THE UNIVERSITY OF MICHIGAN

SYSTEMS ENGINEERING LABORATORY

Department of Electrical Engineering
College of Engineering

SEL Technical Report No. 20

COMPUTER PROGRAMS DEALING WITH FINITE STATE MACHINES:
PART II

by

Thomas F. Piatkowski

July 1967

This research was supported by United States Air Force
Contract AF 30(602)-3546.

Section

=

VL

TABLE OF CONTENTS

Introduction

Conventions

Simple Adaptive Diagnosing

Finding an Equivalent Regular Expression
Displaying the Lattice of SP Partitions

Bibliography

32

49

71

I. Introduction

During the past several months I have been able to program
a number of algorithms dealing with finite-state machines; the pur-
poses of this effort being: (1) pedagogical application, (2) the stim-
ulation of insight, and (3) the generation of new questions and ap-
proaches. Out of a set of thirty-eight more or less different prob-
lems dealing with finite state machines, I selected seven represen-
tatives; namely:
1) simulate a given machine,
2) determine if a given machine is strongly connected,
3) determine the state equivalence classes and mini-
mal form for a given machine,
4) determine the automorphisms and their group for
a given machine,
5) determine a shortest simple adaptive diagnosing
experiment for a given machine and admissible set,
6) determine an equivalent regular expression for a
given machine,
7) exhibit the lattice of SP partitions for a given ma-
chine,
This report, the second of two, describes the programs treat-
ing problems five through seven; the first report treating problems

one through four appeared previously.

Concurrent with my own programming efforts, Iattempted
to document existing programs in this area; the results of my search
are included in the bibliography.

The first two programs contained in this report are written
in 7090 SNOBOL for execution in the batch mode; the third program
is written in 360 FORTRAN IV for execution in the time-sharing
mode on MTS, the Michigan Terminal System. A conscious effort

has been made to make them straightforward and easy to use.

II. Conventions

We will deal with N, P, Q machines where
N = the number of states in state set S,
P = the number of symbols in input alphabet AI’
Q = the number of symbols in output alphabet AO.
We will only consider machines coded such that
s=1{1,2,...,N}
Ar=1{1,2,...,P}

AO‘—{].,Z,...,Q}

A machine is a system M =<8, AI’ AO’ FS, FZ >
where S, AI’ and AO are as above and where FS, the next state

function, maps S X A_ =S and FZ, the output function, maps

I
S X AI - AO for Mealy machines and S --AO for Moore machines.

It is assumed that the reader is familiar with the necessary
theoretical concepts of finite-state machine theory [See 1, 2, and
3] and with the programming languages SNOBOL and FORTRAN IV.

The first two programs were written to run in SNOBOL un-
der the University of Michigan Executive System for the IBM 7090
Computer as it existed in May 1967. The third program was writ-

ten to run in FORTRAN IV under the University of Michigan Ter-

minal System for the IBM 360 as it existed in July 1967.

III. Simple Adaptive Diagnosing

A.

B.

C.

Program Name: SAD

Purpose:

Method:

To analyze a given finite-state machine and
admissible set and determine if a simple
adaptive diagnosing experiment exists; if one
does, display a representative from the class
of shortest such experiments (the length of an
experiment is defined here as the length of
the longest input sequence required - i. e. the
worst case).

The method of solution consists in properly
creating and interpreting a diagnosing tree,
The tree has AM, the admissible set, associ-
ated with its root node. Branches and nodes
are added and deleted by alternate application
of growing and pruning algorithms until each
branch is appropriately terminated; at this
point the tree structure will indicate if an
adaptive diagnosing experiment exists and

if so display the procedure for carrying it

out.

Growing Algorithm: Let M be the machine under consideration.

Let S , the source set, = {sl, Sg; - - ,sr} C S represents a range

of uncertainty in our knowledge of the present state of M; i. e., we
know that the present state of M is one of the states in S o but no
more,

Associate a node with SO; call this node the source node. From

the source node extend P branches, each corresponding to a symbol
in AI‘ Terminate each branch with a distinct node and label each
node with the corresponding input; call these new nodes the input

nodes. From each input node extend Q branches, each correspond-

ing to a symbol in Ao' Terminate each branch with a distinct node
and label the node with the corresponding output; call these new nodes

the successor nodes.

Each successor node is derived from the source node by a unique
input, I, and output, J; therefore we can speak unambiguously

about the I/J successor node of the source node for all 1 <I< P

and 1 < J < Q. With each I/J successor node associate an I/J

successor set as follows:

1) I/J successor set of S_ = {FS(s,) |se S, F2(s,1) = J}.
In other words, the I/J successor set of S, is the set of
all states in M such that each can be reached from a
state in S0 on the single input I with accompanying out-
put J. Contrary to the usual convention in set theory,

however, explicitly indicate multiple non-distinct entries

in any successor set by listing these elements more
than once; i. e., if two or more states in SO go into
the same state s' on input I with output J, then s’
will appear two or more times in the I/J successor
set of So' For example, Figure 2 illustrates the
above construction for machine M1 (Figure 1) and

source set {1,2,3}.

The growing algorithm displays the possibilities for altering the
range of uncertainty in our knowledge of the present state of the
machine by applying a single input and monitoring the attending
output; i. e. , if the present state of the machine is known to be
in the source set then if input I causes the attending output J, the
new state of the machine must be in the I/J successor set of the

source set,

Successor Node Evaluation: Application of the growing algorithm

results in P X Q successor nodes for each source node. The
successor set corresponding to each successor node can be either
1) empty
2) a singleton
3) multiple with distinct entries, or

4) multiple with at least one repeated entry.

Figure 1. M1, a 7,3,2 Machine

INPUT= 3

INPUT=2,

OUTPUT={ OUTPUT=Z OUTPUT=1 OUTPUT=Z OUTPUT={1 OUTPUT=2

f2) {3} {ass) ¢ {123 %

Figure 2. Derivation of All I/J Successors
of Source Set {1,2,3} for M1

An empty I/J successor set implies the impossibility of getting an
output J when input I is applied to any state in the source set. Such
successor nodes and their corresponding branches are deleted from

the tree without consequence.

A singleton I/J successor set implies that a unique state in the
source set yields output J in response to input L. In the event this
unique state was indeed the initial state of M the inputting of I

with attendent outputting of J would identify the fact. Nodes corres-
ponding to singleton sets are terminal in that no further experiment-
ing is needed to identify the machine's present state and its prede-

cessor state in the source set.

A multiple distinct I/J successor set implies that if the initial

state of M is in the source set and the inputting of I is attended by
output J, then the range of uncertainty in the new present state of

M is shifted to the I/J successor set with no introduction of ambiguity
in the predecessor state; i. e., each state in the I/J successor set
has a unique predecessor in the source set and therefore the ability
to diagnose the successor set would ensure the ability to diagnose

the initial state in the source set, conditional on the original I, J
input/output pair. Nodes corresponding to multiple distinct I/J
successor sets are not terminal since they indicate some uncer-

tainty still exists in our knowledge of the machine's present state;

in general this range of uncertainty is different and possibly re-

duced from the range of uncertainty in the source set.

A multiple repeated I/J successor set implies that at least two

states of the source set yield identical outputs and move to identical
successor states in response to input I; such a condition precludes
the distinguishing of the initially distinct states by any further experi-
menting; thus input I must not be applied to M when the range of
uncertainty is the source set since doing so will, in general, pro-
hibit a successful diagnosis. For this reason nodes corresponding

to multiple repeated I/J successor sets are terminal,

Node Logic: The source set is diagnosable iff there exists at
least one input I such that for all outputs J, the I/J successor sets
are either empty or diagnosable. In other words, source nodes
act as OR gates and input nodes as AND gates. This may be in-
dicated explicitly in a graphical presentation of the diagnosis tree

by drawing source nodes as @ and input nodes as O.

Furthermore, singleton sets, being always diagnosable, are inter-
preted as terminal TRUE nodes; multiple repeated successor sets,
being never diagnosable, are interpreted as terminal FALSE nodes
and both TRUE and FALSE terminal nodes have the usual implication

on the truth value of preceeding AND and OR gates.

10

Erecting and Pruning the Tree: The tree is created by erecting

successive levels of successor nodes corresponding to all input
strings of length 1, then 2, then 3, etc. The process is
initiated by associating AM, the admissible set, with the single
source node at level zero. The first level of successor nodes is
erected from the root and then, in turn, provides the source nodes
for erection of the second level of successor nodes and so on.

In general each level of successor nodes will contain a number of
terminal nodes - some TRUE, some FALSE; as each terminal
node is created the implication of its truth value is projected as far
as possible back through the tree toward the root node. An effi-
cienty of computation is effected by accompanying the backward
implication of each new terminal node with the following pruning
procedures:

1) If an AND node is TRUE then its preceeding OR node
is also TRUE and all portions of the tree descending
from the OR node save for the branch to the TRUE AND
may be deleted without affecting the truth value of the
OR node.

2) If an OR node is FALSE its implication of the truth
value FALSE backward toward the root node will halt
either at the root node itself or at some AND node

which we will call the parent node (a FALSE OR always

implies the preceeding AND is FALSE thus backward

11

implication cannot halt at an OR node unless it be
the root). In the latter event delete the parent node,
its descendent subtree and the branch descending
into the parent node; none of these deletions affect
the evaluation of the OR node preceeding the parent

node.

In general a single TRUE terminal node may induce several appli-
cations of rule 1 whereas a single FALSE terminal node will induce

only a single application of rule 2.

Cycles: There is one additional condition under which a successor
node is terminal FALSE; i. e. when its associated set is identical
to that of one of its predecessors (not necessarily the immediate
predecessor); this follows from the observation that no diagnostic
purpose is served by allowing an input/output sequence that causes
the range of uncertainty to repeat. Since each input/output sequence
corresponds uniquely to its final successor node, the negation of a
particular cyclic successor node will eliminate from consideration
precisely the proper input/output sequence without of itself elimi-
nating any other sequences. A cyclic terminal node has the same

backward implications in the tree as any other FALSE node.

12

Addition of Initial State Information to the State Sets: Every state

set corresponding to a node in the tree explicitly denotes the range

of uncertainty in the present state of the machine after a particular
input/output sequence. No explicit information is given regarding
the range of uncertainty in the initial state of the machine, This in-
formation may be explicitly added in the following manner: each
state s in the state set under consideration is an I/J successor of some
unique initial state s' in the admissible AM; replace the element s

in the state set by the state pair s, s' — thus the sets associated

with nodes in the tree will be sets of state pairs, the first state

in each pair denoting a possible present state and the second denoting
the corresponding initial state. For example, in Figure 2 the root
node would now have the associated state set {1.1, 2.2, 3. 3} and the
2/1 successor of the root node the associated state set

{4.1, 5.2, 5,3}, etc.

The explicit denotation of the initial state associated with each
present state is conveniently expedited by modifying equation (1)
to read

(2) I/J successor set of S_ = {FS(s, D). s'ls.s'¢€ S, FZ(s,]) = J}

Thus the initial state information is created as each successor
set is created with reference being made only to the source

node involved.

13

The explicit display of initial state information in the state sets in
no way influences the growth of the tree; i. e. the evaluation of ter-
minal nodes, whether singletons, multiple repeated or cyclic de-

pends only on present state information.

Termination and Interpretation of the Computation: Construction

of the tree is carried out until the truth value of the root node is
established; if this value is FALSE no adaptive diagnosing experi-
ment for the given machine and admissible set is possible; if this
value is true then an adaptive diagnosing experiment does exist
and is carried out as follows:

1) Obtain a copy of the given machine with initial
state in the admissible set.

2) Let the first source node be the root node of the tree;
i.e. before any input has been applied to the machine
the present state and initial state are identical. By
assumption this node is TRUE.

3) The source set displays the current range of uncer-
tainty in the present state and the associated initial
state of the machine, If the source set is a singleton
the present and initial states of the machine are known
precisely, the experiment is complete, halt; if the

source set is not a singleton go to 4).

14

The pruning algorithm and node logic guarantee

that each non-terminal OR node in the tree has a
unique TRUE successor input node; in particular

the current source node has a unique TRUE succes-
sor input node with associated input L Apply input

I to the machine and note the output J. Let the I/J
successor of the source node become the new source
node; this node must be TRUE or else node logic
would require the preceeding AND node to be FALSE

which would be a contradiction. Go to 3).

