G depend upon z2/vr
as well as 7.

Case (I) admits solutions with the velocity field finite
everywhere except for the origin » = z = 0. In cases (II) and
(III), the velocities can be finite at the axis, but approach
infinity as either r or z approaches infinity.

Ill. FORMULATION OF THE PROBLEM FOR CONICAL
FLOWS

The equations of motion for conical similarity assume a
more compact form when expressed in spherical coordi-
nates, since the similarity variable is then simply the polar
angle.

Thus, we adopt spherical coordinates (R,$,0 ), where R
is the distance from the origin, ¢ is the polar angle, measured
from the positive z axis, and 8 is the azimuthal angle. Serrin*®
has presented the appropriate equations for the problem. Let
the velocity vector be (vg, U, , Vg ), then the similar solutions
are in the form

F F 7
R
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where
r=Rsing
is the cylindrical radius, and
x =cos ¢. (2)

Continuity is satisfied by the form (1). In terms of x, F and 0
must satisfy the pair of ordinary differential equations

vl —x)F* —4uxF"" + FF"" 4+ 3F'F"

= —200'/(1-x3, (3a)
Yl—x32" +F2' =0. (3b)
The pressure can be recovered, knowing F and £2, from the
relation

2_ My P (3¢)
pF_ P -
— 2T =F?+ D>+ {FF" + F" +v[(1 —x3F"”

— 2F (1 —x?, (3d)

where p_ is the pressure at r = . _ _
The problem is therefore reduced to finding F and {2
from (3) and appropriate boundary conditions.

A. Boundary conditions

Let the fluid be confined within an impenetrable cone
with vertex at the origin and with the positive z axis (x=1) as
axis. The cone semi-angle may be larger than 7/2, so the flow
region may include the entire space, excluding the negative z
axis, if desired. Let x = x, ( — 1 < x4 < 1) be the cone bound-
ary. Then the boundary conditions are taken to be

2082 (xo) =T, (4a)
F(xo) =0, (4b)
F(1)=0, (4c)
lim(1 —x )F"(x) =0, (4d)
2(1)=0. (4e)

Condition (4a) establishes the existence and level of the swirl,
and, without loss of generality, we take I" > 0. Condition (4b)
states that the normal velocity on the cone x = x,, vanishes.
Condition (4c) ensures that v, be finite and that the axis is not
a source of mass. Condition (4d) ensures finite acceleration
on any finite length needle of fluid on the z axis due to the
viscous forces, and assures that the radial velocity [i.e., F'(1)]
is finite as well. The limiting condition must be imposed due
to the singularity at x = 1 associated with the coordinate
system. Condition (4¢) requires the azimuthal velocity to be
finite at the axis.
If we now let

202 (x) =I'2(x), F=vF, =+, ()
and define the Reynolds number
Re =T /4mv,

then the system assumes the dimensionless form
(1 —_—x Z)Fiv _ 4XF“’ +F 1 + 3F'F”
=4 Re*(—2020'/1 —x?), (6a)
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(1—x302" +FR' =0, (6b)
—22T(X)=F>+(1 —x3){FF" +F? + {1 —x JF""
—2xF"} + 4Re* 22, (6¢)

and the boundary conditions (4) apply to the dimensionless
variables, provided I" /27 is replaced by unity.

B. Reduction to an integro-differential equation

Equation {6a) can be integrated three times to give (cf.
Ref. 16)

2(1 —x })F' + 4xF + F* = 4Re?* G (x), (7a)
where

Glx) = _f dtZJ'dtlf'M +Ax? 4 Bx +C,

xo xo x 11—t (7b)

The boundary conditions (4c) and (4d) show that

G (1) = G'(1) = 0. Application of these two conditions allows

us to eliminate B and C in favor of 4. Upon integration by
parts and rearrangement, we can place G in the form

x 2
Glx) =21 —x)zf “L”_th’)z

Y024
e (1 4+12)?

