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CHAPTER I

INTRODUCTION

The field of finite automata is not a new one and many authors
have contributed significantly to it. However, except for an occasional
instance, the literature is barren of discussion dealing with multiple-
head automata. The subject is not without merit for multiple-head auto-
mata possess capabilities beyond those of single-head machines -- cap-
abilities yet to be thoroughly explored.

This paper extends the results of automata theory beyond the
usual limit of one-dimensional one-tape single-headed non-halting finite
state machinesto encompass, in the most general case, multi-dimensional
multi-tape multi-head self-halting finite state machines.

A familiarity with the material contained in the papers by
McNaughton and Yamada(B), E. F. Moore(u>, Minsky(5) and Rabin and
Scott(6) will be necessary and sufficient for an intelligent reading
of this paper. Established results of other persons will usually be
stated and used without proof. The author has attempted to give proper
credit to the work of othérs, Thus, all theorems and remarks contained
in this paper which are not credited to others are, to the best of the
author's knowledge, original.,

The materialvpresented in this paper is arranged into seven
chapters.

Chapter I is the introduction. Chapter II introduces the
concepts of alphsbet, tape, and n-head machine. The operation of

n-head machines on tapes is defined and the manner in which n-head
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machines accept and reject inputs is described along with the notion
of how n-head machines define sets of inputs. Chapter III presents
a number of operations on alphabets, tapes and sets of tapes which
constitutes a language by which, beginning with primitive alphabets
one can represent certain sets of m-tuples of tapes. The language
developed in this chapter includes as one of its parts the language
of regular expressions., Chapter IV contains a set of six pairs of
analysis-synthesis theorems relating the sets of inputs defined by
n-head machines to expressions in the language of Chapter III. The
theorem pairs are ordered according to the complexity of the machines
involved, beginning with l-way l-dim l-head machines and terminating
with 2-way D-dim n-head m-tape machines. Chapter V consists of a
collection of algorithms and theorems pertaining to n-head machines.
In particular, algorithms are given to decide 1f any given n-head
machine is l-way and to decide if any given regular expression is
realizable. The chapter also develops theorems dealing with the
questions:
1) Does a given machine accept a given input (the "particu-
lar input decision question")?
2) Does a given machine accept any input (the "emptiness
decision question")?
3) What is the relationship between state and transition
accessibility and the emptiness decision question?
L) What are the Boolean properties of n-head machines?
5) What is the relationship between the number of heads
a particular machine possesses and the speed with

which this machine reacts to inputs?



Chapter VI suggests several topics for further study. The topic areas
are described and some partial results pertinent to each area are given.
Chapter VII is the concluding chapter. In it the results of the paper

are summarized and discussed.



CHAPTER II

n-HEAD FINITE STATE MACHINES - A DESCRIPTION

Alphabets

Def., 2.1 An alphsbet is a finite collection of symbols.

By convention alphabets will be denoted by some variation on

the letter Y. Thus ¥, = {B, 0, 1f, L, = {B,a,b,c} and Iy = {#,z,?%}

are all examples of alphabets.

Def, 2,2 If D is a positive integer then D-space i1s defined as a
space of dimension D in which a Cartesian cocrdinate system has been
embedded, each coordinate ranging over the integers from =-e to 4o
around each coordinate point is centered a unit D-cube called a cell.
Thus D-space consists of a D-dimensional space divided and
covered by an orderly array of unit D~cubes (or cells) where each cell

is labelled with a unigue coordinate point.

Def., 2.3 Let 2. be a alphabet; t is defined as a D-dimensional (D-dim)
tape over 2, if t consists of a D-space in which each cell contains
precisely one element of 2

We adopt the convention that a cell in which no symbol is
written will be called empty; a cell containing a symbol will be called
filled, It follows from the definition of tape that if t is a tape in
some D=-space then every cell in that D-space is filled.

In this paper the symbol B will be used exclusively to denote

the blank., B is a legitimate possible symbol in any alphabet. Any

.



cell of any tape will be considered blank if and only if it contains
B.
Def., 2.4 Any tape t will be a finite tape if and only if t contains
a finite number of non-blank cells.,

If t is a finite tape of dimension D it is equivalent to
say that the non-blank portion of t can be enclosed in a rectangular
D-dimensional parallelepiped of finite dimensions. In this paper we
will limit consideration to arbitrarily large but finite tapes. There-
fore whenever the term "tape" is used it will be understood that
"finite tape" is implied.

Def, 2.5 The initial cell of any tape will be that cell located at the

origin of that tape's coordinate system.

It will be convenient to omit explicit representation of the
coordinate system of a tape; in such cases the initial cell of the tape
will be indicated by a double boundary and the coordinate directions
established by prior convention., In this paper for all 1l-dim and 2~
dim tapes the up, down, left, right directions will be respectively
the coordinate directions +2, -2, -1, +1,

For example, Figure 2.1 gives an illustration of a l-dim

tape over Zl = {B,a} and Figure 2.2 gives an illustration of a 2~dim

tape over Xé = {B,O,l}.

Bl B| al a IEI a | B | B

Tape tl

Figure 2.1
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Figure 2.2

Def., 2.6 Let 2 be an alphabet; t' is defined as a D-dim partial tape

over 2, if t' consists of a D-space in which a finite number of cells
contain precisely one element of 29 all other cells being empty.

Def., 2.7 If t is a tape, t, is defined as a subtape of t if and only

if ts is a partial tape of the same dimension as t and for each filled
cell in ts the corresponding cell of t contains the same symbol.
Thus, for example, Tog glven in Figure 2.3 is a subtape of

t, (ty, is given in Figure 2.2).

o
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BILLyB |B]O
B{1l
Subtape té
Figure 2.3

Def. 2.8 If one is in any cell of a D-space with the coordinate axes
identified from the l-st to the D-th, to move d where d 1is some
integer in the range -D < d <D is defined as moving one cell in the
Id] direction, negative d meaning backward, positive d meaning forward

and zero d meaning no move.

Machines
Def. 2.9 An n-head finite state machine (or just n-head machine) is a
system OL= < C,S?SI,M > where

C: +the characterization of the machine is a 1list of

a) the set of heads H = {n;},1 = 1,2, ...,n

b) a partitioning of H into disjoint subsets
Hy, Hyy 0oy Hy (m<n); Ol works on m tapes,
the heads of Hi reading tape ti

c) two sets {Zi} and. {Di}, i=1,2, ...,m where Zi
is the alphabet that all the heads in Hi read in
common and where Di is the dimension of the space

(tape) in which the heads of H; move.



S: a finite non-empty set which together with the states
"ACCEPT" (abbreviated A) and "REJECT" (abbreviated R)
which are not in S make up the set of internal states
of()lo

s~: an element of S designated as the initial state of C)L.

M: a mapping from

S X\Eg X Zl XoooX Zﬁ/x 22 KosooooX Zm_l X*EE x..,x“Zﬁ

= "}IM"“‘""J
Hl Hm
to
+ + + + + + { }
Sx DT Xeoox D7 xD5 %Xeoox D 4 xD” x...x DU 4{A,R
1 1 2 m-1 m m, ?
\___m\:; =/ K____j¥;wumu,
Hy Hy

where ﬁ; = the number of elements in Hi

+
and Dz = {dld is an integer in the range -D; to +Dﬁ;
M constitutes the table of transitions of OL.

Def. 2.10 Ol = < C,S,sI,M > accepts or rejects any m-tuple of tapes

t = (%7, tp,...; ty) in the following menner [it is understood that
for i= 1,2, ...,m ti is a D;~-dim tape written over Zi in accordance

with ¢ of OU]:

I

1) OU sterts in state s* with all the heads of each Hi

resting on the initial cell of each t;.