For example, Figure 3 displays the completed diagnosing tree

for machine M1 with AM = S; the positive result of this example

ensures that any admissible set is diagnosable in M1.

D.

E.

Language and System: The program is written in SNOBOL

Input:

(31 December 1965 version) for exe-
cution on the University of Michigan
Executive System for the IBM 7090

computer as it existed in May 1967.

The input deck consists of an arbitrary number of
sub-decks; each sub-deck names and describes a
finite—state machine and lists one or more admissible

sets to be diagnosed for the given machine. The

15

& {14,22,33,44,5.5,6.6,77}

OUTPUT=1 OUTPUT=2
{1.1,2.1,3,3,54,4.5,6.6} ®) O i+
INPUT=1
ouTPUT=1 OUTPUT=2

{14,2.2,7.6}

INPUT=1
om’Pm: 1 ouTPUT=2
fa4 75,2} {3.3,6.4
oUTPUT=2, oUTPUT=1
{1.6} {1.5}
ouTPuT=2
f6.1,7.2}
oQUTPUT=4 OUTPUT=2

{7.4) {3.3}

INPUT = 1

ouUTPUT=1 OUTPUT=2

{24} {6.2]

Figure 3. Completed Diagnosing Tree for M1,
AM = {1,2,3,4,5,6,1}

16

make-up of each sub-deck and the card formats

are as follows:

1) Name card - up to 80 columns are available
for any string of alphameric characters
identifying the machine by name; trailing
blanks are ignored. This card must head
each sub-deck even if the name is blank.

2) N, P,Qcard - gives the values of N, P,Q for
the machine; three integers separated by
commas, no blanks, left justified on the card.

3) Transition table cards - N cards, each of
the following form:

S, sl/jl, sz/jz,. .. ,sP/jP
where s, Si’ji are integers separated by comma
and slash as above and all data is left justified

with no blanks and where

seS
s, = FS(s, i)
i, = F2(s, 1)

There should be precisely one transition table
card for each state in M; the transition table
cards may be in any order provided the last card
has s = N. The transition cards provide the

capability of describing any Mealy machine;

17

Moore machines may be described by the
artifice of making FZ(s, i) independent of i.

4) AM Cards - an arbitrary number of cards, each
specifying an admissible set to be tried on M
and each in the following form: (Sl’ Soyenes sm),
where the s; are integers separated by commas,
84 is preceeded by an open parenthesis in card

column 1 and S (m < N) is succeeded by a

closed parenthesis; the parentheses enclose no

blanks, Each sub-deck must contain at least

one admissible set and each admissible set at

least one element,

Restrictions: The only limitations on the size of machines (i. e.
N, P, Q) or admissible sets that this program will handle are
those imposed by the SNOBOL compiler itself on string length,
number of strings, etc. However, the input routines for
this program expect to find each of the follow ing data entries on
a single card

1) the machine name

2) the N, P, Q data

3) each row of the transition table

4) each admissible set

If multiple card input is required the input routines can be

18

rewritten; no change should be necessary in the body of the program.

F. Operation and Output: The program works through the data
deck sub-deck by sub-deck and for
each will output a description of the
corresponding machine followed by a
result for each admissible set. If no
adaptive experiment exists for a par-
ticular admissible set a comment to
that effect is made; if an adaptive
experiment does exist then the diagnosing
tree is listed in the following manner:
Each of the non-terminal OR nodes are
listed (each is identified by number).
The zero node is the root node of the tree.
Let X be the number of any OR node in the
tree; listed with X in the output is 1) the
associated state set indicating the range
of uncertainty in the present and initial
states, 2) the input I associated with the
succeeding TRUE AND node (for each X
this is unique), and 3) a list of successor
OR nodes corresponding to the various

outputs - this list has entries of the form

19

J/X' where J is an output symbol and X'

is the number of the I/J successor to X.
Terminal nodes will not be referenced by
number, instead the entry 'STOP' followed
by the initial and final states associated with

that terminal node are given after the output.

The program does not reuse node numbers
that have been pruned away - thus the com-
pleted tree and therefore the output list
will, in general, not number OR nodes

consegutively.

The output listing conveniently indicates
how to perform a diagnosis; the procedure
is to start at node zero, apply the associ-
ated input, observe output, move to indi-
cated new node, apply associated input,
etc. ... until a 'STOP' is encountered -
at which point the diagnosis is made. At
any point along the way the state set asso-
ciated with each node gives the present
range of uncertainty in both the present

and initial states.

20

e
UG Lo
PR O 6L 8L 1L S S L CLTL L OL GO B IS 9ICI YIRS 29 19 ONCS S LS SS IS S LS SOSEY Y PSP M Y Y W OIBCRELLASEM DI N M IR IR MR ZIRUBUNSAABANOEE L

1s5rEC
66
99900986888 05880808800008988008880898000008688000805000098080006008898820088885888888%

] NN R NN RN NN NN R N NN NN NN N NN NN NN N N R N N N N N R AN YN R N

9999999999998999999899999998999999989899989989999999993999989999998989999939999938
66666 66EC6 66606 S 6560666666666 666666666G66566666666565566666566665566666655666666
AR08z aazaaaaisiaa il asaiinnaiaiisiiaiii
EEECEEECEEEEeCEEEerEC ey CCEECCCEECCEECCEECECCCCECECEEECECEEECECEEEEEEEEEEECEEEEEe
rrreiTieizecryrII I LLLLLILLILTLILLLILILLLILIILLCILILICILILLILIILILLIIIIRIILLIBIILILILILTILILLILLLL
il
14
0

NN N NN R N N N N N N N N N NN

11it
O RLBL LS NELZL U ISIIINMSINIID ISR SSRGS EBON NP IVOIRKLACNLITLARREININCTEGKONUASAAUTANOE S LIS
oeos

i
'
D00COOBOO00OGB00B00D00000000000C00000006006000000000000000000000008000A00008 [

. (¥4
- _ ?«.H\»J\H.%

1,241/841/2°7
] T/E41,GoBE ¢
i 1,841/8¢2/9¢
T 1 piasdt
179419417249
/. am\ [4

gigt

R) 11658V

121,99
& I3

(pegec]

Aulpv.

7 eYed 91dwes D

21

H. Sample Output

SIMPLE AUAPTIVE DIAGNOSING

MACHINE NAME = Ml

N=7|P=3'Q=2
TRANSITION TABLES**%STATE FOLLUWED BY LIST GF (NEXT STATE/OUTPUT) FOR SUCCESSIVE INPUTS

1 1/1,4/1,1/1
2 2/145/1,2/1
3 3/245/1,3/1
4 6/245/145/1
5
6

T/2+4/1,44/1
T7/146/140/1
7 61247/¢411/2

___MACHINE NAME = M1, AUMISSIBLE SET = (142,3)

THE FOLLOWING IS A SIMPLE ADAPTIVE CIAGNUSING EXPERIMENT FOR THE GIVEN MACHINE ANO ADMISSIBLE SET

NO SET INPUT, FOLLOWED BY THE (LUTPUT/NEXT NO) LIST

0 1414242,3.3 1
1/1 : e
2/STOP(INIT = 3,FIN = 3)

1 l.l,2.2 2
1/3

4 6dlyT.2 1
1/STOPCINIT
2/STOPCINIT

won
N
-
=
-
ZzZ
([}
o~
-

MACHINE NAME = M1, ADMISSIBLE SET = (142334445:6,7}

THE FCLLOWING 1S A SIMPLE ADAPTIVE DIAGNOSING EXPERIMENT FOR ThHE GIVEN MACHINE ‘AND ADMISSIBLE SET
"NO SET [NPUT, FOLLOWED BY THE (OUTPUT/NEXT NO) LIST
) 10192029303 944415¢596069747 3

1/2
2/STOPUINIT = 7,4FIN = 7)

2 10192.42134315¢494+5,6.6 1
1/4
2/5

4 lel12.247.6 2
: 1/8 e
2/STOPLINIT = 6,4FIN = 7)

5 30347444645 1
1L/STOPULINIT = 5,FIN = 7)
2/13

8 4el195.2 1
2/1

13 3.39€e4 1

1/STOPUINIT = 4,FIN = 7)

___2/STOP(INIT = 3,FIN =3) = _ __

1S 6.1,7.2 1 B -
L/STOPCINIT = 1,FIN = 7)
2/STOPLINIT = 2,FIN = 6)

22

SIMPLE AUDAPTIVE CIAGNOSING
_MACHINE NAME = A21,GILL,PAGE lu€
N =10, P = 24y £ =2
TRANSITIUN TABLES*¥*STATE FCLLOWED BY LIST CF (NEXT STATE/OUTPUT) FOR SUCCESSIVE INPUTS

_ 1. 5/1:1/1
2 6/142/1
3 1/2,3/1
4 8/244/1
5 9/1,06/1
6 9714772
T .6/2:10/1
8 7/1,10/1
9 S/1,9/2
0 10/2,10/1

— ‘

MACHINE NAME = A21,GI1LLsPAGE 100, ADMLSSIBLE SET = (1,524344)

. THE FCLLOWING IS A SIMPLE ADAPTIVE DIAGNOSING EXPERIMENT FOR THE GIVEN MACHINE AND ADMISSIBLE SET

NO SET INPUT, FOLLUWED BY THE (OUTPUT/NEXT NO) LIST
0 lel92e293e34444 1
I 171
2/2

1 ely6.2 2

L/STUPCINIT = 1,FIN = 6)

2/STOPUINIT = 24FIN = 7)
T2 743,844 1

1/STUPLINIT = 44FIN = 7)

2/7STOPLINIT = 3,FIN = 6)

MACHINE NAME = A21,GILLyPAGE 106, AUNMISSIBLE SET = (54647+8)

TNO SIMPLE ADAPTIVE DIAGNOSING EXPERIMENT EXISTS FOR THE GIVEN MACHINE AND ADMISSIBLE SET

MACHINE NAME = A21,GILL,PAGE 106, ADMISSIBLE SET = (T)

ADMISSIBLE SET IS A SINGLETON#*%*%*NU EXPERIMENT NECESSARY

*xkkx ALL INPUT DATA HAVE BEEN PROCESSED

ELAPSED TIME --

TGTAL PROCESSING EXECUTION LOADING

. 0* Z1.8" . o' 2.0% 0! 14.,3" 0! 5.5"

23

I. Important Program Variables: This portion of the report will

OR nodes:

use the conventions of SNOBOL
to describe the contents of
several important string

variables appearing in the program.

each OR node is identified by a number, say X.

Associated with each OR node is a string 'OR' X which contains

information on that node and its function in the tree. The contents

of 'OR' X will vary during execution as follows:

1)
2)

if node X is pruned from the tree then $('OR' X) is null,
if node X is terminal TRUE then
$('OR' X) = 'F' FIN 'I' INIT '6' OUT
where FIN = the associated final state

INIT = the associated initial state

OUT = the associated output symbol,
if node X is nonterminal TRUE then

$('OR' X) = 'PT'SET '6' OUT 'S' Z2',"'
where SET = the state pair set corresponding to node X
and will be of the form #. #,#. #,...,#. #,
OUT = the associated output and
Z = the number of the unique succeeding

AND node

24

4) if node X is of undetermined truth value
$('OR' X) = 'L' LG 'PT' SET 'PR' Z 'S' LIST
where LG = the number of elements in SET (which is
defined as in 3 above)
Z = the number of the immediate AND predecessor
of X
LIST = a list (of the form #,#,...,#,) of the AND

successors of X (all must be unvalued)

AND nodes: each AND node is identified by a number, say Z.
Associated with each AND node is a string 'A' Z
which contains information on that node and its function
in the tree. The content of 'A' Z will vary during exe-
cution as follows:
1) if node Z is pruned from the tree then
$('A" Z) is null
2) if node Z is TRUE then
$("A'Z) = 'T'"IN 'UT' LIST
where IN = the associated input symbol and
LIST = the list of TRUE successor OR nodes
(in the form #,#,...,#,)
3) if node Z is of undetermined truth value

$('A' Z) = 'T'IN 'PR'X 'U' LIST1 'T" LIST2

25

where IN = the associated input symbol

LIST1

LIST2

AD

AM
$(FS'S L'
$('FZ'S ' I)
NAME

NAND

NOR

OA

OD

X = the number of the immediate OR

predecessor
the list of unvalued immediate
successor OR nodes and
the list of TRUE immediate successor
OR nodes
the list of AND nodes that should be
pruned from the tree, in the form
#4000, #,
the list of admissible states, in the
form #,#,...,#,
FS(S,I)
FZ(S,])
the name of M
the number of the next AND node to be
created
the number of the next OR node to be
created
the list of the nonterminal OR nodes with
as yet uncomputed successors, in the
form #,#,...,#,
the list of OR nodes that should be pruned

from the tree, in the form #,#,...,#,

26

During the construction and testing of all I/J successors of
an unvalued OR node the following temporary strings are created.
OAT = the list of information on nonterminal OR node
successors to a new AND node, each entry in
the list is of the form
NO 'L' LG 'PT'SET 'O' OUT 'PR' Z 'S’
where
NO = the number of the new OR node and the
remainder of the entry is as previously
defined for a nonterminal OR node.
OS = the list of new AND node successors
SSW = the program switch which indicates the
truth value of the OR node whose successors
are being created
SW = the program switch which indicates if a
successful experiment has been found
TT = the list of information on TRUE terminal OR
node successors to a new AND node, each
entry in the list is of the form
NO 'F' FIN 'I' INIT 'O' OUT '/’
where
NO = the number of the new OR node and the
remainder of the entry is as previously

defined for a terminal OR node.