+ T(1 —x), (8)
where

T=A+1/(1 —x32),
and we adopt T as the basic parameter instead of 4.

We will need to know the properties of G (x); for later

reference, we note that the first and second derivatives of G
are

B
G'x)= — 41 —x) xo%
2 l(‘lgj‘:’)z —2T(1 —x), 9)
and )
G'(x)=4 (:”_ 2{"2’)2 -2 2)(:‘2) +2T. (10)

Thus,G (1) = 0,and G “(1)isfiniteprovided 2 (x) = O (1 — x)
as x—1.

Using (9) and (10), one can reduce the pressure function
II (x} in (6c) to the simpler form (cf. Ref. 16)

— 2T (x) = 4xF + 2F* — 4R&* xG '[x). (11)
A similar formula allowed Serrin'® to relate the parameter

analogous to T to the pressure level on the wall. In our case,
{11) evaluated at the cone x = x, gives

1 2
N2de )

—-T(1 - . 12
AT (1 — x,) (12)
On the axis, (11) reveals that

I{l)=0

so that the pressure on the axis equals p . Thus T can be
related to the wall pressure through (12) for x,7#0, but the
connection is less direct than in Serrin’s case.

I (x,) = 4 Re? xo(
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The similarity relations (1) coupled with the boundary
conditions (4b,4c) imply that the singular point at the origin
is not a source of volume, but it is a source of axial momen-
tum. The axial momentum flux issuing from the origin is

1
M= 277pv2f xF"? dx. (13)

The nondimensionalized momentum flux M /p+? is a func-
tion of the parameters Re and 7.

In the present case the integrand is everywhere finite. In
Serrin’s case, the integrand is infinite at x = 1, but it, too, is
integrable.

We conclude this section by introducing the change of
variable'®

Fix)=2(1 — x }f(x), (14)
which puts (6a) and (6b} in the final form to be considered

[+ =ReGx)/(1—x?), (15)

02" +2M0' =0, (16)
subject to the conditions

D(x)=1, fix)=0, £2(1)=0. (17)

(V. QUALITATIVE BEHAVIOR OF SOLUTIONS

Equation (16) can be integrated, assuming f to exist and
treating it as known, the result is

£2'(x) = 12 "(xy) exp( — ZJ:fdx) (18)

Thus £2'(x) is one-signed in (x,,1), and 2 (x} is monotonic.
Since £2 (1) = 0 and £2 (x,) = 1, £2(x,) < 0.

Next, consider the behavior of the solution near x = 1.
Since the argument above shows that

0<2 (x)<1,

we can derive upper and lower bounds on G (x) by substitut-
ing either 2 = Oor 2 = 1 in theintegrals in (8). The choice of
0 or 1 depends upon which bound is being sought and, in
considering that bound, whether the contribution of the
terms involving integrals is positive or negative. For exam-
ple, when calculating an upper bound for x, <0, we set
2 =0 in both integrals of (8) when x <0 and £ = 1 when
x> 0. In this way, after minor manipulations, we arrive at
the bounds

(1—x)2(T+ M= x) x‘z’”"""))
1—x 1—x2
2
<G(x><(1—x>2(r+ f’_"‘i - ’;_’ f’) (19)

where the function 7 (x)is the unit function, / {x) = 1forx > 0,
I(x)=0,x<0.
Under similar conditions on G, Serrin'® has proved that

f=0{m[1/(1 -x)]} asx—1, (20)

hence, from (18) £2 '(1) is finite, and his proof follows without
change if G satisfies (19). Therefore

2x)=0(1—x)

near x = 1, and this in turn shows that the functions
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X 2 2
12 dr {2 “x)
Xo (1_t2>2 (l—xz)
are finite as x—1. Consequently

1 2
G(l)=G'(1)=0, G"(1)=4f (’”—t‘ijz— +2T< w,

1—17) (21)
and we can consequently replace (19) by the stronger state-
ment: the function

