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Electron spin relaxation of transition metal ions with spinS>1 results primarily from thermal
modulation of the zero field splitting~zfs! tensor. This occurs both by distortion of the zfs tensor due
to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational
modulation of the permanent zfs tensor. The reorientational mechanism is much less well
characterized in previous work than the distortional mechanism although it is an important
determinant of nuclear magnetic resonance~NMR! paramagnetic relaxation enhancement
phenomena~i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in
solution or NMR-PRE!. The classical density matrix theory of spin relaxation does not provide an
appropriate description of the reorientational mechanism at low Zeeman field strengths because the
zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation
techniques, the time correlation functions of the spin operators have been computed and used to
determine decay times for the reorientational relaxation mechanism forS51. In the zfs limit of
laboratory field strengths (HZeem!Hzfs

+ ), when the zfs tensor is cylindrical, the spin decay is
exponential, the spin relaxation time,tS

+ '0.53tR
(1) , wheretR

(1) is the reorientational correlation time
of a molecule-fixed vector. The value oftS

+ is independent of the magnitude of the cylindrical zfs
parameter~D!, but it depends strongly on low symmetry zfs terms~the E/D ratio!. Other spin
dynamics~SD! simulations examined spin decay in the intermediate regime of field strengths where
HZeem'Hzfs

+ , and in the vicinity of the Zeeman limit. The results demonstrate that the
reorientational electron spin relaxation mechanism is often significant whenHzfs

+ >HZeem, and that
its neglect can lead to serious errors in the interpretation of NMR-PRE data. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1786577#

I. INTRODUCTION

Electron spin relaxation of transition metal ions with
spin S>1 results primarily from thermal modulation of the
zero field splitting ~zfs! tensor. In a seminal study, Van
Vleck1 described the relaxation mechanism in solids as re-
sulting from phonon modulation of the zfs tensor. Bloember-
gen and Morgan2 subsequently extended this concept to spin
relaxation of hexaquated metal cations in aqueous solution,
proposing a mechanism based on collisional distortion of the
metal zfs tensor that results from Brownian motion in the
solution phase. The systems they considered@Me~H2O)6

21

cations withS>1] lack a permanent zfs tensor because of
the octahedral site symmetry of the metal ion. In the much
more common case where the metal ion has noncubic site
symmetry, a permanent zfs interaction, described by a
HamiltonianHzfs

+ (t) is present. The zfs tensor may be modu-
lated both by collisional distortion and by Brownian
reorientation.3 In the common situation where reorientation
proceeds by a sequence of small steps, these processes are
uncorrelated and additive. The present study is an analysis of
electron spin relaxation due to reorientation of the permanent
zfs tensor. The mechanism associated with collisional distor-
tion of a zfs tensor has been described in previous work.4–13

The electron spin motion is assumed to be driven by a
Hamiltonian which is a sum of Zeeman and permanent zfs
terms,

HS
+ 5HZ1Hzfs

+ ~ t !, ~1!

the latter time dependent due to Brownian reorientation.
Electron spin relaxation is defined as the process of thermal
decay of time correlation functions~TCFs!, of the spin op-
erators, for example,

GZ~ t ![^SZ~0!SZ~ t !&. ~2!

The angular brackets represent an expectation value over the
spin degrees of freedom, and the superscripting line denotes
a thermal average over molecular degrees of freedom. In
some physical situations~but by no means all!, relaxation is
exponential in time, and it is then appropriate to define spin
relaxation timestS,r , wherer labels the spatial polarization.
When spin relaxation is nonexponential, the decay envelope
can be described less precisely in terms of a (1/e) decay time
tS,r

(e) .
According to Eq.~1!, the electron spin motion can be

described with respect to two limiting situations which occur
when one of the terms on the right-hand side~rhs.! of Eq. ~1!
is much larger than the other. The limit of large Zeeman field
strengthHZ@Hzfs

+ is usually termed the Zeeman limit, and
the opposite situationHZ!Hzfs

+ , the zfs limit. The zfs limit
requires, additionally, that reorientation not be so fast that the
zfs level structure is collapsed. An analysis of the spin mo-
tion in the vicinity of the Zeeman limit is relatively straight-
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forward, since in that case, the zero-order spin wave func-
tions are eigenfunctions ofHZ and are not explicitly time
dependent. Electron spin relaxation can then be formulated
in the Zeeman basis using Redfield Theory, withHzfs

+ (t) as a
perturbation. This approach has been used14–19 to calculate
the reorientational contribution to~esr! linewidths for the
half-integer spin ions, Cr31 (S53/2), Mn21 (S55/2), and
Gd31 (S57/2), for which the permanent zfs is relatively
small.