2) 1f OU is in state s, and the heads read the n-tuple

k
of symbols o

(ceégéxf::lf_gy X Lo Xeoox Lo g X X 2:50%;E£;
H

1 m
and M of C)L has the entry

=



(Sk;g) - (Sﬁ)dl: 07 --°:dn)

where (dy,dp,..., d;) € Dy X...x Dy,x Dy x.,.x\2@'xo..x D@/

R

PO

Hy

gmﬂ

then CjL goes to state sy and each head h; of le,moves d;.
3) CjL continues to repeat step 2 above; the heads of OL move
back and forth on their respective tapes and the machine
passes through a sequence of internal states. If in a
finite number of cycles C)L goes into the A(R) state then

the machine stops and is said to accept (strongly reject)

t. If Cijnever goes into A or R then (jt,is said to

weakly reject +t.

Example 2.1 leg L = <Cy,8

17 l,s{,Ml > where

Cl = Cﬂ,glis a 2-head machine operating with both heads

reading the same l-dim tape written over Zﬁ = {B,O,l}

;= {s1,ep)
I _
Sl—sl
|
M, = e BO Bl 0B 00 | o1 g%ﬁnnnlohf 3L
s, [81,0,0 [ 85,-1,0 [s5,-1,0f Js1,1,0 ,1,0] Fl;l,o;s,yl,o
{ ;
| N
s, A Reo,-1,Y R gR! R §52,~1,1

Cﬂé.l accepts the tapes

Bl1llofolx1]olofalB]|sn
- -[BJEJoJ1ifrfofr]B B

I B[BJo]J1 B TJofJiB[B]1]B|B] .-
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while strongly rejecting

Blo|Bfo)1]1]|B3

and weakly rejecting

| el1JoEf o1l 8]

Def. 2.11 Given any internal state s of machine at which works over
m-tuples of tapes, s is said to be accessible (an accessible state)

1 to s.

if and only if there is some input m-tuple that takes (:m from s
Def, 2.12 Given any transition T of oL (a transition of OU is an
entry in the M table of C)L) corresponding to reading the n-tuple of
symbols ¢ while being in state s, T is said to be accessible (an
accessible transition) if and only if there is some input m-tuple

that takes CDL, from sI to s and presents CJL with input o,

Note 2.1 If 7 is an inaccessible transition of machine Cﬂu(as is, for

0,B in O,

n 1 Of example 2.1) then the

example, the transition on JSE
destination state and the head movement of 7 can be left unspecified
without affecting the behavior of OU ,

Def. 2.13 ()L ; an n-head machine, is called l-way if an only if for
each head h, of Ol on all accessible transitions of Ob h, moves a
fixed direction d;. £ Ol is not l-way it is 2-way.

Note 2.2 It is sufficient but not necessary that QL be l-way if all
transitions specify the same head movements. Clearly inaccessible

transitions can have any head movement at all and never affect the

operation af()to



-11-

Def, 2,14 The set of all m-tuples of tapes accepted by any n-head
finite state machine OU is denoted by T(OVL),
Def, 2,15 If Ol is any n-head machine working on single tapes and

t any tape in T(O\L) then gcnﬁt), the generator of O in t, is defined

as that subtape of t in which the filled cells are precisely those
cells of t that o actually scane while accepting t. If OU vorks
on m-tuples of tapes and t is any m-tuple in T(OL) then gOL(t> is

the m-tuple of subtapes derived by retaining as filled only the cells
actually scanned in accepting t.

For example

tzmoBBlOBOOlOOlB%B

is in T«ﬂél) [see example 2,1] and

ga,, (t) = Bii]loJofl1]ofo]1]®
EIofofrfofo1]

lyu]

Def, 2,16 The set of all generators accepted by any n-head finite

state machine QU is denoted by (AL). a(OL) = {gOLQt)[teT{OL)}O

State Graphs

As in example 2.1 any n-head finite state machine
oL = <C,S,SI,M > can be described by listing the set of states S,
mentioning the initial state sI, and by giving the table of moves
M in tabular form. There is, however, a convenient graphical repre-
sentation of any finite state machine known as the state graph. In

it the set of internal states is represented as labelled circles.,
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The initial state is indicated by an inscribed square. Transitions
are represented by labelled arrows such that if an arrow emanates
from state 8y and Impinges on state s, and is labelled with the
symbol o/d then OU vwhen in state sy and reading n-tuple o will

fall into state s, with head movements according to n-tuple d.

For example, the state graph of machine C)é 1 is gilven

in Figure 2.4 below.

State Graph of 012 1

Figure 2.h4

Note 2.3 If in any machine Cizseveral inputs 015055 o) cp all

causes Cﬂ¢ to go from state s, to state 8 4 with associated head

movements dj,dp, ..., dp then only one arrow will be drawn from Sy
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to s, in OU 's state graph and it will be labelled 01/4y5 05/dnseee; cp/dpa

If dl = d2 = ... = dp = d one may further simplify the arrow label to

015055 «oes op/da
Note 2.4 1In order to simplify the drawing of state graphs this paper
will adopt the convention that the R state and all transition arrows
to R will not be represented explicitly. One will understand that
given any machine()( in some state 51 and reading the input n-tuple
of symbols o, if no arrow with the input label o leaves Sy then ()h
will go to REJECT. This convention in no way alters the behavior of
any machine for T(OL) and G(OL) remain unchanged as does the ability
ofCX;tx>strongly or weakly reject any tape.

Applying the conventions of Notes 2.3 and 2.4 to ‘C)L

2.1
yields the state graph given in Figure 2.5.

(0,0),(l,l)/-l,l

N

B,B/0,0

(O;O):(O;l) (B,O),(B,l)/~l,0
(1,0),(1,1)%0( "1

Simplified State Graph of QU 51

Figure 2.5

Note 2.5 Since this paper is concerned only with finite tapes it
follows that all tapes to be considered must contain the symbol B
an infinite number of times. Because of this we will require all

heads of all machines to include B in their alphabets.
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Note 2.6 Observe that in the definition of any finite state machine

m

Z _—}TQ = n9
i=1 1

Note 2.7 We will adopt the convention that if H = {hl,hg,,,,, hn}

then the first H, heads of H will conmstitute Hy, the next :1'1—'2 heads

of H will constitute Hy, etc. ... One in no way limits the class of
n-head machines by doing this since any machine can be put in this

form by judicious labelling of the heads,

Note 2.8 1In the definition of n-head machine it is required that

each head begin on the initial cell of its respective tape. One may
ask if the power of n-head machines is increased by allowing the

heads to adopt some other fixed but not initial cell starting con-
figuration. The answer is negative: if(jl is any n-head machine in
which each head starts on some fixed but not necessarily initial cell
then there exists an n-head machine (J|! which has all heads starting

on initial cells and which is equivalent to O\ (i.e., T(') = T(OL))-
The construction of (y|' from (), consists of adding a set of states

sé, si, ooy sﬁ to S the set of states of O, sé is the initial state
of O '. For all inputs (' has the transitions si — Si oo —>sé St
p is made sufficiently large and appropriate movement n-tuples are
associated with each transition such that after p + 1 cycles Q' is in
state sI and the heads are in the desired starting position; from then
on C)L' acts precisely like ot -

Note 2.9 1In the definition of n-head machine it is required that each
head movement be either a stand still or a unit jump along one of the

coordinate axes. One may ask if the power of n-head machines is
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increased by allowing each head movement to be a finite determined
Jump but not necessarily unit or along a coordinate direction. The
answer is negative: if C)L is any n-head machine in which each head
movement is afinite determined jump then there exists an n-head machine
(Xj which has all head movements unit jumps along coordinate axes and
which is equivalent to CX,, The construction of OU from Ol consists
of adding a number of states to OU such that each non-unit Jump is
decomposed into a chain of unit jumps, each chain replacing a non-
unit jump transition.
Note 2,10 Readers familiar with the work of Kleene, Rabin and Scott,
McNauvghton and Yameda, et al. may wonder at the relationship between
the machines defined by Rabin and Scott (RS machines) and the n-head
machines we have defined in this paper. RS machines and n-head
machines are both finite state deterministic machines; they do, however,
differ in several essential ways:
1) An RS machine has one reading head. An n-head
machine has n reading heads; each head may read
a different alphabet and one or more heads may
be placed on a tape.
2) An RS machine works only on l-dim tapes. An n-head
machine can, in general, work on tapes of finite
but arbitrarily large dimension.
3) The method by which n-head machines accept or
reject tapes differs from that of RS machines.
One of the internal states of any n-head machine

is the ACCEPT state; if the machine ever goes to
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ACCEPT the machine stops and is said to accept the
tape; the tape is rejected if the machine goes to
the REJECT state. An RS machine, on the other hand,
can only decide on accepting or rejecting a given
tape precisely at the moment that the reading head
leaves the filled portion of the tape and "steps off"
the tape in some manner.
Note 2.11 In a real sense, given any n-head machine CX,, G(OL) is a
better parameter of the behavior of Ol then T(OL). For a1l OL,
—