H (x)=Re*)[G(x)/(1 —x %] (22)

is finite for all x, < x < 1. Furthermore, from (8) and (22), we
observe that

d (1 + x) 0N*dr
— [(1 4+ x)*H (x)] =2 Re? J . 23
o ( J°H (x)] el BT (23)
Since 2 =0 (1 — x) near x = 1, the integral in (23) is finite
for all x in the interval I: {x,<x<1, xo> — 1}. Thus,

21+ xPHE)]>0 24)
dx

in 1. We infer from this that if H (x) is positive at any point
X = x,, then it remains positive for all x > x,. In particular, if
H (x4} >0, then H > 0 throughout the interval 1. If H (x,) <0,
then H (x) can change sign at most once. In this case, either

H{x)<0in I, or
H (x)<0for x,<x<x,<1,and
H (x)>0 for x,<x<1.

Following Serrin'® we write (15) in the easily verified

form
- [ a0 exp( — [ i ), (29)

where the boundary condition f(x,) = 0 has been applied. In
view of the properties of H (x), (25) shows that f>0 in I if
H (x,) > 0. Furthermore, if H (x) < 0for x,<x < x,<1, then ei-
ther (i) f< 0, f' <0 for all x in 7, or (ii) /<0 for x,<x < x,<1,
where x, > x,, and /> O for x, <x<1. Thus, if H (x,) <0, ei-
ther fis negative everywhere in the cone, or it is negative in a
sector near x = X, and positive in the remainder of the cone:
it may pass through zero no more than once. We may imme-
diately determine this behavior in some instances. The lower
bound of (19) is non-negative when

T»max[0, — xo/(1 —x})], (26)
and therefore H (x) > 0, f(x)>0 for these values of T Further-

more, H (x,) <0, implying f(x) <0 in at least a sector near
X = X,, when
T<min[0, —xo/(1 —x})] . (27)
Thus, for the case of a plane surface, 7= 0 is the critical
parameter dividing fully positive solutions from mixed or
fully negative solutions. For other values of x,, the specifica-
tion of T does not completely resolve this issue a priori, since
the critical value of T dividing fully positive solutions from
mixed or negative ones lies in a gap between (26) and (27). In
these cases we can only say, a priori, that there is a critical
value of T, denoted T *, where
max [0, — xo/(1 —x 3) < T* <min(0, — xo/(1 —x3)],
(28)

Yih et al. 2150



such that fully positive solutions obtain when 7>7* and
mixed or fully negative solutions obtain for 7 < 7°*.

A solution to the fluid-dynamical problem exists only if
(1 — x 3f{x) is finite. Thus f must be finite for all x,<x <1,
but singularity in f with f= O (1/1 — x) is permissible as
x—1. Indeed, we have already cited Serrin’s result (20)
which shows that f] if it exists, can be no more singular than
the logarithm. These arguments assume the existence of a
solution, however, and it will be shown in the next section
that there are no solutions to our problem for certain combi-
nations of parameters, just as in Ref. 16. We may go one step
further, if solutions exist: then we have already argued that f
is integrable, thus, in view of (22), (23) shows that fis finite
everywhere in the cone.

We may now summarize and sketch the general fea-
tures of the flows. We have found that, if solutions exist:

(1) fis finite, and £2 '<0;

(2){a) Thereis anumber 7" *, partially determined by (28)
such that fis non-negative and (from (18)) £2 “ >0, for T>T *,
and

(3) (b)) If T < T *, then f'will be negative and 2 " <0Oin an
interval x, <x <x,<1, and >0 and 2 " >0 in x,<x<1.

