ENERGY TRANSFER IN TURBULENT VELOCITY FIELD

antee positive energy, at least, for two-dimensional
turbulence. An extension of this work to three-
dimensional turbulence is under way and the result
will be reported soon.??

2 Note added in proof. The generation of negative energy
is also observed as a consequence of numerical computation
for inviscid isotropic turbulence in three dimensions. This
result was reported at the International Symposium on
Fundamental Problems in Turbulence and Their Relation to
Geophysics, in Marseilles (1961).
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Two problems are considered, each of which represents a class of flows. In the first problem the
motion is induced by passage of electric current through an incompressible viscous electrically con-
ducting fluid contained in an insulated axisymmetric tube. The solution is obtained in closed form by
assuming small Reynolds numbers such that the electromagnetic forces are balanced by viscous
forces. In the second problem incompressible inviscid electrically conducting fluid flows through an
axisymmetric tube and the flow is modified due to passage of electric current. The complete solution
of the resultant rotational flow is obtained in closed form for small changes in tube diameter. At
appreciable rates of current flow the fluid in the central part of a contracting tube behaves as if the
tube were expanding; the opposite is true for an expanding tube. This is shown to be the case quite
generally even when the assumption of small magnetic Reynolds number is dropped. Further, at large
rates of current flow there may develop a secondary flow.

INTRODUCTION

ET us assume that displacement current can be
neglected, then

curl H = J, 1)
curl E = —9B/dt, B=,.,H, 2)

and
J = o«(E 4+ U xB). 3

The equation for the intensity of the magnetic field
becomes

dH/0t = curl U xH) — (1/u,0) curl curl H,

where u, and ¢ are assumed constant.

Let U,, H,, and L be characteristic velocity,
magnetic intensity, and scale, respectively, of a
phenomenon. The ratio of the two terms on the
right-hand side of Eq. (4) is given by

UoL/(p.0)™".

@)

(5)

The quantity (u,0)™" has the nature of a diffusion
coefficient, and we may call the above ratio the
magnetic Reynolds number. In cosmical problems,
the scale L is very large, and term involving (u.0)™"
in Eq. (4) may be neglected. The magnetic intensity
vector moves with the fluid in the same manner as
the vorticity in an inviscid fluid. However, in the
laboratory magnetic Reynolds number is small. Use-
ful information can be obtained in some cases by
neglecting the convection of the magnetic field. The
equations become

curl H = J, (6)
curlE = —6B/ét, B = pH, )
J = JE,
and
0H/8¢ = (—~1/p.0) curl curl H. (®)

In this approximation, electric current and electro-
magnetic field intensities do not depend on the
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motion. The equation of motion for incompressible
viscous fluid is

p(DU/Dt) = —gradp — pcurl curl U + JxB (9)

so that the electromagnetic field intensities effect
the motion, but the reverse is not true. We now
consider a few specific cases.

SELF-INDUCED MOTION OF A CURRENT-CARRYING
VISCOUS FLUID IN AN AXISYMMETRIC
INSULATED TURE

If electrodes are inserted in a trough full of
mercury, then the passage of electric current will
set the fluid into motion. At high current densities
the mercury may be displaced enough to break the
continuity of the current. Once the current is
interrupted, the electromagnetic force disappears
and mercury returns to its original position. The
electric contact is re-established and the process
repeats itself. If electric current is passed through
a large volume of conducting fluid then, due to
the motion caused by electromagnetic forces, the
primary current will be mainly confined to certain
filamentary paths instead of being distributed over
the entire fluid while secondary induced current will
flow in closed loops. Passage of current through a
fluid will invariably set it into motion since, in

Fi1a. 1. Schematic representation of the problem.
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general, the rotational electromagnetic forces can not
be balanced by potential pressure forces. We study
below an example for which complete solution can
be obtained.

Consider a current-carrying fluid in an axisym-
metric tube (see Fig. 1). The condition for static
equilibrium is that

curl JxB = —u,(3/02)(Hj5/r) (10)

should vanish which happens only if the tube has
straight walls. In general no static equilibrium is
possible. The current will set the fluid in motion.
Consider the steady state case of low Reyuolds
number such that the electromagnetic force is
balanced by viscous and pressure forces, that is,

—gradp + JxB — pcurl curlU = 0

or (11)
curl J xB — 4 curl curl curl U = 0.
For axisymmetric flow
r 19 - _9%
U r ar’"‘/” U = dz "’ (12)
where ¢ is the stream function and
oU, 8U,
(curl ), = % o
(9 198 1 32>
B <6r2 e =TV (13)