T( Ot
(

Consider gc&(tl); gCK(tl) has an infinite number of empty cells;

= 0 or w, This is clear since if Ol accepts no input then

~—

|

2

0; if, however, T(OL) # O then there is at least one t1eT(QL).

therefore by filling these cells of g(m(tQ with elements of 2, the

alphabet of t, we can generate an infinite number of distinct tapes

all in T(OL), so T(oL) = » . G(OU) is not limited to O or «, but can
be any integer value depending on Cnuo

Further, if g 1s a generator of Ol then any tape t containing
g as a subtape is accepted by(jt whether t contains symbols out of the
alphabets of Cﬂ,or not (in other words the empty cells of g are "don't
care" cells whose contents do not affect the behavior of Cﬂz)a Thus
given G(OL) we know T(QL ).

This chapter is concluded by an example, machine Cﬂédg, which
demonstrates that 2-head machines are more powerful than l-head machines.,
OL202 is a 2-head machine reading l-dim tapes over the alphabet

2 = {B,O,l}o C)Lg 5 will accept any tape which starting at the initial
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cell and moving right has p 0's followed by p 1's followed by B

where p = 1,2,3, ... . It is an established fact that such a set

(6)

of tapes cannot be represented by a l-head machine,

Machine OL2 5

Figure 2.6

For O('Z 5 observe that

G(0122)={g|g= ool ...lolxal...] 2l ]p=12,..
‘ N ~—
D P
TOL. ) = Jst|t is 1-dim tape and d g.3. geG(Ol, ,)
2.2 { and g is a subtape of t. 2.2 }

3



CHAPTER III

THE LANGUAGE

Operations on Alphabets

Def., 3.1 If 21,22, cooy Zm are alphabets then the column alphabet

of Zﬁ,Zé, sooy Zﬁ, denoted by

——

2y
L

o

o

)
)
is defined as the alphabet consisting of all column m-tuples over the

alphabets Zﬁ,fé, o0y Zh;/ioeo,
B ) ,

!
L

Lzh. ' %] € Zﬁ i °

Do

Z} B B
2

1! _ ’ i

J T
|| a b !
H -
.

Def, 3.2 If 2 is an alphabet

indexed by D, denoted by ZVD,

of all doubletons of the form

=

B

C

b i 2
!
|

= T h
I
al |

and D some positive integer then z_
is defined as the alphabet consisting

+
o/d where g€l and deD ; i.e.

%/D = {(0/d)]oel, a is integer in the range -D to +D}.

-18-
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For example, if 2 = {O,l} then

Y/2 = {o/-2, o/-1, 0/0, O/1, 0/2, 1/-2, 1/-1, 1/0, 1/1, 1/2}.

Operations on Partial Tapes

Def, 3,3 If t is a partial tape existing in some D-space and written

over the alphabet

—

then t will be understood to have m channels where the i-th channel
of t will be the tape existing in D-space and written over Z£ and

obtained from t by replacing every occurrence of an element

’cij Zlﬂ

in

o 3

ag
L M — M

with the single element 0.

For example, if

t = a b a a
0 B 1 0

is a 2-dim partial tape written over Z&

%
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where = ja,b; and = 1B,0,1;y then the 1l-st channel of t is
Y, = {a,p} and 2, = {B,0,1}

b and the 2-nd channel of t is 1

BN [CIEI(o]-
)

Def. 3.4 If t is a partial tape over ), = 22 then the
ll[ o

separation of t, denoted by t’', is defined

as the mtuple of partial tapes, (tl’tg’ a0y tm) where ti equals the
i-th channel of t.

For example, if

a b c
B o |1
0 B | 1

t = a E) a
o |3 || 1
1 o) 1

then t¥ = ([&] [©]<) [B] [0]1], [0] [BTT])
a [lal a o [By1 1)1

Note 3.1 If t is a tape over %g and m = 1 then tw = 1,

,

Def. 3.5 t will be said to be an initial partial tape if and only if

t 1s 1-dim and all the cells to the left of the initial cell are empty.

For example, t, = alBlbjic and to = (:] 01138

are initial partial tapes and t3 = 10 B is not.

Def. 3.6 t will be said to be a connected partial tape if and only if
all cells of t are empty or if the initial cell of t is filled and for
any two filled cells in t there exists a string of adjacent filled

cells connecting the original two cells,
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For example, tl =)é”]mfml B |
are connected while t3 = la | &b |B]
and t) = [a| b [ are not,

B

1 Joffa!
0 |

o BlOJ1
1

Def. 3.7 If t is an initial connected partial tape over an alphabet

of the form Y/D then the fold of t (or t fold), denoted by t', is

defined as the D-dim partial tape obtained from t in the following

manner:

co/dO

dl/dl

02/d2

aaaaaaa

0p-1/4p-1

op/dy

..|_
where oiez and die D™ .

read t from left to right, one cell at a time, and

simultaneously write out the following partial tape

t' in an originally all empty D-space...

2)

let i

:O’

write Oy in the initial cell of the D-space

and move dg,

augment 1 by 1,

write ci in the cell under consideration

and move di,

repeat c,d until i

writes o

iy

= p at which time one

in the cell under consideration

and then stops.

The resulting partial tape t' will be finite (since

t was finite) and each cell of t' will contain a finite

number of elements of 2.
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3) Examine the cells of t' that contain more than one
element of 2. For each such cell

a) if the elements of ), that it contains are
identical, erase all but one of the elements;
the resulting D-dim partial tape is tf,

b) if any one of the cells of t' contains non-
identical elements of 2, then there is no
partial tape that equals t¥ and tf is defined
as @, the null set.,

For example,

Is/o )| B/o | B/-1 |o/-1 | 1/1 |o/1

a/2

b/1

= 1 | 0,0 ,B,
1 o B )

a/l1|v/1|a/2|a/2|a/-1|v/-1|b/-2|b/-2 |a/-2|c/-2|b/-1
b b a
b a
a,a b a

b c

a b
b a

) a
a b a

if tl =
then ti
f
and t =
1
if t2 =
then t'
a tf
an 5 =
b
a
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£t = o/r | o/-1| 1/0 l
then té = |0,1 0
and tg =0 .

Note 3,1 If op/dp is the last symbol of some initial connected tape

t, then tf is independent of dp, Therefore we can omit dp if we wish

and still define the fold operation without introducing any ambiguity.

Def. 3.8 If tl and t,. are partial tapes of the same dimension then

2
the cover of t; and tp, denoted by tl © ty, 1s defined as the smallest

partial tape that contains tl and t2 as subtapeé, if no such partial

tape exists then.ii(;'tg = @,

Bla|b] b
For example, if t, =| a and t, =|Db|a
I r‘w
Blalb
then ;G t,o= e blal
c |b |l
b
but if t3=|bla | then t, € t, =
o] 3

Note 3.2 tl(§ t2 can be defined operationally as follows:
1) let D be the dimension of t, and t,,
2) start with an initially empty D-space; copy t, into it,
3) copy to into the space; the result will be a finite
partial tape t' each cell of which contains at most
two symbols (one from %, one from t,),
4) consider the cells of t' that contain two symbols;
for each such cell if the symbols are identical, erase

one of them ... the resulting partial tape is tlQ; t2;

if any cell contains non-identical symbols then t,€ to = g.



2ha.