Since
Rog =2[Hx)(1 —xY - (1 —x 22 —2xf1, (29)
at the axis x = 1,

Rog = —4f(1), (30)
and at x = x,, f(x;) = 0, and
Rug = 2H (xg)(1 —x 2). (31)

Case (a) above therefore has vy <O on the axis, and vy >0 at
the conical boundary [since this case corresponds to
H (x,)>0]. In case (b), either f<0 throughout, or f<O near
x = x, and />0 near x = 1. In either event, G (x), <0, so
vg <0 in the vicinity of the conical surface, and v, may be
either positive or negative near the axis. The possibilities are
sketched in Fig. 2. Note that the structure of the flow can
have one or two cells but no more than two cells is possible.

V. ACCESSIBLE AND NONACCESSIBLE REGIONS OF
THE PARAMETER SPACE

In the last section, the structure of the flow was dis-
cussed under the assumption that solutions exist. Here we
show that in this, as in Ref. 16 there are regions of the param-
eter space in which solutions fail to exist. Conversely, re-
gions of the parameter space can be exhibited where the exis-

tence of solutions is expected.

A 81 B2

FIG. 2. Streamlines in the meridional plane illustrating the various possibi-
lities for conical vortices.
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We have used two equivalent methods to deal with
these questions. Garg and Leibovich transformed Eq. {15} to
its associated second-order linear equation and used Sturm’s
comparison theorems. Yih and Wu dealt directly with (15)
and we describe their method.

Consider (15), written in the form

[ +fP=Hx), (32)

for two functions H,(x) and H,(x), where the corresponding
solutions f}(x) and f5(x) satisfy the initial condition

Silxo) = folxo) = 0. (33)
Then if H,{x)<H (x}, a comparison theorem for equations of
the form (32) due to Serrin'® shows that

SHx)<filx). (34)

Let us assume that solutions exist, that is, that f(x) is
finite in /, and try to determine conditions under which the
assumption is tenable or not. Assuming solutions exist, it
follows from Sec. IV that H (x} is finite.

A. An upper bound for the solution

Let H (x) be positive in at least a part of the interval I,
and suppose f(x} does not approach — o« in I. Then the
integral in (18} exists for all x in I, and 2 ’(x,) is neither zero
nor infinite. That makes {2 ’(1) finite and therefore H (x) finite
in 1. It then must have a maximum in 7. Let it be denoted by
H,... Then

S<(Hpax )V, (35)

and thus f has an upper bound.
For a proof of (35), let £, satisfy

Fi+S1 = Hpa (36)
The solution of this equation is
fl = (Hmax)llztanh(Hmax)llzx‘ (37)

Now, since H (x)<H,,,,, by virtue of the fundamental com-
parison theorem, f<f}, and this, taken together with (37),
proves (35).

Thus, the nonexistence or existence of the solution of
{32) hinges on whether f does or does not become negatively
infinite in 1.

B. Region of existence of a solution

First, we recall that if 7> T *, then H (x) is nonnegative
throughout 7. Thus, by virtue of the remarks made in Sec.
VA, the existence of fully positive solutions is not contradict-
ed, and we expect to be able to construct solutions for all
T>T*.

For T < T*, f will be negative in the neighborhood of
X = Xo, and if | T — T *| is sufficiently large for a given value
of Re?, f may become infinitely negative in 7. We shall try to
determine a curve in the 8 — T space ( 8 = 0.5 7/Re) above
which solutions exist.

For this purpose, we consider the lower bounds found
in {19) for G (x). This will give us a G,(x), and hence H,(x),
smaller than their actual values.

From (19), we know that

Yihetal 2151



2
Hix)> Re (T+ xI(—x)(— x,)
{1+ x)? 1—x
x5 ‘xo)>
(1-x3) /-
The large parentheses have a minimum value at x = x, when
X, <0, so
Re? Xl (— x,)
Hix)> T+ 9 ) 38
x)> (1+x)2( s (38)

We wish to simplify the calculation by considering a
constant lower bound for H (x), and, since we are interested
only in those cases where the lower bound is negative, we
may weaken (38) by taking