27

Y = the current I/J successor set being

examined, in the form # #,#.#,...,#. #,

28

@ aNVN

ANIWTIIN

S 2NN =MS 13S

‘Se a1 aNvN dov
¢ 1L wWedd saadenN
e MaN 313D

31334

‘ive Wwedl S3aeN
JO M3N 31V3H¥D
‘ve el LYo 04y

SONYN ¥, 3LvIND

(=
/ eN we, aLmag

fav e1 onN g
40 $,70nS aay

¢ 31a1aa *de Ne
3L IS)=6N 131

L

@\' 6N v, 31a1Ea

tde ey eN X,
de s,70n8 aav
t21313d ‘ay NO
waal 1S}=eN 137

44

L -
i 30dL = 06,

E
1
b

4

!

6y
@.mn&k 3deN ANV Si
¥

i
oA
00S 3AON WS DNUSN(AV 3aON 1868y

AV el DNIaaV dNy Sisn

QAYMEL VG TNAL ASYHD SO =
dv 13S ¢ ANYN ANIWFIONI € N 38, 30
MSSY dNvy dav

¢Ll Wedd sadeN
WO MaN JlvIyD ¢ ANWN |V, JLV3IAD

u

i¢=ae
1
it=ay

4
d

£y
VOIX3N,=ME

4
(A X3 =MS

o=16 i3
SSTILIL ININd

PZ.MV\.N@

GNY SLNdLNG AS
$\220S N3aYe ‘rLe
o1 9 =26 0nS 4ady

¢ ITON,¥O, INNd
T AN &=
(N6, 1jeOns =)a
¢31atas ‘18, N©
Wa3aL 1S} =N 131

)

N ¥6, d© 1S\
22aNnS 3SIA3Y
‘velxaN,=MS ias

‘av o1 X adv
@)~

(BN, 1Ni3d
1

3

a_¢O=N

ANawrEsa |

1 _
LL14SAS NO WV |
WIAHLONY S\ ﬂ

\NOLITONIS
= WY, INNd

§

_ 2A3SVHD

MSS NO
+ MQY

1STHDIM =X © 30eN e
=Y 3S1vd 1SINDIH =N 137
" 300N Loed ouYMaL

\
\
|
adeN any 3STw “
|
i

HONwa8) 62.&0. ey s6 dav |

Y

3s 1SE=N 137

A*.VHI MOvg ASNH ASWD

‘0 ¥e, avel

= t1Sha N e, s3ed) ve Ne
9 (S
ay

§

Wy ININd
SWY ANdNY [

S3aT_VL-Zd QNVY €4
‘O NIWYN NG
fSAMQAV.L-Zd ANV Sd
‘O°d“N CanwN 1NdNI

@

}eyD MOTd pejejouuy °p

29

K. Annotated Program Listing

SNOBOL (31 CEC 1965 VERSION) PRGGRAM LISTING ees eee ooe

START NUM_= '0123456785."
] NEXTM NAME = TRIM(SYSPIT)
SYSPOT = '1SIMPLE ADAPTIVE DIAGNOSING'
SYSPGT = ¢+ ¢
_ SYSPOT = 'MACHINE NAME = ' NAME
SYSPOT = v ¢

TRIMUSYSPITY. ®N& ' ,0 ®P& 1,1 %Q%

SYSPOT = 'N = ¢ N 'y P=1tP ', GC=1Q
o SYSPCT = ¢ 0
SYSPOT = *TRANSITION TABLES***STATE FOLLOWED *

~ 4 .+ 'BY LIST OF (NEXT STATE/UUTPUT) FOR SUCCESSIVE INPUTS!
SYSPOT = v ¢
— | NEXTX___TRIM(SYSPIT) X% V' *XLISTx*

SYSPGT = ¢ ¢ X ! v LISY
- LIST ='LIST 1,¢
Y = 10
___NEXTY__ Y = Y 4+ 1]
LIST XSTATE® '/t %QUTPUT* 1,? =

${'FS* X '.' Y} = STATE
$('FZ* X *.' Y) = OUTPUT
<EQ(Y,P) /F(NEXTY)

B <EQIX,yN) /EINEXTX)
NEXTAM SYSPIT V(T RAME V)0
2
L

SYSPOT = '1MACHINE NAME = ' NAME
e 'y ADMISSIBLE SET = (* AM ')
SYSPOT = ¢ ¢
EQ(*0',SIZE(CELETE(AM,NUM))) /SUSINGLE)
AM = AM 0,0
. ORO = 'L SIZE(DELETE(AM,NUM}) 'PT!
MORE AM ®STATEX *,0 = /F (NOMORE)
4 L ORDO = ORO STATE 'e' STATE ', /7 {MORE)
NOMORE ORO = QRO 'OPRS!?
QA = 10,
NCR = 11
N NAND = 1t
S—* NEXTOA O0A ENE 1,0 =
6 ${'0R' N) LY #|G% *PTY ®PART* '0' #0UT* 'PR' ¥PRED* 1St
« /FINEXTOA)

O e PT = PART

7 NEXTP PT *STATE®* 1.0 XINIT* ', = JE{SKIP)
oNE(Jy$(*FZ? STATE *.' 1)) /S{NEXTP)

Y =Y S$('FS' STATE ‘*.' 1) '.' INIT *,' /(NEXTP)

30

T _skie EQUALS(Yy) /SINEXTJ)
, LGY = SIZE(DELETE(Y,NUM))
JEQLLGY,'11) /SUYTRUE)
YT = ¢,0 ¥
Y1 v, XSTATE® '.1 %JUNK* *,¢ STATE '.' /SINEXTI)
10 NP = N ‘
TESTF__~ $("0R' NP) 'LY kL% *PT' ¥PRT* 10! *QT# 'PR' #PRD¥ 'S*
«EQUL,LGY) /F(ADDY)
AGAIN PRT #STATER *,1 #JUNKX 1,0 = JEINEXTI)
(1Y) tyt STATE 1.0 /SUAGAIN)
S('AY PRD) TPRY ANPR 1U? /S{TESTF)
{ Aovy OAT = OAT NOR 'L* LGY 'PT* Y Q' J *PR! NAND 'S¢
«/ANEXTNOR) o]
1o YTRUE Y RFIN% 0,0 XINIT# 0,0
TT = TT NOR YE' FIN *I' INIT Qv g /9
13 =" NEXTNUR NCR = NCR + 1!
14 NEXTY CEQUJ W) /5 {ANDCK)
J= J o+ 110 /(NEWJ)
e NEXTI CEWII,P) /5(3SSH)~A2 _-16
i I =1+ 1 /{NENWI)
] ¥ CHASEF CEQIN,'0") /SUNOEXP)
$(YGR' N) YPRY EXE 150
1F 5('AY X) JYPRY ENE 1y
${'URY N) 1SY HSUCCH
EGQUALSISUCC,(X *,1)) /S{CHASEF)
AD = X "'
) SW = 'NEXTOA!
L SuCC = *,' Succ
1:8 s SLCC Tyt X 1,0 = 1
{’ succe 1,0 =
. _$('OR' N) 1S RJUNKE = 1S SUCC /(ADJUST)
19 == __ANDCK EQUAL S{UAT,) /S{ANDT)
] ${YAY NAND) = 'I* [*PR* N 'U!
SUCCUN 0AT #NUS* 'L ®JUNK® 1S' = /F(SUCCT)
L UA = OA NUS ',
$('OR' NUS) = L' JUNK *S?
o $('AY NAND) = $('A' NAND) NUS *',' /(SUCCUN)
20 SuccT S(YA* NAND) = $(*A' NAND) 'T!
Y NExTSC TT ANT# OF0 RJUNKX #/9 = /F(ENDTT)
$(10R' NT) = 'F' JUNK
B $('A' NAND) = ${'A' NAND) NT *,' /INEXTSC)
ENDTT 0S = CS NAND *,!
_ SSW = 'UNK'
NAND = NAND + 1t} /(NEXTI)
& ANDT $('A' NAND) = It [*uT?®
NEXTT TT #NR® 'FY XJUNK¥ /' = /FE(NOT)
I ${'0R" NR) = 'F' JUNK
$('AY NAND) = $('A" NAND) NR ',' /{NEXTT)
NOT ${'OR' N) = YPT® PART 'O' OUT *S? NAND !,
e NAND = NAND + '1° o
AD = CS_ = =
CHASET ${'A' PRED) t[v KINPX *PRY #ANDP® 'U' %UN*® 1Tt %TR¥
| _J/FLEXPOUT) ——— 22
N EQUALS{UN, (N *,1)) /F{ANDUN)
Y T _ . ${'AY PRED) = *I' INP *UT' TR UN
. $('OR' ANDP) 1LY &Lk 1PT! %SAVE® 1PRY KORP¥ 'S' *SUCCH
. = 'PT% SAVE *'S*' PRED ', e
TRYX succ X% 9,0 =
e +EQ{X,PRED) /S(ADDS)
SUCC = SUCC X 'y /{TRYX)
ADDS . AC = AD SUCC
N = ANDP
PRED = ORP /{CHASET) o
ANDUN UN EXE I, =
N CEQUEX4N) /S{ADDUN)
UN = UN X 1, / (ANDUN)
_B('A' PRED) = *I' INP 'PR' ANDP 'U' UN 'T' TR X

ADDUN

I

31

VB> SW = .'NEXTOA! /(ADJUST)
24— EXPOUT Sw = YEXP?
25— _ADJUST AD ENO® 1,0 = /F(ORCK)
~ 2 $(*A' NO) *JUNK* TU' ®UN* ¢T1 %TR* =
Randil OC = 0D UN TR /{ADJUST)
23— 0ORCK uC ANO® 1,0 = /F(FINCK)
L ___${'UR' NO) *JUNK* 1S0 *SUCC* = /F{ORT))
AD = AD SUCC / LORCK)
, ORT $(10R' NU) = / (ORCK)
29— FINCK EQUALS(AD) /S{$SW)F(ADJUST)
o Tag UNK ${'OR?" N) = *L% LG 'PT* PART '0' OUT 'PR' PRED
. 1S' US /(NEXTOA)
NOE XP SYSPOT = 1+
SYSPOT = *NU SIMPLE ADAPTIVE DIAGNOSING !
. YEXPERIMENT EXISTS FUR THE GIVEN MACHINE AND ADMISSIBLE SET'
33— |OKAM SYSLCK V(1 kAME)0 /SINEXTAM)F(NEXTM)
) EXP SYSPOT = 1+ ¢
SYSPUT = 'THE FOLLOWING IS A SIMPLE ADAPTIVE ¢
« 'DIAGNOSING EXPERIMENT FOR THE GIVEN MACHINE AND ADMISSIBLE SET?
34 SYSPOT = v ¢
B SYSPOT = 'NO SET INPUT, FOLLOWED BY!
« ' THE (OUTPUT/NEXT NO) LIST!
OT = 10,
35 =>"nNexTOR OT XNE 1,0 = /F(LCKAM)
$({'OR' N) 'PTY #PART* 1,00 #QUT* *S? %SUCC* ',* =
$(*A* SUCC) VI R[N 'UTY *TR% =
o SYSPOT = v ¢
SYSPOT = ¢ ¢ N ¢ * PART *IN
o NEXTS TR Xk 1,0 = /E(OUTPUT)
${'0R' X) 'Cr RQUTH 0S¢ /E{TRUE)
o s(soQuT) = X /(NEXTS)
TRUE $('0RY X) CFt RFIN® V[V %[NIT# *0' *0QUT#* =
3 . $('S* OUT) = OSTOP{INIT = ¢ INIT *,FIN = ¢
« FIN *)? /{NEXTS)
S OuTPUT N = 119
NEWN EQUALS({$('S N),) /S{NEXTN)
SYSPOT = ¢ YN Y/ $(eSY N
,,,,, 1 siest N ANCHOR() S /S{ERASE)
BT = CT $(*'S* N) 1, - o
ERASE ${'S* N) = o
y— NEXTN <EQIN,Q) /S(NEXTOR)
- N=N+ "1t /(NEWN)
o _ SINGLE SYSPOT = YADMISSIBLE SET IS A SINGLETON®#x?
. 'NO EXPERIMENT NECESSARY! / (LOKAM) '
END R e
__ SUCCESSFUL_COMPILATIGN

IV. Finding an Equivalent Regular Expression

Program RE
name:

B. Purpose: To display a regular expression equivalent to the
set of input strings accepted by a given Moore
or Mealy machine with initial state and accepting
output specified.