Note 3.3 If we define ¢(3't =tC ¢ = ¢ for all partial tapes t then
the cover operation becomes commutative and assoclative, i.e.,
HGt2=%GTizmiﬁ@(%@tﬁ=(%@tﬁ@ty

Def. 3.9 If t; and t, are initial connected tapes (therefore l-dim)

then tl concatenated by t,, denoted by tl t2 or just t] tp, is defined

as the tape obtained by copying into the empty tail of T (the empty
cells of tl that most immediately follow, and perhaps include, the
initial cell of tl) the contents of t2 beginning with the initial
cell of to. The initial cell of tl t2 corresponds to the initial

cell of tlo

For example, if t7 = {{O ] 1 | 1 and ts =fi1 || L | then
1 2

) ty, = [Biﬂ INEN YRR

Note 3.4 The "null partial tape" (not to be confused with the null

set) is that partial tape in which every cell is empty. The l-dim
null partial tape is denoted by A. Observe that A is an initial
connected partial tape and that for any initial connected partial
tape t, tAh = At = t.

Note 3.5 Observe that the concatenation operation is not commutative

but is associative.

Operations on m-Tuples of Partial Tapes

Def, 3,10 If t = (t,, ts, ooyt

m) 1s an m-tuple of partial tapes

1 e

such that ti is defined for i = 1,2, ..., m then the fold of t (or
t £old), denoted by t°, is defined as the m-tuple (tf, £ tI);
s y t, is defined as the m-tuple (ty, t5, ..., m)’

if for some i =1, 2, ...m t. = # then t' = g.
1



-25-

For example,

(I 7] » [EETY2] b/-1])€= <£::j[§:],|@;j b >

and

([o/xT1] ,[ehlor] ) = 4.

r
Def, 3,11 If t = (t7, tpy «.», ty) is an m-tuple of tapes and r%
an £-tuple of non-zero positive integers whose sum equals r
Y
m,(‘zi r, = m),then the cover of t with respect to ry,rp, ... ry,
1=
r
denoted by t( ré , 1s defined as the f-tuple
o |
4
(t1C tC--- C t’rl’ t'rl+lG' trl+2@ FHO trl+172’ AR tm~rz+le tm-r£+26
nOCZtm) R
r -r i
1
if any element of t( r; is ¢ then 1t ro | ==§é.
Yy L
For example, if
a
t:(a@abhwhb,p@HJJM@U
~ a
3 a
then 1€ = ([ela®afv], [2]=])
1 a
2_1
and tC = ¢ .
2

Operations on Sets of m-Tuples of Partial Tapes

Def, 3.12 If T is a set of partial tapes (i.e., a set of l-tuples of

tapes) then the separation of T, denoted by Tw, is defined as the set

of all m-tuples obtained by taking the separation of each element of T
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(i.e., TV = {t¥|teT}).
Def. 3,13 If T is a set of m-tuples of partial tapes such that tf is

defined for all teT then the fold of T (or T fold), denoted by T, is

defined as the set of all m-tuples obtained by taking the fold of each

element of T (i.e., TF = {t¥|teT})

ry )
Def. 3.14 If T is a set of m-tuples of partial tapes_and T2
an £-tuple of non-zero positive integers such thaE €;§2i ;zJ
is defined for all teT then the cover of T with f%J
respect to ry,ro, ..., Iy, denoted by ry
r

TC |2

is defined as the set of all Z-tuples }ﬂ

obtained by taking the cover with respect to Tyy Toy eeceay Tp

of each element of T

T -~ r
(i.e., TE T = + G | r|]  ter )
r, r, J
Def. 3.15 If Tl and T2 are sets of initial connected partial tapes then

N
Tq concatenated by T,, denoted by Tl T2 (or just Tl Tg), is defined as

the set of initial connected tapes obtained by concatenating all elements
of T with all elements of T,; (i.e., 1Ty = {tltg‘tle Tl, toe Tg})u
Def, 3,16 If T is a set of initial connected partial tapes then T star,
denoted by T*, is defined as the set AU TU TPU T3U +.....
where Ti =TT .... T

concatenated i times

and LJ denotes the conventional union of sets,
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Note 3.6 T¥ is the smallest set that contains T and is closed under

concatenation.

Regular Expressions

A regular expression (RE) is a symbolic means of representing
certain sets of initial connected 1-dim partial tapes. The union and
intersection of sets of 1l-dim partial tapes will be indicated by\J and f\
respectively, If T is a set of 1l-dim partial tapes written over 2
then the complement of T, denoted by~ T, will consist of all 1-dim
partial tapes written over 2, and not in T.

Def. 3.17 1If 2. is an alphabet then
1) all elements of Y, are simple terms and all simples
terms are RE's over Z; if gel, then o denotes the
partial tape

2) A and ¢ are RE's over 2,

3) if « is an RE over X then~vQ and % are RE's over 2,

4) if @ and B are RE's over 2, then aU B, al) B and QP are
RE's over 2,

5) no expression is a RE over Z unless it is obtainable
by 1) to 4) above,

For example,

0 = {,.. | '[:] - }
{ [:j], I!I , [;JLSLJ 3][5] olo| [E]o]o]o R }
(OlUlo)*ol={|—@i l@i o|L lmool SRR

9 b) )

O*

1l
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Note 3.7 In any partial tape represented by a regular expression the
leftmost symbol of the partial tape is in the initial cell of the tape
and all filled cells are connected.

Note 3.8 Any finite set of 1-dim initial connected partial tapes can
be represented by a regular expression simply by taking the finite
union of the enumerated tapes. Not all infinite sets of partial tapes

n. n n.n
can be represented by RE's; for example the sets 0 1 O (or 071") can-

(6)

not be represented by a RE,



CHAPTER IV

EQUIVALENCE THEOREMS

1-Way 1-Dim l-Head Machines

Theorem 4.1 If CjLis a l-way l-dim l-head machine working on tapes
written over 2, then G(OL) = B where B is an RE over L.

Proof: An effective procedure exists to determine if any oL

is l-way (see Chapter V). Without any loss of generality we can assume
C)L to be l-way in the +1 direction in which event all the accessible
transitions of'anwill carry labels of the form o/l where oce). Since
one can remove all inaccessible transitions from the state graph of Ol
without alterning G(Ol) one finds that the state graph of OLis precisely
the state graph of a "one-input, one-output automaton" as described by
McNaughton and Yamada,(3) Cﬂ, having a single output state, namely the
ACCEPT state. Therefore, using the procedure given in Part II of the
McNaughton-Yamada paper one can construct B the RE over 2. that repre-

sents all 1-dim partial tapes teking Ol from st to A; i.e., B = G(OL).

QED
Note 4.1 ¢ L ig & l-way D-dim l-head machine then G(O\) consists of
a set of partial tapes, each consisting of a D-space empty except for
a finite line of symbols along one of the D-coordinates. This line of
symbols can be represented as a RE over Z, the alphabet of Ol
Example 4.1 Figure 4.1 gives Cﬂuul a l=-way l-dim l-head machine working

on tapes over . = {a,b,B}; find G(OLDr l)o

-29-
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a,b/1

a/l

B,b/1

Machine

4.1
Figure 4.1
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Using the technique of McNaughton and Yamada one finds that
a(ol) = BU (aUb)aU(aUb)(BUb)[a(aub)(BUDb)I*[bU aBU a(al b)al.

Theorem 4.2 If B is a RE over 2. then there exists a l-way l-dim l-head
machine Ol working over 2 such that G(OL) = B.

Proof: Construct, via Part III of the McNaughton and Yamada

paper, the state graph of (@ ' the "one-input, one-output automaton"
that represents B. Cﬂl will in generél have more than one terminal
state (output = one); merge all terminal states of (' into one state
labelled ACCEPT and delete all transitions from this state; call the
new machine thus obtained Ol . If t is a tape accepted by Cn, then

t must have a subtape that takes (' from sI

to a terminal state, i.e.,
t has a subtape in B; conversely if t has a subtape in B then t will be
accepted by OL . Thus G(OL) = B.

QED

Example 4.2 Let B = (aUb)*bBUabBB be a RE over L = {B,a,b}. Find
a l-way l-dim 1-head machine Ql ), p Such that G(O‘Lu 2) = B.