Relaxation in the vicinity of the zfs limit is more difficult
to treat because the zero-order HamiltonianHzfs

+ (t) is explic-
itly time dependent, and it is the consequence of this time
dependence that we wish to describe. In the absence of re-
orientation, the zfs-limit wave functions are the eigenfunc-
tions of Hzfs

+ (t), which are spatially quantized~or polarized!
along the principal axes of the molecule-fixed zfs tensor,
rather than along the laboratory field. The physical situation
becomes more complex still whenHzfs

+ (t) fluctuates due to
Brownian reorientation as well as whenHZ5Hzfs

+ ~the inter-
mediate regime!. In these cases, the spin wave functions lack
well-defined spatial polarization and are stochastic functions
of time.

The objective of this work is to develop techniques suit-
able for calculating the TCFs of Eq.~2! at all laboratory field
strengths in the situation whereHzfs

+ (t) is modulated by
Brownian reorientation. In particular, we wish to determine
the situations in which spin decay is exponential, and
whether, in those cases, a relaxation time can be estimated
from the static zfs parameters~D, E, etc.! and the reorienta-
tional correlation times. To simulate the electron spin mo-
tions, SD techniques, which treat the electron spin motion
quantum mechanically and molecular reorientation classi-
cally, were used.

The results of the study extend our understanding of
NMR paramagnetic relaxation enhancement~NMR-PRE!
phenomena,~i.e., the enhancements ofR1 andR2 NMR re-
laxation rates that are produced by dissolved paramagnetic
ions in solution!. This field is currently very active,20 particu-
larly in regard to the development of new MRI contrast
agents and to the optimization of relaxivity.21 Experimen-
tally, NMR-PRE data are collected across a wide range of
field strengths, typically, 0.001–2 T. For many complexes,
the low field region corresponds to the zfs limit, and an un-
derstanding of electron spin relaxation in this situation is
needed. The collisional zfs distortion mechanism has been
analyzed previously,4–13 both in the low field and intermedi-
ate regimes, but the zfs reorientational mechanism is less
well understood. The objective of this study is to further
characterize the reorientational mechanism forS51.

The description of NMR-PRE phenomena in physical
situations where zfs interactions are large and molecular re-
orientation is rapid requires rather complex calculations of
the Laplace-Fourier transform of the TCF of the nuclear-
electron dipolar interaction. Pioneering work in this area is
due to Benetis, Kowalewski, Westlund and their
co-workers,22–26who, in the 1980s, developed the stochastic
Liouville formalism for calculating NMR-PRE. Our ap-
proach to the same problem uses SD simulation methods, the
current implementation of which is described below. In the

present study, SD simulation is used to describe the time-
domain motions of two TCFs, namely:~1! the spin TCF of
Eq. ~2!, the decay of which~even when nonexponential! con-
stitutes electron spin relaxation; and~2! the TCF of the
electron-nuclear dipolar interaction, the low frequency part
of which is proportional to the NMR-PRE.

II. THEORY

The Hamiltonians on the rhs. of Eq.~1! are in general
noncommuting and can be written, forS51, in the form,

HZ5gebeB0SZ , ~3!

Hzfs
+ 5hcD@Ŝz

22S~S11!/3#1hcE~Ŝx
22Ŝy

2!. ~4!

Equations~3! and ~4! are expressed in different coordinate
frames.HZ is written in the laboratory frame withZ parallel
to the Zeeman fieldB0 ; ge , beh, c are the electrong-value,
the Bohr magneton, Planck’s constant, and the speed of light.
Hzfs

+ is written in the molecule-fixed zfs principal axis sys-
tem, indicated by a superscripting karat on the spin variables.
Although the zfs parametersD andE are time independent,
Hzfs

+ (t) is time dependent due to Brownian reorientation of
the zfs tensor. For spinS>2, Eq. ~4! contains additional
higher order terms in the spin operators, but forS<3/2, these
vanish by the dimensionality of the spin system.

A. The spin TCFs

The TCFs of Eq.~2! can be evaluated as the trace across
any intervalt0– t8, whereHS is time independent,

GZ~ t82t0!5Tr$rS
+ SZU†~ t8,t0!SZU~ t8,t0!%, ~5!

whereU(t8,t0) is the spin propagator,

U~ t8,t0!5exp@2 iH S~ t0!~ t82t0!/\#, ~6!

andrS
+ is the density operator of the electron spin system. In

NMR experiments, the electron spin system is at thermal
equilibrium, i.e.,

rS5rS
+ ~7a!

5exp~2HS/kT!. ~7b!

The Hamiltonian of Eq.~1! HS , depends on both spin and
molecular degrees of freedom. The superscripting line of Eq.
~7b! indicates an ensemble average over the molecular coor-
dinates. When the spin system is in the high temperature
limit, Eq. ~7b! reduces to

rS
+ 5~2S11!211= . ~7c!