C. Method: Given any finite-state machine one can compute the
regular expression ali{j, which denotes all input
strings that take the given machine from state i
to state j without passing through any state with
index > k, via the recursion equation

k k-1 k-1, k-1 k-1

*
@5 = ey Uay (e) ey
and terminal equations
e - Ay {x | Fs(@,x) =i}

where A is the null string (¢ = null set)

and

ag = {x|Psin =i} i4).

Notes: 1) Contrary to McNaughton-Yamada a?i can never
be the empty set (See Harrison [3], p. 325).
2) ali{j is a function only of the set of o's for k-1;
thus the k-1 set of a¢'s can be discarded once the

k set is known.

32

33

The regular expression equivalent to a given Moore machine

with initial state i and accepting output z is

U ey
aij)]
FZ(j)=2
and the regular expression equivalent to a given Mealy machine

with initial state i and accepting output z is

N
U aiijz

jes
where

By, = 1x|FZ(,%) =zl

In the program being described the recursion equation for
evaluating al;i is not implemented blindly; rather, attempts are

made to identify and exploit simple identities - such as

aud = ¢Uua = o

a¥UA= Aua* = a*

etc.
To assist in this endeavor the program attaches to each
o -string a type code selected according to the following scheme
(every a-string will be in the form C ',' R where C is the type

code and R is a regular expression):

1Q

PL

1E

SE

SI

I*

1T*

SI*

blank

34

Implied Regular Expression

¢ (the empty set); R is blank

A (the null tape); R is blank

R (R = singleton # A)

A UR (A¢ R =single string of concatenated RE's)
R (A€ R = single string of concatenated RE's)
R (A ¢ R =union of several RE's)

A UR (A¢R = singleton)

AUR (A¢R =union of several RE's)

R (A€ R =union of several RE's)

R* (R = single string of concatenated RE's)

R* (R = singleton # A)

R* (R =union of several RE'S)

R (A4 R = single string of concatenated RE' s)

Not all simplifications are detected, however, and it is fre-

quently the case that the observant user can further simplify the

results this program produces.

D.

Language and System: The program is written in SNOBOL

(31 December 1965 version) for
execution on the University of Michigan
Executive System for the IBM 7090

Computer as it existed in May 1967.

35

E. Input: The input deck consists of an arbitrary number of sub-
decks; each sub-deck names and describes a finite-state
machine and lists one or more pairs of initial state and
accepting output relative to which equivalent regular ex-
pressions are sought, The make-up of each sub-deck
and the card formats are as follows:

1) Name card - up to 80 columns are available for any
string of alphameric characters identifying the ma-
chine by name; trailing blanks are ignored. This
card must head each sub-deck even if the name is
blank.

2) N,P,Q, T card - gives the values of N, P,Q and
specifies the type of the machine; three integers
and a code word separated by commas, no blanks,
left justified on the card. The code word shall be
MOORE or MEALY according to the type of ma-
chine being described.

3) Transition table cards N cards, each of the follow-
ing form:

s/i, S1,8gs+++,8p for a Moore machine

and

S, Sl/jI’ Sz/jz’ cer, sP/jP for a Mealy machine
where all data is left justified with no blanks and

where se S

36

j = FZ(s) for a Moore machine
S; = FS(s, i)
ji = FZ(s, i) for a Mealy machine,

There should be precisely one transition table card of

the appropriate type for each state in M; the transition

table cards may be in any order provided the last card

has s = N.

4) Initial state/accepting output card - a single card
specifying one or more initial state-accepting
output pairs relative to which equivalent regular
expressions on the given machine are sought. Data
should appear in the following form:

Sl/zl’ sz/zz, cee, Sk/zk
where S; € S, z, € A0 and where all data is left

justified with no blanks.

Restrictions: The only limitations on the size of machines (i e.,
N, P, Q) or number of initial state-accepting output
pairs this program will handle are those imposed
by the SNOBOL compiler itself on string length,
number of strings, etc. However, the input
routines for this program expect to find each of the

following data entries on a single card:

1)
2)
3)

4)

37

the machine name
the N, P,Q, T data
each row of the transition table

the set of initial state-accepting output pairs.

If multiple card input is required the input routines

can be rewritten; no change should be necessary in

the body of the program.

F. Operation and Output: The program works through the data

deck sub-deck by sub-deck and for each
will output a description of the corres-
ponding machine followed by a regular
expression for each initial state-accepting
output pair. The letter L is used to de-
note the null string in the output regular

expressions.

38

OGS Trimwm

OF 6L 9L LL SISt vt T4 1L L D 63 49 (39959 ¥3 1Y 23 13 09 65 85 {5 95 55 45 S ¢5 15 05 Cr @Y L6 99 S ¥y v 2y 1> OY 6E BT LEOCSEFECO LT IC 0L 6ZOZ LZOLSZW S22 L OLEBI O L QL SL Sl CL L UL OL G B L 9 S ¥ €T

666G66666666666
§9803920668888868886898888888888888809990980868888880888080800888888688888886888838
[N N N NN NN NN NN NS
999999999999999999999999999999999399599999999993999999999999999999999999999-'999739¢§

GGE666666666¢
IARARARERRARA]

eeeLeEEEECCECE

XX XA A A A A I A A R A A I A A A A A A A I A A A I A A A A A A A A A A A A A A A A I A A A s Ay

L

| AR AR R R A R R R A R R A R R R A R AR R R AR R R AR R AR R R AR AR AR AR AR AR EE LN AN

t

6666666665566 666666666660606666G66666G666666666G666G6G6666566666666" 6§56

EEEEEEEELEEECEEECEECCEECECCCCEEECECEECCCCECECEtECCEEECCCCEEEEEEEET

N N N N N N A N N N N N N N N
e.!!EE‘:BE:E-u-:'mnvoaazsa-ﬁ;avnlnmﬁ_nsnv-e:w-mwcdc:—vevu-n:-nwnXﬂn_aaﬂgﬁﬁnnuﬂﬂuﬁsn—!:!E!ﬂw_:a-n-humona_
00000060000NOODOOO00O00OD00O0CDOQ0CO000CO000000003000C886000000C000000C000000G000C00C000G00
_:
oWl
33002426/
] 11607
géec17/

gsgeass/

141829

9¢1¢2,¢/

cecersy/

1vat2/y

1643/

6¢1¢2/¢/

es8t2s/6¢2/6 .N\N.m\vam\ﬁ\

1e(d o1dwies O

39

UG~ aowe
OB 6L BL L4 9¢ SL VL €4 74 1L Nz £3 89 999 §3 19 £Y 29 1y 09 €5 §° ©3HG TG 1§ S Fr B P03 GY ob 7t R b U 60 BT (€ 9T SE E EC ZE 10 Qu BT KI LT 9L S W BT LT GL 6 T

mmﬂ;mmamammommmmmmmommmm‘mmmmmmmmmmmmmmmmmm&mmmmmmwmmmmmmmmmmmm

§8989889898C8538883B8880883099988888858280888808866086888¢280888298808808888€C80838¢8288888
; O O O O O A O A O O O O O A O O A O O A A A A A A A Y A A O A A A A O A A A A A A O O O A A A A A A A S
. 99999999999°29999999993999999999999999999¢98999999399999599999599935§59599393999°9938
L ’ §668665C66G06666€CCG6G6G66C6C8666G6C666CG6G6G6668566G6CG60GCG6G8606G6G06G6C6G6G6G66666G66666¢G6G6¢C8C06G6G6565¢8¢
I I 222 R AR R NAR R AR AR R R R R R R R R E R AR R RS AR R AR AR AR R R R R R EEAR AR AR AR REARAREREEN]
- E A o A A o A S A A S A O A Y S A R S A A S S M A S S W S O A A S S A 0 SO N T A O O A 4
WL trrireiretecrrrrrrrrirttr eI tIIIILIITILIYILTILILIYQICIITILIQILIIITIIIIILIIIerrrrrrrrLe
] L T O U A A O A A S O A A A O O O O A A S O S
] o el WS < PPN IIINNEEI 9, S9SN N TS SO E B/ ST S e Ly (h i OPBEBL LEOC ST M T ZEME QU BI M 2SI NI 0B B LSS HOIOE 8 9L T
“r 0000000000020860000G6000090D0G200CG200000000000CGC0000000G00000000003000%093000300¢00
|
— w
. ||
_ b 114
| I EEL Y,
— | . 194 52 7% A2 744
\4, I B 1,281,624
w ‘ . Tsetisaterety
1/6¢1/G42/94Y
! . T/pIr20 0
M, 1,9¢31/9¢1,2¢9
, 208202 %2,9¢0
! ! . 1liarasary
, & € ‘013 YTYWSA NOLHONUN D
| mmcoz.m.m.?
‘ gezse,
] 4
2reiisg
ez
¥ 913 BIUWYA NOIHONUN Db
Fuoon‘z 2y
2scesy
m.m.«\mw

1e2c1s8/

N\m,\

H. Sample Output

EQUI VALENT REGULAR EXPRESSION EVALUATION

MACHINE NAME
N =9, P =

TRANSITION TABLES**«STATE/CUTPUT FOLLOWED BY LIST OF NEXT STATES FCR SUCCESSIVE INPUTS

1/1

A S
3/2
472
5/2
6/1
T1/2
.8/1
9/2
MACHINE NAME

EQUIVALENT RE

"MACHINE NAME

EQUIVALENT RE

MACHINE NAME

EQUIVALENT RE

MACHINE NAME

EQUIVALENT RE

MACHINE NAME

EQUIVALENT RE

MACHINE NAME

EQUIVALENT RE

20 0 = 2, TYPE =

1
3
3
1
1
5
8
9
1

M DEMO
MOORE

vl
'3
'3
y1
96
5
01
11
' 9

M DEMO, INITIAL STATE

EMPTY

M DEMO, INITIAL STATE

L

M DEMO, INITIAL STATE

LUllull2*

M DEMO, INITIAL STATE

2%

M DEMO, INITIAL STATE

LU2¢(1U2)2)*(1U2)

M DEMO, INITIAL STATE

1Ul2*

Ly

4y

Ty

9y

59

8y

40

ACCEPTING

ACCEPTING

ACCEPTING

ACCEPTING

ACCEPTING

ACCEPTING

CuTPuUT

ouTPUT

OUTPUT

ouTPUT

ouTPUT

OUTPUT

41

%.‘Nwaﬁv*.HNUNDHVD.*.~N.NDN~§A.NNDﬁ-*namstuvD*.umuwnw‘

T = 1NdINO 9NILd3DIV ¢€ = 3IUIVIS IVILINI *€ *9Id VOVWYA *NOLHONVYN W
Zx(12)Zxtt22NT)x(T2)2ZNTY((Z2NT)*(T2ZINZZNTINZx(T2INZ