Using the McNaughton and Yamada technique one first constructs

Cﬂ’h.z

[terminal states of Cﬂ'i 5 are represented by double circles].

(Figure 4.2) the one-input one-output machine that represents B

By merging the terminal states of Cﬂ,ﬁ 5 into a single ACCEPT
state and by deleting all transitions from ACCEPT one obtains the desired
machine Cﬂ'h 53 (Figure 4.3). The head movements for all transitions in

Cﬂ,u , are understood to be +1.
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1-Way 1-Dim n-Head n-Tape Machines

Theorem 4.3 If O is a l-way 1l-dim n-head machine operating such that

each head h; works on a distinct tape written over 2, (i =1,2, ..., 1)
i

p—

then G(O\) = Sw where B is a RE over Z&j

?e
LiﬁJ :

Proof: An effective procedure exists to determine if any'Cn,

is l-way (see Chapter V). Without any loss of generality we can assume
Cn,to be l-way in the +1 direction for all headssin which event all

the accessible transitions of Cﬂ:will carry labels of the form

01,02, 000y on/l,l, ssey 1 Where ciezio One can remove all inaccessible
transitions fr@n()t'without alterning G(oU). Since the heads of OL move
in synchronism, one can imagine the input to O\ +o be either a set of n
single channel tapes or a single n-channel tape (or more precisely the
separation of a single n-channel tape), If one adopts the latter point
of view then the n reading heads hl’hg’ oo oy hn reading over Z&,Zé, oo Z£
respectively can be considered as one reading head reading over the

alphabet 21

L

°
£}

2o

Therefore, via Theorem 4.1, B, the set of single n-channel
generators accepted by the l-head machine reading over 21
would be expressible as a RE over Zﬁ .
Taking the separation of P one in

gets GOU. i.e., GlL) = gY,



-35-

Example 4.3 ILet Cni 3 be the 1-way 1l-dim 2-head machine given in

Figure Lk.4. Head hl works on tapes written over Zl = {B,O,l} and

2

(B,B)/1,1 2

Considering Cﬂho3

via theorem 4.1 that

and that

h, works on tapes written over Zé = {B,a,l} Find G(CRMDS)O

S_’]_ (B:l)/l)l A

a)/1,1

Machine OLM 3

Figure b.h

to be l-head reading over E;;} one finds

t;j.
I

Theorem 4.4 If B is a RE over Zi? then there exists a l-way l-dim

1

n
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n-head machine OU in which each head h, reads over Zi and for which
alov) = gv,

Proof: Via the method of Theorem 4.2 construct OU" a l-way

1-dim l-head machine reading over which has G(Q") = B. Each
2,
transition of Q(" will be :2
lab d S
a %lle an
["2
95 { - Convert Ol' to a l-way 1-dim n-head machine by changing
o . . " .
LOnJ each transition label of (\  as follows:
°1
%2 L
, ———EE>(01,02, cen, on)/(l,l, con, 1)
o
n

- o

The resulting machine Ol nas as generators precisely the separation

of a(OU"); i.e., c(oL) = clov")¥ = Y.
QED
Example 4.4 Given
5] % [0l « || 8] [o
B = |a a Bilyto!
1] 1 o‘i 1
construct machine OLLL " such that G(OLM u) = B‘lﬂ Using the method
presented in Theorem 4.4 one first derives the machinecxiih_ (Figure L.5)
Applying the mapping oy
g = (0,,0,,0,)/1,1,1
21t 177273
3

to the transition labels of OLL A one gets the desired machine

(Figure 4.6).



. Ip1 o
- . B 0|
I o’ 1]
v . L_} il
EREEIAN
_ 1B 0]
/ LOJ,LlJ \
S A )
\ )
B
a 1
1
\
e
M h' 1"
achine OLLI—A—
Figure 4.5

(B,B,0),(0,0,1)

(Oya)l)/l)l:l

Machine 01‘74 "

Figure 4.6
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Note 4.2 If Olis a l-way 1-dim n-head machine working on m tapes

(m < n) then some tapes can have more than one head per tape. If any
two heads hi and hj are on the same tape and move in the same direction
then their positions will always coincide and they can be replaced by a
single head; if such is the case for all heads on each tape then oL
can be replaced by a l-way l-dim m-head machine Q| '' that is equivalent

to QL (i.e. GL) = Glu") = BY where B is a RE with m channels).

il

2-Way 1-Dim 1-Head Machines -

Def. 4,1 ILet B be a RE over Z',l/Dl ; B will be said to be realizable
2, /D

if and only if B or any of ,,2/ 2
2,/ ]

its equivalent RE's has no well-formed part of the form

d. T B a =
rbai/ 5) Gai/ 71
o. /d o, /4
Qz{ 52 U Qé{ 72
: ! : Ay
d
—oan/ 5n - “Gan/ 72
where for some i = 1,2, ..., n d&- 7! d}' (Al and A, are sets of partial
1 i
tapes over
2, /Py
Loy | ).
2, /D
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Theorem 4,5 If Ol is a 2-way l1-dim l-head machine working on tapes

written over 2 then G(o) = Bf where B is a realizable RE over /1.
Proof: Let O{' be derived from Ol by considering Ol to be

a8 l-way l-dim l-head machine reading over ZZ; with the head movement

of +1 for all transitions of OU' understood. B is the RE over /1

representing G(Cn‘)a From the fact that for a given state in Q'

and for each ge€), there is only one transition in O one deduces that

B i1s realizable; the assumption that B is not realizable would imply

that QU has a state with two transitions for the same input -- this is

not allowed.

Let teT(OL). The behavior of CLon g can be described

o)
by the sequence

_ ol . . . .
p = s, oo/do, sl,ol/dl, 60000} sp-l’op-l/dp—l’ sp,cp,

where Ol starts in state sI, reads co(in cell o) moves its head do and

goes to state s oo Cﬂfin state 85 during the i-th cycle reads 0

l;oo

(not necessarily in cell i) moves its head d, and goes to state si+l;oaao<7L

in state sy during the p-th cycle reads o and goes to A (Ol accepts gaét))o

D
Consider the partial tape

£ = _O:i/do gl/dl v e e a e e e OP

extracted from p. Since t' derived from the functioning of Cn,on t it
follows that oo/do is an initial symbol of B,cpa.final symbol of B and

(oi/di, 0i+l/di+l)a transition of B for i = 1,2, ..., p-l. Thus t'ep.

The definition of the fold operator exactly parallels the head movement
f

of O so that t'* = gcnft). But t'eB — t'Tepl so that gox(t) = tTepf,

. one has the partial proof ge G(OL) —agern
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To complete the proof one must show that gept - gealou).
Take any g in Bfa Therefore there is some t' in B such that t’f = g,

t' is in P therefore t'eG(Q|'). Write the sequence

I . . .
p = s, oo/do, §07/815 ceees 557 O

that describes the behavior of (! on t' = {lo_/d, gl/dl SRR A

0 ' starts in L, reads oo/do of t', goes to state s;, reads o,/d,,

goes to s goes to sp, reads Ops 80€S to A. But if Q' accepts

YAREERY
t' then Cﬂ,accepts t'f = g since the fold operation parallels the head

movement of OL. Thus ger, which completes the proof.

QED

Example 4.5 LetCﬂm_ the 2-way 1-dim l-head machine working on tapes

.5’
written over 2, = {B,O,l}, be shown in Figure 4.7. Find G(OL).

Machine Clﬂ

9
Figure 4.7
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From O\Jw one gets B = (0/-1)(0/-1)*¥B U (1/1)(1/1)¥B or that
a0, o

is realizable.

) = [(0/-1)(0/-1)*BU (1/1)(1/1)*B]T .  Observe that B

Theorem 4.6 If B is a realizable RE over z/l then there exists a 2-way

1-dim 1-head machine Ol such that G(OL) = et

Proof: An effective method exists to determine if B is

realizable (see Chapter V). Construct via Theorem 4.2 the machine (y,'
that reads over /1 and has G(O\') = B. Since B is realizable we are
assured that for each gel, and each state of QL', QL' will have just
one transition. Thus if we convert QO ' to a 2-way l-dim l-head
machine Q| reading over 2. by applying to the transition labels of OL!
the mapping (0/d)/l—5§>c/d we are assured that OU is in legitimate
form (i.e. only one transition leaving each state for each input).