Equation~2! can be evaluated by simulating molecular
reorientation as a random walk process in the space of the
Euler angles which describe molecular orientation. Our
implementation of this model~a FORTRAN program called
PARELAX227! follows the work of Ivanov28 and is based on
the following assumptions:~1! molecular reorientation re-
sults from a sequence of rotational jumps which occur at
randomly spaced intervals;~2! individual jumps are rapid
compared to the inverse transition frequencies of the spin
system;~3! the rotation axes of individual jumps are oriented
randomly in space;~4! the magnitude of the jump angle is
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distributed as a Gaussian deviate of widthsf and zero mean.
Thus the molecular motion is described as a thermal en-
semble of trajectories, each consisting of a sequence of in-
tervals of random duration, (t1 ,t2 ,t3 ,...) connected by sud-
den rotational jumps. The description of molecular motions
is much less detailed than that provided by full molecular
dynamics ~MD! simulation,29 but the model appears well
suited to computation of spin TCFs. The reorientational cor-
relation timetR

(1) of a molecule-fixed vector is determined by
two parameterssf andnJ , wherenJ is the average number
of jumps pertR

(1) interval ~the quantitiestR
(1) and nJ are

treated as input parameters of the calculation!. In trial simu-
lations, we have confirmed the approximate relation,30

sf5pA0.101/nJ, ~8!

from which sf is calculated.
The Hamiltonian in Eq.~6! is time independent in the

intervals between jumps and changes suddenly during jumps.
The propagator can be decomposed as follows:

U~ t,t0!5U ~0!~ t1 ,t0!U8~ t1!U ~1!~ t2 ,t1!

3U8~ t2!...U ~n!~ t,tn!. ~9!

U (n)(t,tn) is the propagator in the intervaltn– tn11 , and
U8(tn) is the propagator for the jump connecting the inter-
vals, n andn11. If jumps are rapid,~i.e., the time scale of
the jump is rapid compared to the inverse transition frequen-
cies ofHS), the state vector is unaffected~this is the ‘‘Sud-
den Approximation’’31,32!:

U8~ tn!51= . ~10!

Spin dynamics simulations evaluateGr(t) as an ensemble
average of random walk trajectories constructed in this way.
At the beginning of thenth interval, the spin Hamiltonian is
computed and the propagatorU (n)(t,tn) evaluated from the
series definition. Then the spin TCF is evaluated at a se-
quence of time steps within the interval until the next jump
occurs, when new values ofHS and U (n11)(t,tn11) are
evaluated. This calculation requires that the new spin Hamil-
tonian, which is expressed in the MF~molecule-fixed coor-
dinate frame! in Eq. ~5!, be reexpressed in the LF~laboratory
frame!. For this purpose, the spin operators are transformed
in the spherical basis using Wigner rotation matrix elements,
Dq,q8

, (a,b,g),

Ŝq
~2!5 (

q8522

12

Sq8
~2!Dq,q8

~2!
~a,b,g!, ~11!

where~a,b,g! are the Euler angles of the transformation.
It is important in these calculations that the propagator

be evaluated as accurately as possible in order that the spin
operators retain their norm after many propagation steps.
This can be done satisfactorily using double precision vari-
ables as long as the time step used in Eq.~6! is not too long.
In practice, we set the fundamental time step of the trajectory
equal to (721h/^HS&m), where^HS&m is the largest matrix
element of̂ HS&. In this way, seven time steps describe one
period of the fastest oscillation of the coherent spin motion.
~Note that an interval between rotational jumps usually con-

tains several time steps of the trajectory.! This algorithm is
stable and accurate across trajectories consisting of.104

time steps.

B. Dipolar TCFs

In addition to the spin TCFs, we are also interested in the
dipolar TCFs,Gdip(t), for the electron-nuclear (S-I ) dipolar
interaction that is responsible for NMR-PRE. These quanti-
ties are defined as follows:33

The S-I dipolar Hamiltonian can be written in spherical
tensor form as

Hdip5321/2\kr IS
23 (

q521

11

~21!12qI q
~1!F2q

~1! ~u,w!, ~12!

k52301/2g IgSbe~m0/4p!. ~13!

In Eq. ~13!, g I is the nuclear gyromagnetic ratio,m0 is the
permeability of space, andr IS is the length of theI -S inter-
spin vector. The functionsFq

(1)(u,w) are first rank spherical
tensors constructed from the electron spin variables,Sp

(1) and
the spherical harmonics,Y2,p(u,w), which describe the ori-
entation of the interspinI -S vector in the laboratory coordi-
nate frame:

Fm
~1!~u,w!5~12p/5!1/2 (

p,q521

11

~21!12q

3F1 2 1

p q 2mGSp
~1!Y2,q~u,w!. ~14!

The symbols in square brackets are 3-j symbols. The physi-
cal significance of the operatorsFm

(1) is evident from the
form of Eq.~12!, which expressesHdip in terms of the scalar
product,FW •IW @which is written in spherical tensor form in Eq.
~12!#. In the semiclassical picture, the dipolar energy is
Edip52BW dip•mW I . TheFq

(1)(u,w) are thus proportional to the
spherical components of the operator that represents the local
dipolar field ofS at the nuclear spinI.