2 = INdINO 9N11d322V *Z = 31VLIS IILINI “€ °*9I4 VAVWVA *NOLIHINVN IW
Nu

.n»

mo

SININI 3IAISS3OONS Y04 S3ILVIS IX3IN 40 1SI7 AS G3MOTI04 LNDINO/ILVLIS #%4S3

JY00W = 3dAL *2 =

€ "9Id VAVWVA ‘NOLHONVN IW

= 3 INIWAINDI

JWYN INIHIOVKW

34 INITVAINDGI

n

JWYN INTHOVW

3 1/¢
€ 172
z zn

19vL NOTLISNVYL

0D ‘2=d ‘=N

= IWVN INTHIVW

NOILVIITIVATI NOISS3I¥dX3 ¥VIN93d INITVAIND3

(ENZNTH A END) TN L)% (T (ENZITNENZ INK(ENZ)INT)

T = 1INdINO INILd3DIV *L = IUVIS IVILINI *1IW

= 34 INIWAIND3

= IWVYN INIHOVW

(ENZNT) (xETH(ENZITNENZ) (TR (ENZI TUENZ I LENZI(ENZI I (ZHENTINZINT ((ENZICENZ) I (22 (ENTINZIINT#(ENZ) TLENZ) 2L (ENZ
JEENZ I I(ZH(ENTINZINTH((ENZILENZII(ZH(ENTINZ) INTUHL(ENZI(ENZ)ILZR(ENTINZINZHEENTINZINTLENZ)% L(ENZI(ENZ) I (2 %(ENT INZ)

2 = 1Nd1N0 ONIL1d3DIV 2 = 3JLIVIS IVILINI *TIW

= 3Y _INITWAIND3

= 3IWVYN_INTHIVNW

.m:wsavA*a~*~mDN.~Dm:N..dﬁ.m:Nuaﬁgm:N.».AMDN,.mDNy—.m:mugm*.mbu~3N~D~.N*~w3—~
NZIINTx(LENZILENZINIENZ I ZH (ENTINZIINTALENZ) CTIENZ IR (LENZILENZ I IIENZI(ZHIENTINZINT(ZH(ENTINZ)IINT#L LENZI(ENZ)) €
ENZNZHLENTINZIINTAH(LENZILENZ)I(ENZII2R{ENTINZIN(ENZI(ZHLENTINZIINTILENZ) #((ENZILENZI ILENZ) (2 (ENTINZINZ%(ENT INZ)

2 = 1NdINO 9NILd3DIOV “T = 31VIS IVILINI *TW

= 34 IN3WVAINDI.

= IWVN INTHIOVW

2sLdzrLte/y
1/79%1/941/L 9
1/941/%2/L S
1/541/542/9

/721794172

v
1/€41/542/¢ €

Z
T/141/%4 /1 1

SLNdNI 3ATSS3IINS ¥04 (LNdLNOC/3LVLIS IX3N) 40 ASIT A8 G3MOT10d4 JAVIS*#**S3718VL NOILISNVYL

AWVIW =

JdAL ‘2 = B ‘e =d ‘L =N

TW = 3WVN 3INIHOVHK

NOILVATVAZ NOISSIUdX3 ¥V IN93¥ INIIWAIADS

EQUIVALENT REGULAR EXPRESSION EVALUATION

MACHINE NAME = MC NAUGHTON, YAMADA FIG. 4
N=3,P=2y Q= 2, TYPE = MOORE

TRANSTTION TABLES***STATE/OUTPUT FOLLOWED BY LIST OF NEXT STATES FOR SUCCESSIVE INPUTS

Y I
2/1 2y3
3/1 2,1

__MACHINE NAME

MC NAUGHTON, YAMADA FIG. 4, INITIAL STATE = 3, ACCEPTING OUTPUT = 2

EQUIVALENT RE = 2U(21U(1U22)1%2)%2

*#%% ALL INPUT DATA HAVE BEEN PROCESSED

ELAPSED TIME --

 TOTAL PROCESSING EXECUTION LOADING

5! 59.1" o' 1l.9" 5' 51.0" o' 6.2"

43

L Important Program Variables: This portion of the report will use

$CA'IL TN X)

$(CA'IN'TNTY)

$(FY'S "' Z)

$('"FZ'S)

PROD

STAR

UNION

the conventions of SNOBOL to des-
cribe the contents of several impor-
tant string variables appearing in
the program,
a string of the form C '.' R where C is a
type code and R a regular expression;
the set of input strings denoted by C and R
is ak .
LJ
a string of the same form as above

which denotes aII{J-l

Bsy, = {x | FZ(8,x) =2}, for Mealy
machines only.

FZ(S), for Moore machines only.

a subroutine which concatenates two
given regular expressions; i. e. ,
PROD(A,B) = AB.

a subroutine which stars a given regular
expression; i. e., STAR(A) = A*,

a subroutine which yields the union

of two given regular expressions, i.e.

UNION(A,B) = A U B.

44

J. Annotated Flow Chart

G

READ NAME ,
N,P,Q,T;
PRINT NAME,
N,P,Q,T

v

2
SET T=E 6R Y ‘

\ 3
PRINT THLEE?

!

|

4
VI,J: K19 .o=?
X,

PREPARE RE FOR

2
PRINTING 3 PRINT

)

)

PRINT NAME,S,Z ;

23

TRY Te PiCK s/z@

Re= U Ws.4.X FOR T=E |SUCC|FROM L, DELETE | UNSUCL
kz'l=%2
RE= U(A'S.d.X)('FY'U.2) .
FerR T=Y READ L
T
F @N?S
y]
\2‘0 ('Y U 16
K= K+1 VI,J:A='A'TJY , B='A"1.K.Y,
INTERCHANGE - c='A'K.KY, D='A'K.J.Y,
X AND Y 'A'L.J.X = sHeRTEST{A U (BC*)D,
AUB(C*D)}
x
17
K=X=1, Y=
T
F

&

Y
|

BRANCH ON T
Y
E
6
READ $,Z,L; READ S,L ;
PRINT S,Z ,L; PRINT S,L
'r2's =2 VZ:'®Y's.z=

PUT EACH 'A'S.J.O0 IN
STANDARD FORM AND
ADD THE PROPER TYPE
CODE; IF M 1S A
MEALY MACHINE D&
THE SAME FeR. 'FY's.J

@

i/

@SB&ANcH ONT
D’

A's.J.o='ANs.d.o'u'L

¥

PICK J FROM L DELETE
E (o

\

GBNCK J/Z FROM L; DELETE, FY's.Z=ry's.z 'U'1
i

45

K. Annotated Program Listing

SNOBOL (31 DEC 1965 VERSION) PROGRAM LISTING ees oee oee

DEFINE(*STAR(A)Y 4 'ST1' 4 'BaXyYyZ')
CEFINE(*UNION(A,B)* 4 'UN1' , *CyTA,TB,TAB,SAySB+X,YA,YByZyZA+ZB")
DEFINE{*PROD(A,B)* 4 *PR1' 4 'CyTAsTB+SA,SByTAByX,Y")

START AE = '/0UTPUT!
AY =
BE = 'NEXT STATES®
o o _ BY = ¢ (NEXT STATE/QUTPUT)®
NEWM NAME = TRIM(SYSPIT)
TRIM(SYSPIT) ENE V0 KPR £, RQE 1,0 Tk
SYSPOT = *'1EQUIVALENT REGULAR EXPRESSION?
1(. * EVALUATION®
SYSPOT = ¢ ¢
SYSPOT = 'MACHINE NAME = ' NAME
I SYSPOT = *N = * N ', P =1 P ¢, Q=1"4Q
e 'y TYPE = ' T
2 = : T EX/140% =
SYSPQT = ¢ ¢
3 SYSPOT = *TRANSITION TABLES®%%STATE® $(*A* T)
.' FOLLOWED BY LIST OF * $('B*' T) ' FOR SUCCESSIVE INPUTS!®
SYSPOT = ¢ ¢
1 =11
| N J = e
NULL S(TAT 1 1,1) 1,0') = &
l} JEQUJyN) /S{TESTT)
o J=J+ 1 /(NULL)
| TESTI <EQUI4N) /SUS(*TABLES' T))
I =1+ '1° /0J1)
TABLESE TRIM(SYSPIT) Sk 1 /0 KTk 0,0 ¥k
6 SYSPOT = ¢ v § 170 7 ¢ 'L
$(TFZY S) = 1 7(11)
’ f TABLESY TRIM(SYSPIT) ASE 1,0 x| ¥
SYSPOT = ¢ ¢+ § ¢ "L
?; 1= "1
' NEXTF1 SIYFY? S 1,0 1) =
LEQUI,0) /SU11) 9
I =1+ '1° /(NEXTF1)
8 Tt I = 1] :
o L= L %y 7(s(L 1))
10 — LE L LN E S / (ADDA)
1 LY L gk V[0 w1k 1,0 =
) i S$UYFYY S 1.0 Z) = $('FY' S .0 7) U
12— ADDA SUVAT S 1.7 J 1,0%) = $('A' S .0 g 1,.0') ‘U
11— CEQUILPY . /SICLEAN)
14— ‘ - I =1+ '1°¢ /UsULY T
i CLEAN Jdo=) 9
i EMPCK EQUALS{$(TAT S 1.0 J 1.0'),) /SUEMP)
S(VAY S 1,0 g v,0v) 'yl =
) CEQUSIZE(S('AY S ".% J 1.0')),'1') /S(SING)
X = 15 /(ETEST)
___SING X = "¢
ETEST CEQLS,J) /E(FIN)
o X = X 'E¥
FIN SOTAY S T, J 1,00) = X *,' (AT S 1,0 § v,0')
. JICKYD
5 EMP CEQIS,J) /s(L)
)] $(TAT S 1.1 J 1,00) = 'PL,! /(CKJ)
L S(TAT S 1.1 g 1,0%) = tL,!
CKJ +EQUJ,yN) /SUs(0UTY 1))
J=J+ v / (EMPCK}
ouTY. J o= '
EMPCK1 EQUALSIS(*FY" S ",' J),) /S(EMP1)
SUVFY! S 0,0 g) vys =
CEQISIZE(S(TFY? S V.0 J)),117) /SUSING1)
- o N SIVFY' S 7.1 J) = S,% ${'FY' S '.' J) /{CKJL)
| SING1 SUIFY' S 1.0 J) = 1,0 $('FY' S *.' J) /{CKJ1)
I EmMP1 SUFYY S 1.0 J) = 1PL,!
ekl LEQUJ Q) /S{OUTE)
___JL____;_,,”: ST NSt U A /LEMPCK1)