The proof follows by reversing the arguments of the proof of Theorem L.5,

QED

Example 4.6 ILet B equal the realizable RE (b/1)*¥B \J (¢/-1)%¥B, Find
a 2-way l-dim l-head machine Cﬂ~u ¢ such that G(Cn’h 6) = 6f,
Ol » the l-way 1-dim l-head machine reading over

L.6
{B,b,c}/l that satisfies G(OL' ) = B is computed via Theorem 4.2

4.6
and is given in Figure 4.8,
. . o _uF
The machine Cﬂ,u ¢ Which satisfies G(Cn,h 6) = B~ is
obtained from( . Dby applying the mapping (0/d)/1==0/d to all

transition labels in QL' . is given in Figure 4.9.
4.6 b6 O
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(b/1)/1

(v/1)/1

(e/-1)/1

(e/-1)/1

Machine O‘LLL 6

Figure 4.8
b/1
b/1
c/-1
c/-1
Machine OLA.6

Figure 4.9
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2-Way D-Dim l-Head Machines

Theorems 4,5 and 4.6 can be immediately extended to l-head
machines working over D-dim tapes; the proofs are essentially the
same as in Theorems 4.5 and 4.6, differing only in those places where
the head movement goes to D-dimensions. The D-dim theorems are given
below without proofs but with examples.
Theorem 4,7 If Olis a 2-way D-dim l-head machine working on tapes
written over L then G(OL) = B° where B is a realizable RE over 2/D.
Example 4,7 OLM, - shown in Figure 4.10 is a 2-way 3-dim l-head machine

working on tapes written over ), = {B,O,l }a G(C)’l,4 7) is derived to be

{(8/-3)*[(0/1)(1/2)(2/-1)U (1/1)1(1/-1)1} .

l @
Machi
achine O'Llh?

Figure 4.10
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Theorem 4,8 If P is a realizable RE over Z/D then there exists a

2-way D-dim l-head machine OU such that Glov) = 6fa

Example 4.8 Construct a 2-way 2-dim l-head machine O'\/u such that

8
a(0L ) = Bf when B = (2/0)(a/1)*(b/2)(a/2)*%b,

4.8

OLLL 8’ the l-way 1l-dim l-head machine that reads over

{a,b} /2 and for which G( 0L} g) = Bsis computed via Theorem 4.2 and

is given in Figure 4.11.

e
e g ",
kg m /\ /
i 1 A

\ (/)1 Cale =
(a/1)/2

Machine (),
4,8

Figure 4,11

The machine OL which satisfies G( Ol ) = Bf is obtained

4.8 4.8
fromOLlL g by applying the mapping (0/d)/1—=>0/d to all transition
labels in OLLL g° Ok/u 8 is given in Figure 4.12,

/o (" ) ve (C) o \/f>
N

a/l

Machine 0\, L8

Figure 4.12
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2-Way D=-dim n-Head n-Tape Machines

Theorem 4.9 If O is a 2-way n-head machine with each head h (i = 1,2,...,n)

working on a distinct tape of dimension D; and written over Zi then

—

G(O) = B$f where P is a realizable RE over zl/Dl

22/P;
./,

e —

©

Proof: The RE B is obtained by applying the mapping (o1,005,..-, o)/
(d1,d0, 0005 4 )—== (01/dy, op/dp, «+ey 0n/dy)/1,1, +.», 1 to each
transition label af()t thereby obtaining a l-way n-head machine O' whose
heads read respectively over zl/Dl’ Zé/Dz, 0n oy Zn/Dn; let Bw = a(o')-
Arguing as in the proof of Theorem 4.5 if t' is an n-tuple in Bw then Cﬂj
accepts t'jand if t'f % ¢ then Ol when working on t‘f will go through
the same sequence of states as Q' and therefore t‘f is accepted by
Ol (or +'T cclen)). Thus BYTS g(oV). Conversely if t is some input
in G(OL) then by examining the behavior of Ol in accepting t we can
deduce the sequence t'¢p such that t'f = t, Thus BT clOV), The
conclusion then is that GOV = 2

That B is realizable follows from the observation that if B
were not then one could show Ol must have a state with two transitions
leaving it for the same input n-tuple; this is not allowed. Therefore

B must be realizable.

QD

Example 4,9 ILet Cnh 9 be the 2-way 3-head machine shown in Figure 4,13

Each head of %9works on a distinct tape with Dy = 1, Dy = 2, Dy = 3

end Xy =Ty = X3 = {8,0,1}. Find G(O\,u&)ﬂ
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0,0,B/1,1,3 //’*“\\
[ s

- o e X 2
1,0,B/-1,0,3 N //

o

Machinecjtuo9

Figure 4.13

Applying the mapping of Theorem 4.9 one obtains the l-way

n-head machine (jLi 9 shown in Figure 4.1k,

(0/1,0/1,B/3)A,1, o
(o/oifz$1£2C£l s1 )‘g \T//i;;\\ B,B,B A
1,1 (1/-1yo/o,B/3)/1;)x\_,//

Machlnecndia9
Figure 4.14
Theorem 4.3 applied to (jLﬁng yields G<Cn’io9) _ BW
where
B = 0/1 [i/mi‘ 0/0 * 50/1 B
o/1| |0/0 v 0/0 o/i| | B

B/3 _3/3_} 10/1 B/BJ B

i
L



Thus

G(ot, )

b.9

Theorem 4.10

then there exists a 2-way n-head machine

OL such that G(OL) =

Proof:

T/
322/D2

over

5,

mapping (oy/dy, 0,/ds,

to all transition labels of(jL'o

If B is a reallzable RE over

and has

=474

\.

g¥t,

G(O-'\/') = Bw"

ey 0,/3,)/1,1,

Obtain OL from C.!

., 1—=(0

-
o0 L ofoy |+
a7t i) o/1l 0o/ol U ofo
; B/3, B3] 01

ZlfDl%

ZE{DQ

/0,

Construct via Theorem 4.2 the machine Cﬂ that reads

012005 o20s

cn),/dlﬁd

¢

o/rt 27 Y
0/1 B |
‘B/3. B

i

by applying the

Since B is realizable we are asgsured that

will have only one transition leaving each state for each input n-tuple.

The proof follows by reversing the arguments of the proof of Theorem 4.9,

QED

Example 4,10 Construct a 2-way 2-head machine C?Lu 10 Such that

1/2

10
[0

iml/-Q;} 0

/A\\

e(OL, o) - ¥ where B = [0/1) o /j *
’ 0/1 | /q
C)ML o the machine with G<Cﬂ’ﬁ510) = Bw, is shown in Figure k.15,
TN
( N\ (0/1,0/1)/1 1 (1/2,1/-2)1, 1,
X [
\

.

(0/1,0/1)/1,1 )

Machine O i 10

Figure 4.15

2’050

d.

n



~18a

Applying the mapping of Theorem 4.10 to Cﬂ,i 10 one obtains

Ol shown in Figure 4,16,
4,10

Machine Ol
L,10

Figure 4.16

2-Way D-dim n-Head m-Tape Machines

Theorem 4,11 If Olis a n-head machine operating on m tapes (m £ n)

such that the first ng heads work on tape ty written over Zl
in Dy dimensions, the next n, heads work on tape t, written over Zg

in Dy dimensions, ...., the last n, heads work on tape tj written over 2y in Dy,

dimensions (n >1;i=1,2,,.., m) then
n
Ve -
GoL) =8 G ?g

2

where B is a realizable

o
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-

RE over 2, /Dy A ]
Zﬁ(Dl g n
Z, /D, ?
Zé{Dg g

zI‘m-l/Dm-l

Zm{Dm \L

2, }D Jf

—m m

Proof: Let (' be the same machine as O[but with each head

on a distinct tape jthen via Theorem 4.9 let B be the realizable RE over

i N N
2y/D | §

°

Y /D |

vene, t1) € BYT ana ir

such that G(OU') = Bwfa If t' = (ti ,té, .

n
t=tel ¢ # ¢ then Ol when working on t will go through the same

m
state sequence of states as (O ' working on t'. ©Since every filled

cell of t is scanned by Ol (since every filled cell of t' is scanned by O')

n .
and t is accepted by O , t€G(OL) or in other words Bwis, Hé <G .