Substitute Eqgs. (12) and (13) into (11), thus

R ) [ i K B T

dz \r 5;‘ ror r 0z

The motion is given in terms of known functions
if we assume that the tube is nearly circular. We
may further assume that the tube radius

r. = R + ae'™*, (15)

where
(a/R) < 1. (16)

This approximation allows us to satisfy th: boundary
conditions at r = R instead of at the wall. For the
axisymmetric steady case the magnetic field for a
straight cylinder, that is without any perturbation
of the wall, is

(Ho)o = 3Jor, an

where J, is the current density. Eq. (8) for the
perturbed magnetic field &, for the steady axisym-
metric case becomes

> 19 9’
(—--i-——-—'li-l-a—zf)he:o-

r or r

(18)
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The solution of the above equation which is periodic
in the z direction and satisfies the boundary con-
ditions that at r = 0, hy = 0, and at

- Jr _ dry Lok
r=R 7= g T2 8z = ke
is
he = —ado[I(kn)/I,(kR)]e™ . (19)
The total magnetic field
Lk
Ho= ooty = 1o — alo 2 20

Neglecting terms of order o’ compared to those

of a,
9 H_) — oy DG
3z ( ) = Tk T R (lcR) (21)
Using the above equation and
¥ = f)e™ (22)
Eq. (14) becomes
&, 1d (1 )]2 _ dakJ? Lk
[ + r dr 2 + k f = M & Il(kR) (23)
The solution of the above equation is
_apady 2 L(kr) 7 Io{kr) I,(kr)
f= "8 [(’C) new TARLem TP Tgw)
r Kokr) | o Ki(kr) ]
T Crrar) T PRGR) (24)

The boundary conditions are that
r=R, U =U,=0 o f={fy =0;
r =0, = (8U,/or) = 0

or f=[1/NCNHT =0.

The last condition follows from the equilibrium re-
quirement at r = 0. The last two conditions are
satistied if C = D = 0. The first two conditions
lead to the result that

at
at

(25)

B = —A — (kRY® (26)
and
T(kR) I g(kR) -t
A = 20kR) [1 ') ~ B TaR) "]
_ 2kRI(kR)I,(kR)
= [I?(kR) - Io(kR)Iz(kR)]' @7

The real part of the stream function

SMALL REYNOLDS NUMBERS 403
= —M%%}}j? sin kz
_ {2kR12(kR)L(kr) — kI, (kr)1,(kR)
(kR)*[I3(kR) — I,(kR)I,(kR))
_ L [(ich ~ <ka~>“‘}}_
Luky L GRY @8)
For kR — 0,
_ w0 LAY EAN AN
4 192, ° kz[(R) 2(3) + (R) ] 29)

Except for a factor the dependence of the stream-
lines for various values of kR is given in Fig. 2. The
velocity on the tube center line

, 190
U.0,2) = ;—57:&4«)

_wedoR?
8u
[ L(kR) — L(R)I,(kR)
Ii(kR) — I(kR)I,(kR)I(kR)

sin kz

(30)

].

006
0085
004
003
002

001

YR

F1a. 2. Plot of the function

r RERIL(,RY(kr) — 2krI(kr)I (kR)

R (ERWIMER) — I(kR) kR)]
_ Lkr) (kR — (kr)j}
Il(kR) (kRY
for various values of kR.
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Fiac. 3. Plot of the function
I2kR) — IW{kR)I(kR)
I ¥kR) ~ Io(kR)(kR)(kRY

The dependence of U,(0,2) on kR is plotted in Fig,. 3.
Except for a constant factor the streamlines for
kR = 2 are given in Fig. 4. We note that where the
tube contracts the pressure at the centerline is
higher than where it expands and the fluids move
from the region of high to low pressure.

We need hardly add that the flow field for any
arbitrary wall shape may be obtained by Fourier
synthesis. The analysis may be extended to the
case of a free (not contained in a tube) filament
recognizing that steady-state solution may not exist
for all values of the wave number k.