46

~

16 —=— CUTE +EQIS N} /F(S('TABLES' T))
B K = 11
17> X = ']
‘ Y = 100
12 I =11
J2 J =
NEXTR SIYAY 1 ', g 0,0 X) = UNION(S(PAY [*,v g v,
o Y)yPRODIPROD(IS('AY T *o? K 7.t Y),STAR(S(TAY K 7.0 K .1 Y))),8(?A" K
e Lt gt YY) ‘
1~ R = UNION(S(*A® T ", J *,¢ Y),PROD(S{'AY [1,
8 e K Vo' Y),PRODISTARCS(TAT K "0t K 'o? Y)) $(AT K 7,0 J .0 Y})))
SLE(SIZE(S(YA® T *,v J *.v X)),SIZE(R)) /S(NJ}
S(PAT T .0 g ot x) = R
NJ SEQUIIN) /S(NI)
Jo=J+ 0 /INEXTR)
N LECTI,NY /SLKN)
) I =1 + 11 7032)
19 — KN <EQIKyN) /SUINL)
""] — K=K+ "1t
20 YT = Y
Y = X
| i X = YT /(12)
2} == INL L = TRIM(SYSPIT) ¢,
22, NSZ L Sk 1/ 7% 1,0 = /F{NEWM)
SYSPOT = *—MACHINE NAME = ' NAME
. 'y INITIAL STATE = ' S ', ACCEPTING OUTPUT = * 2
RE = "PL,!
J = JUS('REY T))
23 REE JEQIS(*FZ' J},2) JFINEXTJ)
RE = UNION(REs$('A" S ",0 J ', X)) /(NEXTJ)
REY. , RE = UNION(RE,PROD(S('A® S *.0 g *,t X),8{'FY'
e Jd et)
NEXTJ +EQ(JyN) /S(ROUT)
: J= g+ 110 /US{*RE* T))
ROUT RE 1PL,' = YEMPTY! /5(0UT)
RE Lyt = e /5(0uT)
RE 7% 'E,' kA% = LU A /S10UT)
B RE TlI%, ' kAR = A V%t /SL0UT)
RE Rk Tk, EAR = (VA V) /S{0UT)
RE KZ% 1,0 kAR = A
24 cut SYSPOT = ¢+ ¢
: TITLE = *EQUIVALENT RE = *
NEXTL® RE = TITLE RE
TITLE = ! '
SLE(SIZE(RE),'130") /SULASTL)
RE ¥A/1130" % *RE*
SYSPOT = A 7 INEXTL)
Y LASTL SYSPOT = RE /(NSZ)
A ST1 B = A
. _ B . BXE VLY = 1, /5(578})
B YEY = kv /75(578)
8 IRl /S(ST8)
B ANCHOR{) '1,' #X% /S(ST2)
B I = 1Lk /5(578)
B xXE 1,0 kYk = X V%, Y /(ST8)
. ST2. . B = 'SI%,/E*
P ST3 X ANCHOR() ' (' #(Y)% ")? = /F(ST6)
] X ANCHOR() %' =
< Y ANCHOR () 'LU' =
- A Y =y 1y
n ST4 Y ¥(Z)% "Y' = /F(ST3)
STS . B VAR SR VAR VL
B 'EY = 7 '/E! /1ST4)
ST6 X 7% %1 = /S(ST5)
B Y/ k7% VJEY = 7
ST7 B IVAREIRITE /S(STTY
sT8 STAR = B / {RETURN)

47

[PR1 A XTA% 1,0 %SA%
B XTB% 1,0 #S5B*
TAB = TA T8
TAB 1p1 /S(PR10)
TAb "we = /S{PR11)
EQUALS (SA,SB) /E(PR13)
TAB TS T O /S(PR14)
TAB vEl RKE IE /E(PR2)
PR14 C =A /(PR12)
PR2 {TB TA) vxt owxE Q! /S{PR15)
(T8 TA) VY axEk VES /F{PR13)
PR15 C =8 /{PR12)
PR3 X = tA!
PR4 Y = $('T' X)
Y ' /F(PRS)
$(1SY X} = T(LU" $(*'S? e /(PRT)
PR5 Y rge /S{PR6)
(] Y ANCHOR () 7 %0 /FIPRT)
@] _PRE $UST X} = (' s(ese 0
(24 " PRY $UUTY X) VE' = 10t
o Y Y /F(PR8)
| $(15% X) = $('S? X)
‘ PR8 X TAY = 1B? /S(PR4&)
(TA TB) VI oEXE V] /S (PR9)
C = "' SA SB /(PR12)
PR9 C = "1," SA SB /{PR12)
_ PRIO C = 'PL,? / (PR12)
PR11 C = TAB ',' SA SB
PR12 PROD = C / (RETURN}
PR13 TAB VR KXk Tk /F(PR3)
C = UNION{A,B)
EQUALS(A,C) /S{PR12)
Y o EQUALS(B,C) /S{PR12)F(PR3)
) UN1 A LY /S(UN12)
B tpLe /S{UN13)
A #TA% 1,0 %SA¥
B TB% 1,0 ¥SB*
TAB = TA TB
TAB 0w /S{UN21)
TAB CRE HXK R /S{UN14)
TA {3 /S(UN15)
8 vy /S{UN16)
EQUALS(SA, SB) /S(UN22)
UN2 X = tAt
_UN3 8T X) vyt JE(UN6)
$(eT X) “pe /5(UN&)
S(YYY X) = f,(t s(1S? ")k, 7 (UNS)
UN4 SLTYY X) = 1,0 $(1S* Y, !
UN5 X 1At = et /S(UN3)F(UNB)
UN6 $('S*t X) = $(*S* X)
o S{IYY X} = 0,0
UN7 $(1S* X) x(Z)% 'Y! = /FLUNS)
$COYT X) = $('Y0 X) Z ', /(UNT)
UNS C =
UN9 YA Tt KZE 1,0 = 00 /F{UN10)
Y8 UL B /S(UN9)
: o C=20C ' 1 /(UN9)
2 GNIO C =C YB 'E
O o C 1,0 k7% V,FY = 7
- UN11 ¢ 1t =y /S{UN11)
= TAB ' /S(UN23)
o TAB 1E? /S{UN24)
o C=1'S,* C /(UN25)
UN12 C=8 /{UN25)
UN13 C=A /{LUN25)
UN14 WGE{SIZE(SA) 4SIZE(SB)) /F{UN16)
UN1S YA = VA
YB = 'BY /(UNLT)
_UN16 YA = 'B¢
YB = tAt
UN17 WGE(SIZE(S(*St YA)),SIZE(S('S? YB))) /F(UN2)
. 7 = V4t
! A = $('S* YA) *U°
I8 = ${*'S* YB) *y*
UN18 ZA ®(X)% 'yt = JE(UN19)
L =1 0X tyt / (UN18)
L UNIS 1B *H(X)% Q¢ = JFTUN20)
Z l'l X !'I

/S{UN19)F{UN2)

UNION (CON'T)

-

48

U2 0 C = $YA / (UN25)
L2l C = TAB *'y* SA SB
C e =
C o /S(UN25)
C e /SLUN25)
C 'E? /S{UN25)
c ®X% 1,0 *7% = X 'E,* Z /(UN25)
22 TA e /S(UN13)
T8 e /S(UN12)
TA g /S{UNL3)F(UN12)
UN23 C = 'SI,* ¢C /{UN25)
UN24 C = 'SEs* C
UN25 UNION = C / (RETURN)

END

V. Display the Lattice of SP Partitions

B.

CO

Program
name:

Purpose:

Method:

SpP

To display in a convenient manner the lattice of
SP partitions for a specified finite-state machine.
For a given machine the set of two-state

generators, SZ’ is formed as follows:

S, = U min {7| 7 is an SP partition on S
LlesS such that 7(i) = 7(j)};

A, the set of lattice atoms, is

A = min Sz;

B, the set of basic generators, is extracted from

82 and A via:

B =AU {rlne SZ-A,n;é Z T'}

T'€e S,
T <7

The lattice is then generated in successive rows,
R(0), R(1), ..., etc. ... where
R(0) = {zero partition}

R(1) =A

49

50

, 7€ B - R'(k-1) or
R(k) =min ¢ 7| 7 =7, +7, for some 7, £7,, >

TisTq ¢ R' (k-1) such

. L that 7 + 7y € R (k1)
. k-1
. where R'(k-1) = Z R(0)

[=0

R(m) = {the identity partition}

The partitions are outputted row-by-row and are identified
by number—zero designating the zero partition and the numbers
1,2,3,... etc. designating successively higher partitions in the
lattice with the highest number belonging to the identity partition,
As the partitions in each row are identified their identification num-
ber, row number, lattice type, immediate successor identification
numbers and non-singleton partition blocks are listed. Finally,

the two-state partitions induced by all state pairs are tabulated.

D. Language and System: IBM System/360 FORTRAN IV to be run
in the time-sharing mode on MTS
(Michigan Terminal System) as it existed
at the University of Michigan, July

1967.

51

E. Operation: For on-line time-sharing execution run the object
version of the program with 1 = *SOURCE*

2 = *SINK*

All user input is supplied at program request in

the following sequence:

Program Types User Types

1) "MACHINE NAME? Any string of characters up to
(TYPE UP TO 50 length 50 to identify the machine
CHARACTERS)" about to be described.

2) "N? (TYPE A 3-DIGIT A single 3-digit integer corres-
NUMBER IN RANGE 1 ponding to N for the machine being
TO 100)" described; 1 < N < 100; the num-

ber will be read by the format I3,
If N is out of range the program

will ask for N again.

3) "P? (TYPE A 1-DIGIT A single 1-digit integer corresponding
NUMBER IN RANGE 1 to P for the machine being described;
TO 5)" 1 < P < b5; the number will be read

by the format I1. If P is out of

range the program will ask for P

again,

4)

52

"STATE TRANSITION TABLE:
FOR EACH I TYPE P 3-DIGIT
NUMBERS SEPARATED BY

COMMAS AND CORRESPOND-

ING TO FS(I,J) FOR J=1to P

I =1" P 3-digit integers separated by commas
and corresponding to FS(1,1), FS(1,2),
., FS(1, P); these numbers will be

read by the format 5(31, 1X).

"T = 2" P 3-digit integers separated by commas
and corresponding to FS(2,1), FS(2,2),
., FS(2, P); these numbers will be

read by the format 5(3I, 1X).

"I = N" P 3-digit integers corresponding to

FS(N,1), FS(N,2), ..., FS(N,P).

Re-capitulation of NAME,
N, P and full TRANSITION

TABLE information.

53

6) LATTICE TABLE in which each
lattice point representing a par-
tition with SP on the given ma-
chine is listed; each point is
given an identification number;
the row in the lattice of each
point is indicated; the type for
each point is specified accord-
ing as the point is a lattice atom,
a basic generator, a two-state
generator or none of the above;
the identification numbers of all
points immediately less than
each point are given; the non-
singleton blocks of each parti-
tion are enumerated (singleton
blocks will be omitted from

the output).

7) TWO-STATE GENERATOR
TABLE in which is tabulated
a list of the minimal SP par-
titions induced by each pair
of states in the machine. The

partition number refers to the

54

identification numbers listed

in the LATTICE TABLE above.

8) "NEW MACHINE (0=NO, 1=YES)?" Zero or one as desired;
number will be read by

the format I1.

55

F. Sample Run

#3RUN SPOBJ; 1 =%SOURCE* 2=%SI NK*
. IBCOM# IS AN UNDEFINED SYMBOL.
#EXECUTION BEGINS

SP LATTICE PROGRAM
MACHINE NAME?(TYPE UP TO 50 CHARACTERS)

HARTMANIS AND STEARNS,PAGE 42,MACHINE B

N?2CTYPE A 3-DIGIT NUMBER IN RANGE 1 TO 100
008

P?2(TYPE A 1-DIGIT NUMBER IN RANGE 1 TO 5)
2

STATE TRANSITION TABLE:

FOR EACH I TYPE 2 3-DIGIT NUMBERS
SEPARATED BY COMMAS AND
CORRESPONDING TO FS(I,J)

FOR J=1 TO 2

I = 1
003,007

I = 2
004,008

I = 3
001,006

I = 4
002,005

I = 5
002,004

1= s
001,003

I = 7
004,004

1= 8
003,003

SP LATTICE PROGRAM
MACHINE NAME = HARTMANIS AND STEARNS,PAGE 42,MACHINE B

56

STATE TRANSITION TABLE

INPUTS
STATE 1

~n

NI ND G —
N = O — W
W WDV RN

LATTICE TAPLE
TYPE CODE: A=LATTICE ATOM
BzRASIC GENERATOR
2=TWO-STATE GENERATOR
NO. ROW TYPE
0 0 ZERO
1 1 AB2 sUCC: 0
ELOCK s 1 2
BLOCK 23 3 4
BLOCK LK 5 6
BLOCK 4: 7 8
2 1 AB2 SUCC: 0
BLOCK 3 3 6
3 1 AB2 SUCC: 0
BLOCK 4: 4 5
4 2 B2 suUCC: 1
BLOCK ls 1 2 3 4
BLOCK 2 5 s 7 8
5 2 SUCCs 2 3
BLOCK 33 3 6
BLOCK 43 4 5
6 3 2 succs 1 5
BLOCK l: 1 2
BLOCK 2: 3 4 5 6
BLOCK Y 7 8
1 4 2 succ: 4 §

BLOCK s 1 2 3 4

57

TWO-STATE GENERATOR TABLE
STATE STATE PARTITION NO.