Conversely if t = (tl, toy ooes tm) € G(OL) then there is Fin

an n-tuple t' = (ti’ té’ .o, tpn) where t} is the generator scanned by
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n
” 1
by the i-th head of al. t' must exist in B*f and t“Q: no must equal

Vel L] o :
t. Thus ; =  G(o). I
us B'C ny (1)
iy
Concluding then, BY C|n = Gg(ou) .
n

QED

Example 4.11 Iet Cykh»ll be the 3-head machine shown in Figure 4.17.

Heads hl and h2 work on the same tape of dimension 2 written over
Z& ={B@,c}; head h3 works on a tape of dimension 1 written over Zé = {B,O}a
Find G(Ol )e

h,11

-
""""""
.,

Machine C)l’h 11

Figure 4.17

c/l c/z‘!ga/a
Applying Theorem 4.9 one obtains B = c/2 a/l c/1 a/l 1 c

O/l LO/l B/ J.I 0/- 1y BM:

Il = \lf’fu C -a 1 a ¢ r_‘
end thus G(OL, | ) C [nl‘J— Cﬁ U aﬁ C/g aﬁ ’ﬂc G !if
0/1 0/1 ‘B/ JLJ , [_B -




Theorem 4,12 If B is a realizable RE over

m
Then there exists a 2-way n-head machine O, (n = L

to B (i

Proof':

.e. Gl = B

¢(OV

2 ).

Instead of letting Cﬂ.operate with one head per

-51-

¢%3

n
1
oo

n

m

er /DDi ]
E \ oy
nm |
Zm'o mI
; n
s [

Let ()Lbe the machine obtained by applying Theorem 4,10

tape alter Ol such that the first ny heads of OL operate on a single

tape t7, the next n, heads operate on a single tape tg, »00, the last

n, heads operate on a single tape tmo

The proof is completed by

reversing the arguments of Theorem 4.11.

QED

Example 4.12 Construct a machine ()H+ 10 that works on 1-dim tapes

over 2, = {B,O,l} and such that

g(ov)

One can show that G(ov)

Thus OU

k.12

Tl el

lofaflol---

h e

4,12

working on the same tape.

BB I

is the 2-head machine shown in Figure 4.18 with both heads

1/1]
/o |

EiME

1 ere)

Jolsl , k=

1,2,..
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CHAPTER V

ASSORTED ALGORITHMS AND THEOREMS DEALING WITH THE
DECISION PROBLEMS AND SPEED OF OPERATION CF n-HEAD MACHINES

Algorithm for Deciding 1-Wayness of Machines

The algorithm will be given below assuming that the machine
C)L under consideration is n-head working on n-tapes (i.e., one head
per tape); the remarks following the presentation of the algorithm
indicate how the method may be extended to include machines with more
than one head per tape.

Algorithm 5.1 Let O\l be an n-head machine working on n-tapes (one-head

per tape) and let the state set of Olbe sU {A,R} with st €S, The
transitions of Cﬂ,going to A or R will be assumed to cause no head

motion of Ol .

1) Leti=0 andé)o(o) = {s1}.

2) Pick any transition leaving sT

and not going to A or R;
let the head motion associated with this transition be

the n-tuple d = (d Aoy oees dn)a If no such transition

l)
exists Q| is trivially l-way (i.e. Ol never moves since

I go to A or R).

all transitions from s

3) Consider all transitions leaving states in<gf(i), all
these transitions must either go to A or R or must have

head movement n-tuples equal to d. If this criterion

is not met Ol is not l-way. 1If it is met let

C%)O (i+1) —_-éf (1)U {all destination states of tran-

sitions leaving states inéﬁ’(i)},
-53-
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4y 1e & (i+1) = @O(i) nalt; Ol is l-vay; if (i+1):35f(i)

augment i by 1 and go to step 3).

Proof: First of all, transitions leaving sI are accessible

since any symbol can be put in the initial cell of each tape., If OL

I therefore must go either

is to be l-way all transitions leaving s
to A or R or else have the same movement n-tuple d. If in the
application of the algorithm Ol nas not been disqualified as a
l-way machine after i repetitions of step 3) then we know for all
inputs to C)L s Ol either accepts or rejects the input or else

has moved to some state sj(¥ A,R) the heads of Ol always moving

d each machine cycle and thus after i cycles each head of Ol is
scanning a previously unscanned cell and so all transitions leaving
(%P(i) are accegsable and therefore must go to A or R or also have
head movement d. If a transition from éf (i) has a head movement
not equal to d there is an input to Ol for which ()L is not l-way,
The algorithm halts in at most:g + 2 repetitions of step 3) since

s U {a,Rr} D é)o(iﬂ)’._b_ éj) (1).

QED

Note 5.1 Letg = g(i) where (ﬂf (1) = 3(&1) in algorithm 5.1;

éif is then the set of accessible states of OL , T(OUL) = ¢ if and

only ingfgc
Note 5,2 One can extend the algorithm to the case of many heads per

tape by implementing the following step:
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If two (or more heads), h; and hy, of Ol work on the same
tape then during the first machine cycle of OL we only need to con-
sider those transitions from sI in which hy and h, read the same
symbols; if the d associated with any one of these transitions indi-
cates that hy) and hp move in the same direction then in applying the
algorithm one observes that transitions leaving éf (i) are accessible
if and only if h; and hy, read the same symbols (assuming OuL is l-way) -
therefore transitions leaving éif(i) and in which hy and hy, read
different symbols can be considered inaccessible and can be ignored
in applying the algorithm. If the d associated with the transitions
leaving sI indicate that hl and h, move in different directions then
for all states in é%f(i) - {SI} transitions for which hy and h, read
different symbols must be considered accessible -- furthermore if for
some ééf(i) there is a transition leaving a state in <E§ (i) and
returning to s then all transitions leaving s and for which by and hy

read different symbols must be considered as now being accessible,

Algorithm for Deciding the Realizability of Regular Expressions

-' "'W
Algorithm 5.2 Let B be a RE over Zl/Dl
Zp/Da

3

Ll’l n
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To check if B is realizable, attempt to construct via Theorem 4.10 an
n-head machine OU such that G(OL) = Bwfn When the proposed Ol is obtained
check each state of Ol to see that only one transition per state is
labelled with a given input. If the check is unsatisfactory then it
follows that B is not realizable, Further, if B was not realizable OL
would not pass the check. Therefore B 1s realizable if and only if ol

has one transition per state for each input.

l-Way 2-Head Equivalents of 2-Way 1-Dim 1-Head Machines

(1)

Shepherdson has shown that for any 2-way l-dim l-head
machine Ol if one restricts the inputs of O\ to those l-dim tapes for
which Ol never scans cells to the left of cell O then there is a l-way
l-dim l-head machine which is equivalent to OL. 1t is impossible in
general to construct a l-way 1l-dim l-head machine equivalent to O\ for
all inputs. One can construct, however, a 2-head machine that is l-way
and equivalent to Ol .

Theorem 5.1 If Ol is any 2-way l-dim l-head machine then there exists
a l-way l-dim 2-head.machine, constructable from Ol and denoted by

& (0L), such that 6(0L) = &(F ().