From Eqs.~12!–~14!, the expression for the dipolarR1

NMR-PRE is

~T1p!215~2321k2r IS
26!

3E
0

`

$^F21
~1! ~ t !F11

~1! ~0!&eiv i t1c.c.%dt. ~15!

The dipolar TCF,Gdip(t), is defined as

Gdip~ t !5^Fp
~1!~ t !F2p

~1! ~0!& ~p50,61!. ~16!

This quantity describes the motion~both coherent and sto-
chastic! of the dipolar field of the electron spinS at the
nuclear spinI. @The notation of Eqs.~15! and~16! omits the
$u,w% dependence of theFq

(1)(u,w;t), since this dependence
is eliminated fromGdip(t) when the spatial average is calcu-
lated.#
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III. RESULTS

A. ZFS-limit behavior

Figure 1 shows a plot of the spin TCF,GZ(t), for a spin
S51 in the cylindrical zfs limit (D51 cm21, E50, B0

50 T). Also shown on the plot are the simulated decays of a
molecule-fixed vector, for which the decay constant istR

(1) ,
and a molecule-fixed second-rank tensor (tR

(2)). The sf pa-
rameter of the simulation was calculated using Eq.~8! with
tR

(1)5100 ps andnJ530. All three decays are exponential,
and the ratio of decay constants,tR

(2)/tR
(1)5321, obeys the

well known relationship,tR
(,)}@,(,11)#21, for ,th-rank

molecule-fixed tensors. The simulated decay constant of
GZ(t) is thus intermediate betweentR

(1) and tR
(2) , approxi-

mately,

tS,Z50.53tR
~1! . ~17!

This result reflects the following physical situation. In
the zfs limit, when the zfs tensor is cylindrical (E50),
GZ(t) is a constant of the motion in the absence of molecular
reorientation. ~This fact is evident from Eq.~4!, since
@Hzfs

+ ,Ŝz#50 whenE50.) If the spin were a classical vector,
GZ(t) would decay according totR

(1) . However, the quantum
mechanical spin system undergoes transitions as the zfs ten-
sor reorients, leading to a decay that is faster thantR

(1) . As an
illustration, we consider the transition from the first to the
second interval in a random walk trajectory. Fort0,t,t1 ,
^Ŝz& andGZ(t) are constants of the motion. At the jump, the
zfs tensor reorients, and the spin motion is requantized along
the new principal axis of the zfs tensor. Fort1,t,t2 ,
(^Ŝz&)8 and @GZ(t)#8, evaluated in the new eigensystem of
(Hzfs

+ )8, are also constants of the motion. However, the
change in the axes of spin quantization leads to transitions

out of the original eigenstates ofHzfs
+ and these transitions

represent a loss of spin memory in addition to that due to
simple reorientation of thez axis. In the Sudden Approxima-
tion, the probability of transition out of the eigenstate,u i n&,
of (Hzfs

+ )(n) during thenth interval, into eigenstateu j n11&, of
the Hamiltonian, (Hzfs

+ )(n11), during intervaln11, is given
by32

P~ i n→ j n11!5u^ i nu j n11&u2. ~18!

It is an interesting result of the simulation of Fig.~1! that the
zfs limit decay due to spin transitions is approximately equal
to the decay due to vector reorientation, i.e.,

tS,R'tR
~1!/2. ~19!

A similar result was found by Bertini, Luchinat, and
Kowalewski34 in calculations of the NMR-PRE produced by
a uniaxial S51 spin system reorienting rapidly in the zfs
limit.

Figure 2 shows the effect of motional averaging of the
zfs energy levels on the decay ofGZ(t). The level structure
due toHzfs

+ is well defined only whenvDtR
(2).1. More rapid

reorientation averages and collapses the level structure. In
the limit wherevDtR

(2)!1, the decay ofGZ(t) is expected to
become long, approaching infinity in the limit of shorttR

(2) .
These phenomena are illustrated by the simulations in Fig. 2,
which shows the effect of varyingD with constanttR

(2)

533 ps. The onset of reorientational collapse of the level
structure occurs in the vicinity ofvDtR

(2)51, which in the
figure corresponds to a zfs parameter,D50.17 cm21 ~curve
e!. For D,0.3 cm21 ~curves f, g, h!, the decay slows and
becomes non-linear, as expected. WhenvDtR

(2).2, the de-
cay is almost independent ofD (a,b,c) and the decay con-
stant is given by Eq.~17!.

FIG. 1. Decay of the normalized spin TCF,GZ(t), in the cylindrical zfs
limit for S51. Also shown are the simulated decays of molecule-fixed first-
and second-rank tensors (tR

(1) and tR
(2)). The calculations assumed zfs pa-

rameters,D51 cm21 and E50 cm21, with B050 andtR
(1)5100 ps. De-

cays are averaged over 1472 trajectories.