2

NNV UVE DL ARG OOWOWANDND NN NN - — e =
NN RN RTIAOAVRN YOV LERAIOUNS WX I N
=AEDED = QO WN YN TN I TD D) g I D

NEW MACHINE(CO=NO, I=YES)?
!

MACHINE NAME?(TYPE UP TO 50 CHARACTERS)
FARR,JOUR OF ACM,JULY 1963 ,PAGE 382,MACHINE B
N?(TYPE A 3-DIGIT NUMBER IN RANGE | TO 100)
745

*%kN OUT OF RANGE

N?(TYPE A 3-DIGIT NUMBER IN RANGE | TO 100)
010

1;?(TYPE A 1-DIGIT NUMBER IN RANGE 1 TO 5)
**xP OUT OF RANGE

P?2(TYPE A 1-DIGIT NUMBER IN RANGE | TO 5)
2

58

STATE TRANSITION TABLE:

FOR EACH I TYPE 2 3-DIGIT NUMBERS
SEPARATED BY COMMAS AND
CORRESPONDING TO FS(I,J)

FOR J=1 TO 2

) 1
001,006

Iz= 2
001,007

I-= 3
001,007

I = 4
001,008

1= 5
002,008

I = 6
003,009

1= 7
003,010

1= 8
004,010

I= 9
004,010

1= 10
005,010

SP LATTICE PROGRAM

MACHINE NAME = FARR,JOUR OF ACM,JULY 1963,PAGE 382,MACHINE B
N= 10 P= 2

STATE TRANSITION TABLE

INPUTS

STATE 12
1 16
2 1T
3 |
4 1 8
5 2 8
6 309
7 3 10
8 4 10
g7~ T4 10
10 5 10

Y L L T P L Y L Y Y

LATTICE TABLE
TYPE CODE:s A=LATTICE ATOM
B=BASIC GENERATOR
2=TWO-STATE GENERATOR
NO., ROW TYPE
0 0 ZERO
1 I AB2 SsuCC: 0
BLOCK i3 1
BLOCK LH 4
BLOCK 42 3
BLOCK 62 9
2 I AB2 sUCC: 0
BLOCK 2 2
3 1 AB2 SUCC: 0
BLOCK 3¢ 3
BLOCK 62 7
4 I AB2 sucC:s O
BLOCK -H 8
5 2 2 succ: 1 2
BLOCK 1] 1
BLOCK 2 4
BLOCK 3 §
BLOCK 5: S
s 2 2 suce: 2 3
BLOCK 2: 2
BLOCK 5¢ 7
7 2 2 succ: i 3
BLOCK I !
BLOCK 23 3
BLOCK 32 6
BLOCK 4: S
8 2 2 succ: 3 4
BLOCK LH 3
BLOCK 62 7
9 2 2 succ: 1 4
BLOCK l: !
BLOCK 3t 4
BLOCK 4: 6
BLOCK 5 8

~ N

10

12

13

14

16

19

B2

succ: 2
BLOCK
BLOCK

succ: 5
BLOCK
BLOCK
BLOCK

succ: 10
BLOCK
BLOCK
BLOCK

succs 7
BLOCK
BLOCK
BLOCK

succ: 5
BLOCK
BLOCK
BLOCK
BLOCK

succ: 6
BLOCK
BLOCK

succ: 12
BLOCK
BLOCK
BLOCK

succ: 11
BLOCK
BLOCK

succ: 12
BL OCK
BLOCK
BLOCK

succ: 16
BLOCK

18

3

9

2 3
7 8
10

3

[

9

2

4 5
7 8
2 3
5

7

S 10
3 4
8 S
2 3
5 [
S 10
15

2 3
7 8
3 4
[

g8 9
2 3

60

10

10

61

TWO-STATE GENERATOR TABLE

STATE STATE PARTITION NO,

—

—

—

—

—

— —
LOoOOVRNOVARANOVARANOOUVWR O VOVA IOV BOUVRNDVNDLWOWN IO WV N WD

VARA NNV NI NN DL BBAEDDWOWWWOWOB RN N N — e e e e b e e
o

10

———
O = =

15
19
19
19

11
19
1S
19
1S
1S

15
15
1S
19
15

16
16
1S

19
19

12
16
19
19
1S

13
13

13

R, I

- o o Y e o o e e e - -

NEW MACHINE(O=NO,
0
IHCO002I STOP

1=YES)?

0

EXECUTION TERMINATED

*%kxk RESTART AT LOCATION

0627D2

62

G. Important Program Variables:

EQUAL(N, PPM, TP1, PP, LEQ, PPEQ) is a subroutine which
scans the partitions in the PP array comparing them
with the partition in TP1; if a match is found then a
return is made with LEQ = 1 and PPEQ = the address
of the PP partition identical to the TP1 partition; if no
match is found then a return is made with LEQ = 0; all
partitions must be normalized and sized; rank, number

and type codes are ignored.

LEQ (See EQUAL)

LESS (J, I, N, PP) is a logical function whose values is . TRUE.
iff the partition with address J in PP is less than or equal

to the partition with address L

NORSIZ (N, TP1) is a subroutine which normalizes and sizes

the partition given in TPI.

PP is a linear array in which partition information is stored,
each partition occupies a segment of length N+4 coded

as follows:

Segment Cell

1

5,6,...

, N+4

63

Code

rank: - 1 —old partition

0 — present partition

> 1 -~ future partition

number: < 0 - temporary ID
= 0 — zero partition
> 0 —final ID

type: 1 —basic generator

2 —two-state generator

3 = none of the above
size: the number of blocks in the

indicated partition
correspond to the N states of the
machine; two cells contain the same
number iff their corresponding states
are in the same block of the partition
being described; when in normal form
cell 5, the cell corresponding to
state 1, will contain the number '1';
the cell corresponding to the least
state not in the same block as state
1 will contain 2", etc. The
address of the segment corresponds

to the N+4 cell.

64

PPEQ (See EQUAL)

PPM = the index of the last cell of the last partition in the

PP array

REDUCE(N, P, FS, TP1) is a subroutine which replaces
the partition in TP1 with the smallest partition with
SP that contains it; the partition in TP1 need not be
in normal form nor need it be ranked, numbered,

typed or sized.

S2 is a two-dimensional array; S2(I, J) is the number (either
temporary or final) of the two-state generator parti-
tion obtained by equivalencing states I and J; if S2(I,J) = 0

then this partition is as yet unknown.

SUM (N, TP1, TP2) is a subroutine which places the sum of
the partitions in TP1 and TP2 into TP1; rank,number,
type and size are ignored, the initial and final partitions

need not be in normal form.

TP1 and TP2 are two linear arrays in each of which temporary
information on a single partition may be stored; the

format is the same as a single PP array segment,

H. Annotated Flow Chart

START

1

| READ NAME,

N, P, FS-TABLE ;
PRINT NAME,
N, P, FS-TABLE

65

PRINT TITLES
AND ReW ZERO
©F LATTICE

]

3
LEAD ZERQ PAR-
TITION INT® PP
ARRAY , LABEL AS
6LD PARTITION;
ZERD OUT 52,

ARRAY

!

ADD ALL 2-STATE
GENERATERS T®

PP ARRAY AS FUTURE
PARTITIENS

11
MARK IN PP ARRAY :
{PRESENT PARTITIONS] =
MIN{FUTURE PARTITIONS]

10
MARK ALL PRESENT

PARTITIGNS AS 6LD

)

9
ADD ALL NEW PAIR SUMS

OF PRESENT PARTITIONS
TO THE PP ARRAY AS
FUTURE PARTITIONS

8
R=R+1 CP

NeT 1

’ S
R=13; NP=0

SCAN 2- STATE @

GENERATORS, LABEL.
BASIC GENERATERS,
LABEL LATTICE
ATOMS AS PRESENT
PARTITIONS

SCAN PP ARRAY, NUMBEECD
AND PRINT PRESENT
PARTITIONS ALBNG WITH
SUCCESSORS AND NoN-
SINGLETON BLOCKS
UP- DATE S2 ARRAY;
CHECK |\F PARTITION
BEING PRINTED |S THE
IDENTITY 1

PRINT S2

66

I. Annotated Program Listing

#3COPY SP TO *SINK*

10
20
30
40
50
60

70

80
o0

100
110

120

130
140

150
160

170
171
172
180
190

200
210

211
212
213
214
220
221
230
240
250
251
252
253
260
270

IMPLICIT INTEGER*2(A-Z)

REAL*8 TYPE
LOGICAL LESS

DIMENSION FS(100,5),NAME(50),PP(5000),52(100,100)
DIMENSION SUCC(100),TP!(104),TP2(104),TYPE(4)
DATA Q/°Q'/,TYPE/’AB2',' B2"," 27,°

WRITE(2,10)

FORMAT(//18HSP LATTICE PROGRAM)

WRITE(2,30)

'/~ FIRST VARIABLE
Q 1S A DuMmy

FORMAT(//3SHMACHINE NAME?(TYPE UP TO 50 CHARACTERS))
READ(1,40) NAME

FORMAT(50A1)
WRITE(2,60)

FORMAT(/43HN?(TYPE A 3-DIGIT NUMBER IN RANGE I TO 100))

READC1,70)N
FORMAT(I3)

IF(M*(101-N)>80,30,100

WRITE(2,50)

FORMAT (1 THx*xN OUT OF RANGE)

GO TG 50
WITE(Z2,110)

FORMAT(/41HP?(TYPE A 1-DIGIT NUMBER IN RANGE ! TO 5))

READ(1,120)P
FORMAT(I1)

IF(Px(6-P)>>130,130,150

WITE(2,140)

FORMAT (1 7THx**xP OUT OF RANGE)

GO TO 100
WRITE(2,160)

FORMAT(//23HSTATE TRANSITION TABLE:)

WRITE(2,170)P

FORMAT (ISHFOR EACH I TYPE,I2,16H 3-DIGIT NUMBERS)

WRITE(2,171)

FORMAT(23HSEPARATED BY COMMAS AND)

WRITE(2,172)

FORMA T(24HCORRESPONDING TO FS(I,J))
WITE(2,180)P
FORMATC(IOHFOR J=1 T0,I3)

DO 200 I=1,N

WITE(2,190)1

FORMAT(/4HI

,13)

READ(!,210)(FS(I,J),J=1,P)
FORMAT(5(I3,1X))

WITE(2,213)
WITE(2,10)

WRITE(2,211) NAME
FORMAT(/15HMACHINE NAME = ,50A1)
WITE(2,212) N,P

FORMAT(/4HN = ,13,5X,4HP = ,I3)

WITE(2,213)

FORMAT(/40C1H=))

WRITE(2,214)

FORMAT(/22HSTATE TRANSITION TABLE)
WITE(2,220)(1,I1=1,P)
FORMAT(/11X,6HINPUTS /5HSTATE,3X,515)

WITE(2,221)
FORMATCIH)
DO 230 I=1,N

WRITE(2,240)1,(FS(I,J),J=1,P)
FORMAT(I4,4X,515)

WRITEC2,213)
WRITE(2,250)

FORMAT(/13HLATTICE TABLE)

WRITE(2,251)

FORMAT(/25HTYPE CODE: A=LATTICE ATOM)

WRITE(2,252)

FORMAT (11X, 1THB=BASIC GENERATOR)

WRITE(2,253)

FORMAT(11X,21H2=TWO-STATE GENERATOR)

WRITE(2,260)

FORMAT(/14HNO.