2

2
Hx)>H=—X¢ 2(T
(1 + x) 1—x2

+ xOI( - xO)) (39)

and assuming that H, < 0. We now consider
fi+fi=H,, filx)=0, (40)

and by the comparison theorem, f> f;. Therefore if a finite
solution to (40) exists, a solution to (15) exists. But the solu-
tion of (40) for negative H, is

fi= —(_Hl)l/z tan[(*H,)’/z(x—xO)]. (41)
This is finite in 7 if
(— H)'? <a/2(1 — xo), (42)
or
_._ﬁ_i_.__ (43)

(T+ Xol (= %) _"°)> (14 %)% —

2

1—xg (1 —xf

C. Region of nonexistence of solutions

To show the nonexistence of solutions, we consider up-
per bounds for H (x) as obtained from (19):

xIx) X 31(10))
1—x 1-x2)
(44)

Again, we only are concerned with values of T < T*, since
otherwise H (x)> 0 and existence of solutions is ensured.

Let f,(x) satisfy

fi+f3 =Hyx), filxo)=0. (45)
We reiterate that solutions to (15) can fail to exist only if
f— — w in I. Clearly H,(x)—co as x—1, but our strategy is
to select a value of x = x, < 1, and show that there are values
of T and Re for which f,— — o in the interval I {x,<x<x,).
By our comparison theorem f, > fs0 f> — o in I as well,
and nonexistence of solutions is established. Thus, let x, be
chosen so that

H,(x,)= —A42<0. (46)
Then

fr=Atan 4 (x — x,),
and f,— — oo in 1, if

Ax, — xo)»m/2, (47)

_ _Re
H (x)< H,(x) = T (T+

or
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FIG. 3. Accessible and nonaccessible regions in the parameter space (7,Re);
(a) when @, =7/2(x,=0), (b) when @, = m/4(x, = 1/v'2), (c] when
do=137/4xo= — 1/V7?).

-32
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_ T-> Bz(l +x1)2

xJx) X3
() — xo)? '

1—x, 2

e (48)

The minimum of the right-hand side of (48), taken over
x, in 7, is a function of £ and x, which we denote by m( £,x,).
The equation

T= —m(Bx,) (49)
is plotted as the lower curve in each of the Figs. 3(a), 3(b), and
3(c) for x, =0, 1/v/2, — 1/472, respectively. Below this
curve, no solution for £ exists, and a fortiori no solution for f

exists. The upper curves in each of the Figs. 3(a), 3(b), and 3(c)
are the loci of points

*_ _ 2(1+x0)2
Tr=-f (1 —x,)

On and above this curve solutions do exist, as seen from the
condition {43). In the region between the two curves, our
estimates are of no help, and solutions may or may not exist
there.

Notice that positive solutions {type A, downward flow)
exist for all 8 (Re). For /—0 (Re— ) the region of demon-
strated existence for solutions that are negative (type B2,
upward flow on axis), or both negative and positive shrinks
to zero. The numerical calculations discussed in Sec. VII
show that, at least when § is not small, all three types of
solution can be found.

VI. NUMERICAL CALCULATIONS

In this section we describe an iterative procedure used
to solve numerically the Eqs. (15) and {16) subject to the
boundary conditions (17). The method is modeled after a
sequence of nested inequalities devised by Ref. 16, who used
it both to compute solutions of his problem, and as a tool to
prove the existence of solutions to his problem. A similar
device was utilized by Weyl'8 to prove the existence of simi-
larity solutions deriving from boundary-layer problems. Ser-
rin’s method must, however, be rederived, since the inequal-
ities that he relies upon do not hold directly in the present
problem.