FIG. 2. Dependence of the electron spin time correlation functionGZ(t) on
the cylindrical zfs parameterD. Curves~a!–~h! were calculated assuming
D510, 3, 1, 0.3, 0.17, 0.1, 0.07, and 0.03 cm21, tR

(2)533 ps. This range of
D corresponds to 63>vDtR

(2)>0.19. Other parameters are the same as for
Fig. 1.
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These results describeS51 when the zfs tensor is cylin-
drical. The presence of an orthorhombic term,E 0, in the zfs
tensor forces a cartesian polarization on the spin wave func-
tions and splits themS561 non-Kramers doublet. The
change in the level diagram and in the labeling of spin wave
functions is shown in Fig. 3. WhenEÞ0, @Hzfs

+ ,Ŝz#Þ0, and
GZ(t) is no longer a constant of the motion; rather it is
driven into coherent oscillation at the non-Kramers doublet
splitting, 2vE54pcE. The oscillation inGZ(t) increases
the rate of loss of phase memory relative to the cylindrical
zfs case. Figure 4 shows simulated spin decays, calculated
for physical conditions equivalent to those of Fig. 1 except
with a non-zeroE value. The orthorhombicity-induced oscil-
lation of ^Ŝz& introduces nonlinearity into the decay and ac-
celerates it~Fig. 4!. The maximum physical value ofE is
E5D/3 ~larger values ofE are usually described by redefin-

ing the coordinate system!, at which point the 1/e decay time
of GZ(t) is shorter by a factor of roughly 5 relative to the
E50 situation.

B. Comparison of the motions of GZ„t … and Gdip „t …
in the intermediate regime

Equations~2! and ~16! define the two TCFs,GZ(t) and
Gdip(t), the first of which describes the electron spin motion,
the second, the motion of the local dipolar field of electron
spin S at the nuclear spinI. It is Gdip(t) that is directly
related to the NMR-PRE through Eq.~15!. We expect, on
physical grounds, thatGZ(t) andGdip(t) will coincide in the
zfs-limit, since in that situation the location of theI spin is
fixed with respect to the quantization axes of the electron
spin motion. Reorientation of the zfs principal axis system
~zfs-PAS! does not alter dipolar field ofSat I. In the Zeeman
limit, the situation is very different: The electron spin motion
is quantized along the laboratory magnetic field and has no
fixed relation to the interspin vector. In this limit, the reori-
entational correlation time is that of a second-rank molecule-
fixed tensortR

(2) .
Figures 5–7 show the decay ofGZ(t) andGdip(t) as the

spin system passes between the zfs and Zeeman limits. The
ratio vZ /vD , wherevZ is the electron Larmor frequency, is
useful for tracking the passage of the spin system through the
intermediate regime, which is centered, approximately,
wherevZ /vD'1. Figure 5 shows simulations performed in
the vicinity of the zfs limit.Gdip(t) exhibits substantial co-
herent oscillation, but the stochastic decay of the envelope
coincides with the that ofGZ(t). Thus, in the zfs limit, both
GZ(t) andGdip(t) decay with the time constant given by Eq.
~17!. Figure 6 shows the TCF decay in the intermediate re-
gime of field strengths (vZ /vD50.24). The decay of the

FIG. 3. Energy levels and spin eigenfunctions forS51 in the zfs limit. The
diagrams assume a cylindrical~a! and orthorhombic~b! zfs tensor, with
positiveD andE.

FIG. 4. Simulations of the spin TCF forS51, D51 cm21, with four values
of E/D: E/D50 ~circles!!; E/D50.1 ~filled diamonds!; E/D50.2 ~unfilled
diamonds!; E/D50.3,~unfilled triangles!. Decays oftR

(1) andtR
(2) are shown

as solid and dashed lines, respectively.

FIG. 5. Decay ofGZ(t) ~open circles! and Gdip(t) ~filled circles! in the
vicinity of the zfs limit: vZ /vD50.008. The calculations assumed thatD
51 cm21 andB050.01 T, with other parameters the same as Fig. 3. Decays
are also shown fortR

(1) ~solid line! andtR
(2) ~dashed line!.
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spin TCF, GZ(t), slows, while that of the dipolar TCF,
Gdip(t), becomes faster relative to the zfs limit.

Figure 7 shows the progress toward the Zeeman limit.
The decay constanttS,Z of the spin TCF becomes very long
compared to the zfs-limit value of Eq.~17! while the decay
constant ofGdip(t) shortens, approachingtR

(2) . The progress
between the zfs and Zeeman limits is plotted in Fig. 8, which
shows the (1/e) decay time as a function ofvZ /vD ~both

decays are nonexponential in the intermediate regime!. In
these simulations,B0 varied from 0.01 to 10 T withD
51 cm21, E50.