VELOCITY DISTRIBUTION OF A CURRENT-CARRYING
INCOMPRESSIBLE INVISCID FLUID FLOWING IN
AN AXISYMMETRIC INSULATED TUBE

Passage of electric current through a flowing fluid
may radically alter its flow. We study below an
example for which complete solution can be ob-
tained under suitable approximations. We will later
discuss the character of the flow when the limita-
tions imposed by the approximation are removed.
Consider an axisymmetric tube through which a
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current-carrying incompressible inviscid fluid is
moving at a steady rate with a mean velocity U,.
Here again we assume that the carrent distribution
is determined by the applied voltage and the effect
of velocity on the current is negligible. The equa-
tion for the steady motion is

~U x curl U + grad [(p/p) + 3U°] = (1/p)J xB (31)

or
—curl Uxcurl U) = +(1/p) curl J xB. (32)

For axisymmetric conditions this equation becomes
g (3U. &) ) (aU, _ g@)]
a2 [U< oz or :l + ar[U' a2 ar

- md (@)
- padz\r
Let us assume that the tube is nearly circular

so that we may linearize the equation. The radius
of the tube is

(33)

ro = R + ae'*’, (34)
(a/R) K 1. (35)

The linear approximation to Eq. (33) becomes,
using Eq. (21),

d (3U, aU,
UoE;(Tz— 6r>

=£@“‘J2A(_k@. ikz

p M TR ¢

where U, is the mean velocity and the perturbations
U, and U, are assumed small compared with U,.
Let the stream function

¥ = gne™

(36)

@7)

F1e. 4. Streamlines
for kR = 2.
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be such that

|

Y

1
U, = ;arrnp and U, = -3 (38)
In terms of g Eq. (36) becomes
w9 e _1) 2 2 I(kr) .
- (’“ ta)o=mrloar @Y
The solution of this equation is
o ___a#ng_‘@ IO(kr)
00) = =04 2 L,(kB)
I,(kr) K, (k)
tA1ary By 4O

Obviously B = 0 and A is determined from the
boundary condition at r = R,

(U/Us).-r = dr./dz

or

g(R) = —alU,

(41)

Fic. 5. Plot of the function

IykR) TIu(kr) _ (kr)lo(kr)
(kR (kR) LI, (kR) kRI(kR)
for various values of kR.
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which leads to the requirement that

au, J3 kR I(kR)

A=-alet G ¥ Lar) *P
and
o) = —all, P 4 St
_I(kR) [I,(kr) (%) } 3)
(kR)I,(kR) LT,(kR) — kRI,(KR)
AskR — 0,

T Ml[i_(r_ﬂ
o) = —alu+ %o - (5) | @

In Eq. (43) or (44) the first term represents the
potential perturbation produced by the wall in
absence of electric current. The second term repre-
sents the rotational perturbations produced by the
current and it is plotted in Fig. 5 for various values
of kR. The rotational perturbations are of the
opposite sign to the potential and their influence is
proportional to the ratio

pR:I5/2Up.

The streamlines are sketched in Fig. 6 for the case
when the above ratio is 5 and kR = 2. The fluid in
the central part of a contracting tube behaves as
if the tube were expanding and the opposite is true
for an expanding tube. As kR — 0 streamlines are
nearly parallel and it corresponds to the case when
parallel flow contracts or expands to another parallel
flow. For this case, the velocity profiles with and
without current are given in Fig. 7 for the same
value of the above ratio.
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We now examine the case where the magnetic
Reynolds number and the wall deflection are large
so that we may not neglect convection of the
magnetic field. Consider an axisymmetric insulated
tube through which flows current-carrying incom-
pressible inviscid fluid. The directions of the cur-
rent and the velocity coincide for the wall and the
central streamlines, and for these two cases Eq. (31)
becomes

(8/05)(p + 3pU") = 0, (45)

where s is the distance along one of these stream-
lines, or

p + 3pU? = const, (46)

where the constant is different for the two stream-
lines. If the flow at a section of the tube is parallel
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though not necessarily uniform then Eq. (31) shows
that

dp/dr = —3p.J’r (47)
or

(48)

where the subscripts o and w refer to the central
and wall streamlines, respectively. It follows from
Eqs. (46) and (48) that if the tube contracts from
a straight section of radius R, to another straight
section of radius R,, then the velocity on the central
streamlines will not increase as much as that on the
wall. More explicitly, if we assume that the velocity
in the first section of the tube is uniform then,

U., — Ui, = wJiRi/20(RBI/R; — 1),  (49)

where the subscripts 1 and 2 denote the quantities
in the first and the second sections of the tube,
respectively. Further, if the ratio

p RT3 /2003

is large, then the flow in the central streamline may
slow down as the fluid flows from a tube of large
to small radius. However, we must note that in
rotational flows there may and most likely will
develop a secondary flow when the vorticity becomes
appreciable. The secondary flow will lead to electric
currents in closed paths and now Eq. (48) is no
longer valid since it is based on the assumption that
the density of the current is constant and uni-
directional. The secondary flow will be of such a
nature so as to minimize the constriction of the
tube. It is hoped to pursue this problem in another
paper.

Po = po = 1u 'R,
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