Successive approximations were computed by the
scheme

_ xOI( _xo) . (50)

1—x2

2,=1,
and for n>1,
G,.(x)=2(1 x)zfx 4, dt
= e (117
‘2 dt
+zxf T T (51)
Re*G(x)
f,'."r'fi:m, Salxg) =0 (52)

D:4+2,02:, =0 £2,x,)=1, $£2,1)=0. (53)
If the first two iterates f, and f, for f were successfully com-
puted, the scheme was found to converge to the solution
(742 ). For x,>0, we can prove that it in fact must converge if
the solution exists; for x, <0, convergence is found numeri-
cally in some cases, but our method of proof does not hold.
First we define
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— * 2dt
Gix)=2(1 —x)p*| ———
(x) = 2( ) LT
L =
02dt
+ T(1 — x)?,
x (1+1) ( )
and observe that since £2,> 12,
Gl>5)

and it follows from our fundamental comparison theorem
that f,>f.

The next step is to show that 2, <£2. We have the equa-
tions

27+202] =0,

and
Q" +240' =0,

with the corresponding boundary conditions,
(xo) =1, £2,(1)=0,

and

2x)=1 2(1)=0.
Using the fact that both £2 | and ' are negative we see that
h = 2 — 2, must satisfy

h" + 2fh'<0, (54)

with the boundary conditions 4 {(x,) = O and 4 (1) = 0. Equa-
tion (54) can be written as

[h ! exp(J:Z}"dx)] ’ <0. (55)

Now suppose that 4 (x) takes on negative values. Then it
has a negative minimum at some point x,, <1 where
h'(x,,)=0and A (x,,) <0. Integrating (55) fromx,, tox > x,,
weobtain 4 ‘(x)<0, whichimplies that 4 (x) < 4 (x,, }. Thiscon-
tradicts the boundary condition at x = 1 thus proving that
>0,

Proceeding in the above manner we are led to the nested
sequences { f, ], {£2, ] given by

Fizfyzes foz fu3f
00>-02>--->?1>-">03>-91~

Thus, convergence is assured if a solution corresponding to
the chosen values of the parameters Re and T exists and both
f, and £, can be determined.

For some values of the parameters Re and T outside the
nonaccessible region discussed in the preceding section, it
was found that both f; and £, could not be computed. It may
not, however, be concluded that the failure of the scheme
necessarily implies nonexistence of a solution.

Adams predictor-corrector method was used to solve
(52) while (53) was integrated by the finite-difference meth-
od. Simpson’s rule was used for the integrations required to
compute G,(x). Interpolations, wherever necessary, were
done by cubic splines. Typically less than 20 iterations were
necessary for obtaining the results presented in the next sec-
tion.

Vil. NUMERICAL RESULTS AND DISCUSSION

The method of successive approximations of the pre-
vious section was used to generate solutions for three values
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TABLE I. The eight examples for which numerical solutions have been obtained.

Case No. 1 2 3 4 5 6 7 8

Re 2 3 100 3 %) 3 20 0.5
T 1 1 0 —0.57 —22 —0.15 0.1 0.5
Xo 0 0 0 0 0 0 1Y2%] — V2
of x, corresponding, respectively, to flow over a flat surface, behavior.

flow within a cone of semi-vertical angle 7/4 and flow over a
cone of semi-vertical angle 37/4. In the case of flow over a
flat surface, the values of the parameters Re and 7" were
selected such that all three possible flow patterns (A), (B1)
and (B2) (cf. Fig. 2) were obtained.

We are especially interested in cases where 2 is nearly
constant (unity) except in a small region near the axis (x = 1)
where it rapidly decreases to zero. When this condition ex-
ists, |42'| and hence the axial vorticity component, is large
near x = 1, we say that the flow exhibits boundary layer

1.0 20
(a)

0.8 \ .
N

0.6 \ \%e 12

0.4 \ S 0.8

—
N £ /
Q. =— Re £
' 2Re / 2Re
0.2 \ 0.4
N\
0 _F'_ 0
2Re
N -0.4
\\ -0.8
\-1.2
x =1.0
© !
- ™
/ L n L ry e

FIG. 4. (a) Numerical solution when Re = 2, T'= 1, ¢, = 7/2(x, =0). (b)
The resulting flow pattern.
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We discuss solutions for the eight cases of Table I. The
functions F, F', and {2 are plotted (normalized by taking I" /
27 equal to unity) in Figs. 4(a), 5(a), ... 11(a), and the corre-
sponding stream surfaces are given in Figs. 4(b), 5(b), ... 11{b).