The Zeeman-limit behavior is also shown in Fig. 9,
which contains a plot of the spin decay rate, (tS,Z)21, as a
function of D at constantB051 T. The variation ofD cor-
responds to the range 0.21>(vD /vZ), i.e., the approach to
the Zeeman limit. In this region, the decay rate is propor-
tional to vD

2 (tR
(2)).

FIG. 6. Decay ofGZ(t) ~open circles! and Gdip(t) ~filled circles! in the
intermediate regime of field strengths:vZ /vD50.24. The calculations as-
sumed thatD51 cm21, B050.3 T, with other parameters the same as Fig.
3. Decays are also shown fortR

(1) ~solid line! andtR
(2)5~dashed line!.

FIG. 7. Decay ofGZ(t) ~circles! andGdip(t) ~triangles! in the vicinity of the
Zeeman limit and in the intermediate regime:vZ /vD52.4 ~solid symbols!
and 0.81~open symbols!. The calculations assumed thatD51 cm21 with
B053 T ~solid symbols! or 1 T ~open symbols!, with other parameters the
same as in Fig. 1. Decays are also shown fortR

(1) ~solid line! and
tR

(2)5~dashed line!.

FIG. 8. Estimated 1/e decay times of the spin TCF@GZ(t), unfilled sym-
bols#, and the dipolar TCF,@Gdip(t), filled#, in passing between the Zeeman
and zfs limits.

FIG. 9. Decay of the spin TCF,GZ(t), in the vicinity of the Zeeman Limit.
SD simulations were performed at constant Zeeman field strength,B0
51 T, with variation ofD. Other parameters are given in the legend of
Fig. 1.
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C. Dependence of the spin motion on reorientational
jump frequency

The simulations described above were calculated using a
random walk model withnJ530 reorientational jumps per
tR

(1) period. To examine whether the results depend on the
reorientational jump frequency, simulations were performed
over a range of values, 4<nJ<30, with results that are
shown in Fig. 10. The spin motion was nearly independent of
nJ for nJ>15.

IV. SUMMARY OF RESULTS

The objective of this study is to characterize the electron
spin mechanism due to zfs tensor reorientation in the inter-
mediate and zfs-limit regimes forS51. Based on the results
of SD simulations, the behavior of the spin and dipolar
TCFs,GZ(t) andGdip(t), can be summarized as follows:

~A! When the zfs tensor is cylindrical (E50):
~1! The zfs-limit decays of the spin and dipolar TCFs

occurs with the same time constant,tdec'0.53tR
(1) @Eq.

~17!#. This decay constant is independent of the magnitude of
D and of the jump frequency,nJ .

~2! Molecular reorientation that is rapid on the time-
scale of the inverse level splittings (vDtR

(2)<1) collapses the
zfs level structure, leading to a lengthening of the spin decay
time, tS,Z→` in the fast reorientation limit.

~3! In the vicinity of the Zeeman limit (vZ /vD@1), the
decay constant ofGZ(t) becomes long, the inverse decay
constant tending to zero asD2; thus, in passing from the zfs
limit to the Zeeman limittS,Z varies between limiting values,
0.53tR

(1)<tS,Z<`.
~4! The dipolar TCF,Gdip(t), is related more directly to

the NMR-PRE than the spin TCF,GZ(t). In the zfs limit, the
decay constants ofGZ(t) andGdip(t) are equal. In the Zee-

man limit, the decay constant ofGdip(t) approachestR
(2) as

required by Zeeman-limit. Theory, while the decay rate of
GZ(t) approaches zero.

~B! The presence of an orthorhombic term (EÞ0) in
the zfs tensor strongly influences bothGZ(t) and Gdip(t).
The zfs limit decay shortened several fold in simulations
whenE/D increased from zero to its maximum value of 1/3.

V. DISCUSSION

A. Dependence of the results
on the diffusional model

The zfs limit decay kinetics described above are not very
sensitive to the reorientational jump frequency~Fig. 10!, but
they do depend on the assumption that reorientational motion
occurs as rapid jumps, rather than as continuous motions. In
the limiting situation of slow, continuous reorientation, the
motion of the spin system is described by the adiabatic ap-
proximation rather than by the sudden approximation. The
motion of ^SZ& is then locked to the zfs principal axes, and
reorientation does not induce spin transitions. In this case,
decay ofGZ(t) is described bytR

(1) , as for a classical vector.
However, it seems likely that in most practical cases the
elementary rotational motions of Brownian diffusion will be
rapid compared to the inverse spin transition frequencies, in
which case the random walk model and the zfs limit decay
time of Eq.~17! provide a better description.