WRITE(2,270)
FORMAT (/1 4H

0

ROW TYPE)
0 ZERO)

280

297
298
299
300
310
320
330
340
350
355
360
370

380

390
395

400

405

420
430

440

450
470

67

PPCI) =1

PP(2):=0

PP(3)=3

PP(C4) =N

N3=N+3

N4=N+4

PPM=N4

PN=-1

DO 280 I=1,N

PP(I+4)=]

DO 280 J=I,N

s2(1,J)=0

DO 400 I=1,N

DO 400 J=I,N

IF(I.EQ.J) GO TO 400
DO 290 K=1,N

TP 1 (K+4) =K

TPI(J+4) =]

DO 370 K=1,P
IF(FS(I,K)-FS(J,K)) 258,300,257
S2T=52(FS(J,K),FS(I,K))
GO TO 29S
S2T=S2(FS(I,K),FS(J,K))
1F(s2T) 320,300,320

DO 310 M=1,N
TP2(M+-4) =M

TP2 (FS(J,K)+4)=FS(I ,K)
GO TO 360

DO 340 Mz2,PPM,N4
IF(PP(M)-S52T)340,330,3 40
MT=Mm-2

GO0 TO 350

CONTINUE

DO 355 M=5,N4

TP2 (M) =PP (MT+M)

CALL SUM(N,TP1,TP2)
CONTINUE

CALL REDUCE(N,P,FS,TP1)
CALL NORSIZ (N,TPI1)
CALL FEQUALCN,PPM,TPt,PP,LEQ,PPEQ)
IF(LEQ)350,390,380
S2(1,J)=PP(PPEQ-N-2)

GO TO 400

DO 395 K=4,N4
PP(PPM-K) =TP1 (K)

PP (PPM+3) =2

PP (PPM+2) =PN
PP(PPM+1) =0

S2(1,J)=PN

PN=PN-1

PPM=PPM+N4

CONTINUE

R=1

NP =0

N2=2%N+8

DO 470 I:=N2,PPM,N4

DO 405 J=1,N

TP1(J+4)=d

S=0

DO 430 J=NZ2,PPM,N4
IF(J.EQ.IORPP(I-N),GE,PP(J=-N)) GO TO 430
IFC(,NOT,(LESS(J,I,N,PP))) GO TO 430
Szl

JT=J=-N4

DO 420 K=5,N4

TP2 (K)=PP (JT+K)

CALL SUM(N,TPI,TP2)
CONTI NUE
1F(5)440,450,440

CALL NORSIZ (N,TP!)
PP(I-N-3)=-1

IF(TP1 (4)=PP(I=N)>)>450,470,450
PP(I-N=1>=1

CONTI NUE

\9

LYY

480

450
500

510

520

620
630
635
636
640
641
642

700

720

740
750

759
760

68

DO 641 I1=1,PPM,NA4
IF(PP(1))641,480,64]

NP = NP+1

S=PP(I+1)

DO 500 J=1,N

DO 500 K=J,N
IF(52(J,K)-5)500,450,500
S2(J,K)=NP

CONTI NUE

PP(I+!)=NP

IT=I+N3

S=0

DO 510 J=1,PPM,N4
IF(PP(J).NE.1) GO TO 510
JT=J+N3
IF(,NOT,LESS(JT,IT,N,PP)) GO TO 510
PP(J)=2

CONTINUE

DO 530 J=1,PPM,N4
IF(PP(J).NE,2) GO TO 530
JT=J+N3

DO 520 kK=l ,PPM,N4

IF(PP(K) .NEJ,2,0R.K.EQ.J) GO TO 520
KTzK+N3

IF(LESS(JT,KT,N,PP)) GO TO 525
CONTINUE

S=5+1

SUCC(S)=PP(J+1)

GO TO 530

PP(J) =l

CONTINUE

DO 535 J=1,PPM,N4
IF(PP(J).EQ,2) PP(J)=]
CONTINUE

IF(R-1)550,540,550

T=1

GO To 600
IF(PP(I+2)-1)570,560,570

T=2

GO TO 600
IF(PP(1+2)-2)590,580,550

T=3

GO TO 600

T=4
WRITE(2,601)NP,R,TYPE(T),(SUCC(J),J=1,S)
FORMAT(/13,15,2X,A3,3X,5HSUCC:,1014,(/21X,1014))
JP=PP(I+3)

DO 640 J=1,JP

S=0

DO 630 K=1,N
IF(PP(I+3+K)~-J)630,620,630
$=5+1

SUCC(S)=K

CONTINUE

IF(5-1)640,640,635
WRITE(2,636)J,(SUCC(K),K=1,5)
FORMAT(/18X,6HBLOCK ,I13,1Hs,1014,(/28X,1014))
CONTINUE

IF(PP(I+3) .,EQ.1) GO TO 840
CONTINUE

R=R+1

DO 760 I=1,PPM,N4
IF(PP(1))760,700,760

IT=I+N3

DO 759 J=I,PPM,N4
IF(I.EQ.J.OR,PP(J),NE,0) GO TO 759
DO 720 K=4,N3
TPL(K+1)=PP(I+K)
TP2(K+1)=PP(J+K)

CALL SUM(N,TP1,TP2)

CALL NORSIZ (N,TPI1)

CALL EQUAL(N,PPM,TP!,PP,LEQ,PPEQ)
IF(LEQ) 755,740,759

DO 750 K=4,N4
PP(PPM+K)=TPL (K)

PP(PPM+1)==1

PP(PPM+2) =PN

PN=PN-1

PP(PPM+3) =3

PPM=PPM+-N4

CONTINUE

CONTINUE

-
AP>

|

,~

S
(o]

4r.5

REDUCE

T

NeRs\z

76

810
830
840
84l
842

850

851

852

860

20
30

40
50

20

30

69

DO 761 I=1,PPM,N4
IF(PP(1).,ER,0) PP(I)=l
CONTINUE

DO 830 I=N4,PPM,N4
IF(PP(I-N3),EQ.1) GO TO 830

DO 810 J=N4,PPM,N4
IF(PP(J-N3).,EQ.1.,0R.I.,EQ.J) GO TO 810
IF(LESS(J,I,N,PP)) GO TO 830
CONTINUE

PP(I=-N3)=0

CONTINUE

GO TO 471

WRITE(2,213)

WRITE(2,841)
FORMAT(/25HTWO-STATE GENERATOR TABLE)
WRITE(2,842)
FORMAT(/5X,25HSTATE STATE PARTITION NO.,/IH)
DO 850 I=1,N

DO 850 J=I,N

IF(I.ER.J) GO TO 850
WITE(2,851)1,J,52(1,dJ)
CONTINUE

FORMAT(3X,316)

WRITE(2,213)

WITE(2,852)

FORMAT(/25HNEW MACHINE(O=NO, !:=YES)>?)
JEADCL,120)N

IF(N)>20,860,20

STOP

END

SUBROUTINE REDUCE (N,P,FS,TP!)
IMPLICIT INTEGER*2(A-Z)
DIMENSION FS(100,5),TPL1(104)
NAzN+4

CONTINUE

DO 40 I=1,N

DO 40 J=I,N

IF(TP1(I+4) NE,TPL1(J+4)) GO TO 40
DO 30 K=1,P

IFCTPI(FS(I,K)+4) ,EQ,TP1(FS(J,K)+4)) GO TO 30
A=TP1(FS(I,K)+4)
B=TPI(FS(J,K)+4)

DO 20 M=5,N4

IFCTPL(M) ,EQ,B) TPI(M):=A
CONTINUE

GO TO S

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE NORSIZ (N,TPl)
IMPLICIT INTEGER*2(A-Z)
DIMENSION TP1(104)

N4=N+4

DO 10 I=5,N4

TPIC(I)==TPI(I)

1=l

DO 30 J=5,N4

IF(TPI(J)) 15,15,30

A=TP1(J)

DO 20 K=J,N4

IFCTP1(K) JEQ,A) TPI(K)=I
CONTINUE

I=I+1

CONTINUE

TP1(4)=1~]

RETURN

END

EQUAL

20
30

z

5

1]
10
20
30
40

LESS
S

20

70

SUBROUTINE EQUAL (N,PPM,TP1,PP,LEQ,PPEQ)
IMPLICIT INTEGER*2(A-Z)
DIMENSION TP1(104),PP(5000)
N4=N+4

DO 20 I=N4,PPM,N4

DO 10 J=4,N4

IF(TPI(J) JNE,PP(I=N=4+J)) GO TO 20
CONTINUE

LEQ=!

PPEQ=I

GO TO 30

CONTINUE

LEQ=0

RETURN

END

SUBROUTINE SUM (N,TP1,TP2)
IMPLICIT INTEGER*2(A-Z)
DIMENSION TP1(104),TP2(104)
N4=N+4

DO 40 I-5,N4
IF(TP2(1).,R.0) GO TO 40
A=TP2(I)

DO 30 J=I,N4

IF(TP2(J) JNE,A) GO TO 30
IF(TPI(I) . ER.TP1(J)) GO TO 20
B=TP1(I)

C=TP1 ()

DO 10 K=5,N4

IF(TPI(K) ,EQ.C) TPI1(K)=B
CONTINUE

TP2(J) =0

CONTINUE

CONTINUE

RETURN

END

LOGICAL FUNCTION LESS(J,I,N,PP)
IMPLICIT INTEGER*2(A-Z)
DIMENSION PP(5000)

IT=I=-N

JT=J=N

DO 10 K=1,N

DO 10 M=K,N

IF(PP(JT+K) JEQ LPP(JT+M) LANDPP(IT+K) ,NE.PPC(IT+M)) GO TO 20

CONTINUE
LESS=.TRUE,
RETURN
LESS=,FALSE.
RETURN

END

VL. Bibliography

General reference on finite-state machines and in particular on
state diagnosing:

[1] Gill, A., Introduction to the Theory of Finite-State Ma-
chines, McGraw-Hill, New York (1962).

Regular Expresssions :

[2] McNaughton, R. and Yamada, H., Regular Expressions
and State Graphs for Automata, IRE Transactions on
Electronic Computers, vol. EC-9, no. 1 (March 1960),
pp. 39-417.

[3] Harrison, M. A., Introduction to Switching and Automata
Theory, McGraw-Hill, New York (1965).

[4] Brzozowski, J. A., and McCluskey, Signal Flow Graph
Techniques for Sequential Circuit State Diagrams, IEEE
Transactions on Electronic Computers, vol. EC-12,
no. 2 (April 1963), pp. 67-76.

SP Lattices:

[5] Hartmanis, J. and Stearns, R. E., Algebraic Structure
Theory of Sequential Machines, Prentice Hall, New
Jersey (1966).

References to computer programs dealing with finite state
machines:
[6] Farr, E. H., Lattice Properties of Sequential Machines

Journal of the Association for Computing Machinery,
July 1963, vol. 10, no. 3, p. 365.

M

This paper mentions a program to produce
all the partitions with S, P. for a given ma-
chine for which N < 38, P < 40.

71

72

[7] Griffiths, T. V., M-460 Program Notes: Some LISP
Routines for Manipulating Automata, AFCRL-66-84, Feb-
ruary 1967, Physical and Mathematical Sciences Re-
search Papers, no, 192, Data Sciences Laboratory
Project 4641, Air Force Cambridge Research Labora-
tories, L. G. Hanscom Field, Bedford, Massachusetts,

This paper details a number of LISP programs
to represent machines, cascade them, mini-
mize them, complement them, compute their
behavioral union, intersection, star, and

reverse, etc.

[8] Roberts, M. B., A Generalized Recognizer for Finite
State Languages, Moore School of Electrical Engineer-
ing, University of Pennsylvania Report no. 66-03,
August 1965,

This report discusses an IPL-V program
to determine if a given symbol string is
denoted by a given regular expression;
programs to convert a regular expression
to a state table and minimize it are also

mentioned.

[9] Silverstein, M., Computer Procedures for Analysis of
Finite Automata, term project, University of California,
Berkeley (1962).

This paper mentioned IPL-V routines to
minimize a given machine, develop dis-
tinguishing sequences for state pairs, de-
termine multiple preset diagnosing and
regular preset homing experiments

(neither of these necessarily minimal).

73

[10] Sarma, Hota S., Design of a Computer Program for
Minimization and State Identification of Automata,
Masters thesis, Electrical Engineering, Tuskegee
Institute, May 1966.

This thesis describes a program written for

online use of an IBM 1620 and which minimizes
a given machine and determines minimal sim-
ple preset homing and diagnosing experiments

for a given admissible set.

[11] Sacco, W. J., A Computer Technique Useful for Some
Problems in the Partitioning Theory of Sequential
Machines, Memorandum Report no, 1733, March 1966,
Ballistic Research Laboratories, U. S. Army Material
Command, Aberdeen Proving Ground, Maryland.

This paper gives no computer program but
rather a technique for determining if (1)

a given partition has SP, (2) two given par-
titions constitute a partition pair, and (3)

two set systems constitute a system pair.

addition, W. D. Maurer uses a computer to assist in minimally
decomposing group machines; a report on his work is to appear

in a new journal, The Journal of Computer and Systems Science.

R