3.2
(a)
\ y
2Re
2.4
1.0 | 20
F F
Q. 5re \ 2Re
0.8 1.6
Q \
0.6 .2
\ F
0.4 / \ \K 08
0.2 / \ \\ N 0.4
0 \ x=1.0
\

FIG. 5. (a) Numerical solution when Re =3, T'= 1, ¢y = 7/2(x, = 0). (b)
The resulting flow pattern.
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FIG. 6. (a) Numerical solution when Re = 100, T = 0, ¢, = 7/2(x, = 0). (b)
The resulting flow pattern.

The first six cases are for flows above a flat surface
(xo = 0). Incases 1-3, f‘>0 in 1. The flow is downward every-
where, with v, positive. Since F>0 and since 2’ <0 for all
our flows, 2 ” > 0: thus £2 increases and |{2 '| decreases as x
increases as is evident in Figs. 4(a), 5(a), and 6(a). Thus no
boundary-layer phenomenon for £2 can exist near the axis.
Notice, however, that strong shear layers form on the
boundary x = x, =0, and that they are as strong at low
Reynolds numbers (Re = 3) as they are at higher ones
(Re = 100). There is a correspondingly rapid variation in 7
in these cases, and the phenomenon is due to advection of
vorticity towards the boundary {since v, > 0 throughout the
flow).

In cases 4 and 5, F is entirely negative (except at x = 0
and x = 1), and sois/, so that |£2’| increases as x increases, as
indicated by (18). That is shown in Figs. 7(a) and 8(a). In Fig.
7(a) the increase of |2 is fairly gradual, but already indi-
cates the possibility of boundary-layer behavior. In Fig. 8(a),
boundary-layer behavior for £ is clearly manifested.
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FIG. 7. (a) Numerical solution when Re=3, T= —0.57, ¢y=u/
2(x, = 0). (b) The resulting flow pattern.

In case 6, F is first negative then positive, as shown in
Fig. 9(a). Since near x = 1 it is positive and since the mini-
mum value of F occurs far from x = 1, there is no negative f
with large | f|. In this case there is therefore no boundary-
layer behavior for £2, as indicated in Fig. 9(a). Figure 9(b)
shows the two-cell structure of the flow.

Comparing these results with the numerical results of
Long,'* who assumed boundary-layer behavior to start with,
we see that in all his graphs for the vertical velocity w, w is
either entirely positive (upward flow) or first negative (down-
draft near the center) then positive. This is entirely in agree-
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FIG. 8. (a) Numerical solution when Re =12, T= —22, ¢,=7/
2(x, = 0). (b) The resulting flow pattern.

ment with our deduction that boundary-layer behavior is
impossible for positive F (x), which corresponds to complete-
ly downward flow. Physically, this is due to the fact that
vorticity must be advected towards the axis to balance the
outward viscous diffusion of vorticity away from the axis
that must occur if a concentration of vorticity is to exist near
the axis (i.e., if what we have called “boundary-layer behav- FIG. 9. (a) Numerical solution when Re=3, T= —0.15, ¢,=n/
ior” obtains). 2(x, = 0). {b) The resu'ting flow pattern.
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The results displayed in Fig. 8 are noteworthy: it is re-
markable that such a well-developed axial jet and significant
concentration of vorticity occur at a low Reynolds number.
This behavior has often been observed in experiments at high
Reynolds numbers, for instance in the approach flows lead-
ing to vortex breakdown. With an increase in the Reynolds
number, the axial vorticity should be expected to get further
concentrated near the axis. We have been however, unable to
find numerical solutions belonging to this class (B2} for val-
ues of Re above approximately 4.0. There are two possibili-
ties. It may be that similarity solutions of the assumed form
corresponding to the flow pattern B2 do not exist for large