It is interesting that the calculations by Bertini, Luchinat,
and Kowalewski34 of the NMR-PRE produced by a reorient-
ing S51 spin system in the zfs limit likewise gave the result
of Eq. ~17!, although that study described reorientation by
the classical diffusion equation rather than by the random
walk model used here. It is expected thattS,Z will be less
than tR

(1) when the elementary diffusive motions are rapid
compared to the motions of the spin system, but the quanti-
tative result of Eq.~17! has not yet been shown to be model
independent. However, the agreement of these two studies
suggests that this result may be a general one when diffusive
motions are rapid.

B. Relation to NMR-PRE

We consider the question of how these findings bear on
calculations of the NMR-PRE. The Zeeman-limit situation is
straightforward sinceHS is time independent and SBM
Theory applies. When a permanent zfs interaction is present,
however, HS(t) and the spin wavefunctions are time-
dependent, which introduces considerable complexity into
the theory. The SD simulation methods described
above27,30,33,35and the stochastic Liouville formalism devel-
oped in Sweden36–39 can be used in the general situation.

An intermediate level of theory may be appropriate
whenHzfs

+ is significant in magnitude but is effectively time
independent due to slow Brownian reorientation. This level
of theory, often called ‘‘Slow Reorientation’’, has been de-
veloped both in this laboratory40–42 and by workers in
Florence43 and Sweden.37,44The slow reorientation approach
can improved to account for a portion of the reorientational
time dependence by inserting a factor, exp(2t/tR

(2)), into

FIG. 10. Effect of varyingnJ ~number of reorientational jumps pertR
(1)

interval! on the electron spin TCF. TCFs were calculated assumingnJ54, 6,
10, 15, 30, increasing with the arrow. Other parameters are the same as in
Fig. 1.
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Gdip(t) while ignoring the time dependence ofHS(t) in Eq.
~2!.30,45,46This procedure is intended to describe the motion
of the interspin vectorrW IS while neglecting the motion of
HS(t). The approach is attractive in that it permits relatively
rapid and simple calculations of the NMR-PRE while ac-
counting in part for both the zfs interaction and reorienta-
tional motion. Prior work30,44 has indicated that these contri-
butions are substantial.

However, the question arises as to what reorientational
correlation time is appropriate in slow reorientation theory.
In the Zeeman limit, it is clearlytR

(2) , but this quantity is
only appropriate when both spinsI andShave Zeeman quan-
tization. When theS spin does not have a Zeeman quantiza-
tion, the reorientational time dependence of theI -S dipolar
interaction is described byGdip(t). This quantity describes
the coupled motions of the electron spin~including motions
driven both by reorientation of the zfs-PAS and by spin tran-
sitions! and the motion ofrW IS . The correct reorientational
correlation time for slow reorientation theory is the magnetic
field-dependent quantity,tS,dip , which, forS51 and a cylin-
drical zfs tensor, is plotted in Fig. 8.

For the conditions described by the figure,tS,dip varies
between limits oftR

(2) in the Zeeman limit and that given by
Eq. ~17! in the zfs limit. Thus the use oftR

(2) in slow reori-
entation theory, while physically inappropriate outside of the
Zeeman limit, introduces only modest quantitative error
~<30%!, which could be considered a reasonable approxi-
mation. However, the presence of rhombicity in the zfs ten-
sor can have a large~as much as several fold! influence on
the decay ofGdip(t), as shown in Fig. 4. The magnitude of
zfs rhombicity is usually unknown~except when excluded by
symmetry!, and thus in most cases, our estimate oftS,dip is
rather crude. ForS51, tS,dip is no larger than the value given
by Eq. ~17! but may be several fold shorter.

The dramatic effect of zfs rhombicity on the spin motion
of integer spins results from rhombicity-induced splitting of
mS561 non-Kramers doublet.39,47–49For half-integer spins,
the Kramers doublets are unsplit by zfs couplings of all or-
ders, and the motion ofGdip(t) is less affected by low sym-
metry terms in the zfs tensor. Thus, it seems likely that the
inherent uncertainty intS,dip is much smaller for half-integer
spins than for integer spins, although further study of this
point is needed.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CHE-0209616.

1J. H. Van Vleck, Phys. Rev.57, 426 ~1940!.
2N. Bloembergen and L. O. Morgan, J. Chem. Phys.34, 842 ~1961!.
3A. Carrington and G. R. Luckhurst, Mol. Phys.8, 125 ~1964!.
4M. Rubinstein, A. Baram, and Z. Luz, Mol. Phys.20, 67 ~1971!.
5B. B. Garrett and L. O. Morgan, J. Chem. Phys.44, 890 ~1966!.
6G. R. Luckhurst and G. F. Pedulli, Mol. Phys.22, 931 ~1971!.

7P.-O. Westlund, N. Benetis, and H. Wennerstrom, Mol. Phys.61, 177
~1987!.

8J. Svoboda, T. Nilsson, J. Kowalewski, P.-O. Westlund, and P. T. Larsson,
J. Magn. Reson., Ser. A121, 108 ~1996!.