1.4
(a)
r2 P
1.0 0.10
2
, o8 ya \\ 0.08
F F F
0.6 0.06
0.4 / X 0.04
N
0.2 \ AN 0.02

NEEA
\

FIG. 10. (a) Numerical solution when Re =20, T=0.1, ¢, = 7/4{x, = 1/
v2). (b) The resulting flow pattern.
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Re. It may be, on the other hand, that our numerical scheme,
depending, as it does, on the successful computation of the
iterates f, and f;, fails to yield these solutions. It is interesting
to note that Serrin also was unable to find solutions with
upward flow at the axis and radially inward flow on the
bounding plane for Re > 2.86.

An example of a flow inside a cone of semi-angle 7/4
(xo = 1/4/2) is shown in Figs. 10 (a} and (b). The flow is of
type A, with F>0, and is qualitatively similar to the type 4

1.2 24
(a)

1.0 20
0.8 AN / 1.6

NN

0
f /
2Re
-0.2 L/

A /1.

-0.8 -1.6

== 1//2 x=1.0

1 F1G. 11. (a) Numerical solution when
Re=05 T=0.5, ¢ =3n/4(x,

= — 1/v2).(b) The resulting flow pat-
tern.
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examples of above a flat surface. Flow outside a cone of the
same semi-angle (so ¢, = 37/4and x, = — 1/v/2)isshown
in Figs. 11 (a) and (b). The flow is upwards at the axis, or type
B2. The Reynolds number is very low (0.5), and the concen-
tration of vorticity near the axis, though in evidence, is weak.

As x,— — 1, the cone surface shrinks to a line vortex
and the resulting flow may occupy the entire space excluding
the negative z axis. In such a situation we have been able to
show that F~(1 + x) In(1 + x) as x— — 1 and consequently
the velocity along the line vortex must be infinite.

We turn next to the violation of the no-slip boundary
condition inherent in these solutions. The inability to satisfy
all boundary conditions in the presence of realistic (finite)
boundaries capable of generating and constraining a viscous
fluid motion is a problem that, to our knowledge, is shared
by all but one known exact solution of the Navier—Stokes
equations. (The exception is the trivial one, solid body rota-
tion without relative motion of the fluid and its container:
the rest case with zero rotation is a special case.) Exact self-
similar solutions may or may not specify bounding surfaces
but the region of space occupied by the fluid is always infi-
nite. These solutions are always singular, with unbounded
velocities either at a point, a line or at infinity. Each of these
solutions represents a flow that can in principle be realized in
a finite geometry that excludes the neighborhoods of any
singular points provided a special distribution of velocity is
arranged at the flow boundaries. Thus, the value of these
solutions, so far as applications are concerned, lies in the
extent to which portions of the exact solutions resemble
flows in finite volumes generated by physically realizable
velocity and pressure distributions.

The present solution is a direct generalization of the
Squire'® solution of the round jet. This jet solution improved
(or extended) the earlier Landau-Squire®* jet solution
which has no boundaries (and, of course no swirl), and placed
the flow within conical boundaries. Squire’s improved solu-
tion, however, failed to satisfy the no-slip condition on the
cone, and this condition cannot be remedied according to
Squire, ' Morgan,?! and Potsch.?? Schneider?® has made an

2158 Phys. Fluids, Vol. 25, No. 12, December 1982

attempt to show that this difficulty can be removed within
the self-similar framework as Re— 0. It is our view that no-
slip probably can be enforced on solutions such as these at
high Reynolds numbers, but that this requires at least one of
the basic symmetries of the similarity solution to be broken
(i.e., it may be unsteady, but conical, or steady, but no longer
conical). We suspect that higher-order approximations than
Schneider’s must break the conical similarity. This, how-
ever, must be the subject of a later paper.
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