9P.-O. Westlund and P. T. Larsson, Acta Chem. Scand.45, 11 ~1991!.
10P.-O. Westlund, J. Chem. Phys.108, 4945~1998!.
11I. Bertini, J. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Chem.

Phys.111, 5795~1999!.
12R. Sharp and L. Lohr, J. Chem. Phys.115, 5005~2001!.
13R. Sharp, J. Magn. Reson.154, 269 ~2002!.
14A. Hudson and G. R. Luckhurst, Mol. Phys.16, 395 ~1969!.
15A. Hudson and J. W. E. Lewis, Trans. Faraday Soc.66, 1297~1970!.
16A. D. McLachlan, Proc. R. Soc. London280, 271 ~1964!.
17H. Levanon, S. Charbinsky, and Z. Luz, J. Chem. Phys.53, 3056~1970!.
18S. Rast, A. Borel, L. Helm, E. Belorizky, P. H. Fries, and A. E. Merbach,

J. Am. Chem. Soc.123, 2637~2001!.
19S. Rast, P. H. Fries, and E. Belorizky, J. Chem. Phys.113, 8724~2000!.
20R. Sharp, Nucl. Magn. Reson., Spec. Period. Rep.30, 477~2001!; 32, 473

~2003!.
21E. Toth, L. Helm, and A. E. Merbach, Comprehensive Coord. Chem. II9,

841 ~2004!.
22N. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O.

Westlund, Mol. Phys.48, 329 ~1983!.
23N. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O.

Westlund, J. Magn. Reson.~1969-1992! 58, 261 ~1984!.
24P.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N.

Benetis, J. Magn. Reson.~1969-1992! 59, 91 ~1984!.
25N. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O.

Westlund, Mol. Phys.50, 515 ~1983!.
26J. Kowalewski, L. Nordenskiold, N. Benetis, and P.-O. Westlund, Prog.

Nucl. Magn. Reson. Spectrosc.17, 141 ~1985!.
27An earlier version of the program called SpinDyn is described by S. M.

Abernathy and R. R. Sharp, J. Chem. Phys.106, 9032~1997!.
28E. N. Ivanov, Zh. Eksp. Teor. Fiz.45, 1509~1963! @Sov. Phys. JETP18,

1041 ~1964!.
29M. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys.103, 1800

~1995!.
30J. Miller, N. Schaefle, and R. Sharp, Magn. Reson. Chem.41, 806~2003!.
31A. Messiah,Quantum Mechanics~Wiley, New York, 1962!, Chap. XVII.
32S. M. Blinder, Foundations of Quantum Mechanics~Academic, New

York, 1974!, Chap. 7.
33R. Sharp, L. Lohr, and J. Miller, Prog. Nucl. Magn. Reson. Spectrosc.38,

115 ~2001!.
34I. Bertini, C. Luchinat, and J. Kowalewski, J. Magn. Reson.~1969-1992!

62, 235 ~1985!.
35J. C. Miller and R. R. Sharp, J. Phys. Chem. A104, 4889~2000!.
36P.-O. Westlund, inDynamics of Solutions and Fluid Mixtures by NMR,

edited by J. J. Delpuech~Wiley, New York, 1995!, p. 173.
37T. Nilsson and J. Kowalewski, J. Magn. Reson.146, 345 ~2000!.
38D. Kruk, T. Nilsson, and J. Kowalewski, Phys. Chem. Chem. Phys.3,

4907 ~2001!.
39R. Nilsson, J. Svoboda, P.-O. Westlund, and J. Kowalewski, J. Chem.

Phys.109, 6364~1998!.
40R. R. Sharp, J. Chem. Phys.93, 6921~1990!.
41R. R. Sharp, J. Magn. Reson.~1969-1992! 100, 491 ~1992!.
42R. Sharp, S. M. Abernathy, and L. L. Lohr, J. Chem. Phys.107, 7620

~1997!.
43I. Bertini, O. Galas, C. Luchinat, and G. Parigi, J. Magn. Reson., Ser. A

113, 151 ~1995!.
44J. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Phys. Chem. A

106, 7376~2002!.
45D. Kruk and J. Kowalewski, JBIC, J. Biol. Inorg. Chem.8, 512 ~2003!.
46T. Nilsson and J. Kowalewski, Mol. Phys.98, 1617~2000!.
47R. R. Sharp, J. Chem. Phys.98, 6092~1993!.
48S. M. Abernathy, J. C. Miller, L. L. Lohr, and R. R. Sharp, J. Chem. Phys.

109, 4035~1998!.
49J. C. Miller, L. L. Lohr, and R. R. Sharp, J. Magn. Reson.148, 267~2001!.

5394 J. Chem. Phys., Vol. 121, No. 11, 15 September 2004 N. Schaefle and R. Sharp