Proof': 8 (OL) will have two heads h; and hy. Initially
hl and. h2 will both be placed on the initial cell of the tape to be
examined. OnceE§ (OL) is operating hl will move one cell per machine
cycle in the -1 direction and h2 will move one cell per machine cycle

in the +1 direction; therefore é§ (oL) will be a l-way 1-dim 2-head

machine,



-57-

For all 1-dim tapes the head positions ofE§ (oL) after k

machine cycles will be

O 1 [T | Ty | - ' o, x o, R LT T Iy
p A
hl h2

and the input to E§ (OL) will be (c_k, Gk),

For any tape t let tk be the subtape of t consisting of the
cells -k, -k+l, ..., O, ... k=1, k. The crux of the construction of
E§ (OL) depends on the observation that given Ol= < C,%msI,M >
working on tapes over 2, then for any l-dim tape t and any integer k,

= , = 25

tk can be put into one of 2 + 2SOL(280L + 2)770L  equivalence classes

depending on the behavior of Ol on tkn Furthermore, if [tk] is the
equivalence class of Ty and o_y ¢ and Opt] the contents of cells
(-k-1) and (k+1) of t then [tk+l] is uniquely determined by [tk] and
(0 17 O1)-

The state set of é§ (OL) is made up precisely of these
equivalence classes [tk],and the transitions of éﬁ (OL) on inputs
(d_k_l, Gk+l) < 2, x 2, are determined as follows:

1) If on reading by Ol. goes to A(R) then [t ] = A(R);
in the event OU weakly rejects fk without ever leaving
tk then [tk] = R; thus we have identified two of the
eguivalence classes, A and R.

2) If on reading t, Ol does not accept or reject Ty

then Ol must step off t, at either the left (-1) or

k

right (+1) end in some state ;€8¢ - If one knew

the behavior of Ol on t, if Ol started on cell -k and
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again on cell k beginning in each state of T%H, then

one could find [tk+£] for all £ > O without knowing

precisely what t, was, i.e., one only need know [tk]n

k
Thus for any t, [tk] can be A, R or a behavior label

of the form
S5 P
o
51 @ -1,1 %1 @
52 9,2 %0
SOL -’l’SoL l,SOL

where p = + 1 and 8:5P denotes that when working on tk

C)L-steps of the p-th end of tk in state s; and where

Q& denotes the behavior of ()L on tk if started on

A(R) ir OL

J

the x-th end of tk in state syo O&,y =

moves to A(R) without leaving ty, O y = Rif oL
J

s . . o

weakly reJe?ts tk without leaving tk, %,y

if Ol leaves t, on the 0-end of ty in state Sj.

= Sj,@

Since for every tk and a given Ol one can put ty in pre-
cisely one of the above mentioned equivalence classes one gets that

the number of equivalence classes is

= - .28
2+ 28, (2+ 28y ) o
(N C —— ./
AR number of behavior labels

Given [t,] and (0_j_1, Op,p) one can determine [ty 4] as

follows:
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1) If [t,] = A(R) then for all £ >0, [t

) = = A(R). This means

k+ﬂ]

that if Ol accepts (rejects) t. without reading o then

Kk k-1 % %4

O _koyoy 804 Oy 1., can be anything without affecting the behavior
of QU or Eﬁ (ol on t.

2) If [t ] = S.5 O

k i

(04 (04

°1 1,1 1,1
(04 (04

®2 -1,2 1,2

5

oL
then one determines [tk+l] in the following manner: (assume p = -1,

if p = +1 just alter the following presentation accordingly).

a) if Ol moves to A(R) on reading 0__q in state sy

then [t,] (G-k-lﬂb)}_A(R); ® indicates that oy,;

can be anything, even a symbol not in Z, since oL

would never read o (i.e. cell k+1 is not a

k+1’
filled cell in this particular generator of Ol with

respect to t).

b) if OU on reading o moves back onto t, in state

-k-1

Sy then consult a-l % of [tk] to see what ()L would

)

do on tki
- - (0_k-1,0)
if a_l,x = A(R) then [t.] k-1 A(R),
ifa, = s.,-1 then one knows Ol will return
=Ly
to read O k-1 in Sy without scanning Opyp’ SO

examine what OL would do in s, resding o , .

and re-apply b).
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if A 4= s>+l then one knows (}L will step off
)

tk on the right to read oy, in state sy, examine

what OL would do and re-apply b) or apply c) getting

[tX] (Umkwl:0k+ll [tyiq] (Gk+l is used in place of

o since if ¢ is scanned by OL +then [tk+l] is not

k+1

i da .
independent of Ok+l)

if in applying b) one discovers Ol would move -1 to

scan o_y o or move +1 to scan 040 then

[t,] (og-150k41) —~ S32P —~

°1 Poi,1lP1,1

52 Ba,2|P1,2

, - [tk+l]
where p = -1 if Ol scans O .o OF +1 if OU scans
Opyos Sj being the state Ol is in when moving to scan

LB - oL
O o OF Op 0 Bxy is also determined from and [tk]

by using a) b) c) but by starting OL in state 5, on

O-kml if x = -1 and on Oyt if x = +1.

An efficient way of constructing E§(Cﬂ) is to begin with
an initial state, I, and let E§(cn) start with both heads on the
initial cell of t. Thus the only transitions from I that can occur
are transitions on inputs of the form (o,0) since hl and h, read the
same symbol when in I. By applying a) b) c) to I of E§(Cﬂ) one finds
all the states of 55 (OL) immediately accessible from I. To these
states me applies all inputs from 2 x 2 (all inputs are possible since

65 (0L) is l-way) and finds the second rank of accessible states of
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E; (OL); one continues in this manner until a closed machine E§ (oL)
is formed.

The manner of constructing E;(CRJ assures one that
G(OL) = a( E§ (Ol)). Furthermore, EB(CﬂJ may strongly reject some
tapes only weakly rejected by(3L; if one desires Eg((ﬂ) to also reject
(weakly reject) a tape if and only if Ol does it then this can be
accomplished by adding a weak reject state, WR to E§ (OL) (WR=a state
that loops on itself for all inputs) and when in constructing 5(0\,)
a weak reject by Olis uncovered do not send ég(CﬂJ to R but rather
to WR,

QED

Example 5.1 Let OL be the 2-way 1l-dim l-head machine shown in

5.1
Figure 5.1 that reads tapes written over 2 = {B,l} and accepts input
tape t if and only if t has a blank initial cell and a 1 to the right

and left of the initial cell. Find (( s ,).

ine OL
Machine 5,1

Figure 5.1
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Let I be the initial state of (Ol ;). WmenF(OLy )

is in I the only possible inputs to E§( OlL. ,) are (B,B) and (1,1).

5.1
So considering tk = and tk = one finds that
I \ (B,B) \ (1,1) (" [to be read as:"state T on )
input (B,B) goes to state
55, 1 R 855 1
52,1 52,1 { 52,1 sg,l /
82,1 s2,l 5, 52,1 , etc..." ]
s_,=-1|s_,-1 s ,=1l]s_,-1 <
3J 3) K3) 3)

\(B,B') \(B,l) \\ (1,B) \g\l,l)

SRY 1 , sg,l 53,-1 52,1 A
52,1 52,1 52,1 52,1 s3,-l R R 52,1
32,1 52,1 82,1 82,1 53,-1 ~s3,-l 53,-1 52,1
s.,-1ljs_,=1 s.,-1ls_,-1 s.,-1 1 A A A

37 ) 3) 3) 3}
N o O\gw

s ,-1 s ,-1 A

3 3
83;1 _ﬁ; s3,=l
83,-1 %5’-1 53,-1
s3,-l A 53,-1

\\\\\(w,B) \\\\é?’l)

52,1 52,1 A
R sg,l 52,1
53,-1 52,1 s2,l
A A A

Thus a suitable -state graph for 55.«31 ) is given in Figure 5.2,

5,1
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(B ;l)/"l:l

hi
Machine 5 (01,,501)

Figure 5.2
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The "Particular Input" Decision Problem

Def, 5.1 Let Ol be any n-head machine and t any input to Cﬂ,(t is in

general an m-tuple of tapes) then Qjét) is defined if and only if OL
accepts or strongly rejects t and in that event TOét) equals the number

of machine cycles it takes for Ol to accept or reject t.

Theorem 5.2 If Ol =< C,S,sI,M > is any l-head machine working on D-dim
tapes and if t is a D-dim tape for which the initial cell and all non-
blank cells can be enclosed in a D-dim rectangular parallelepiped of dimen-

sions £y X fp X .... X fpyand if 7 (t) is defined (if Ol accepts or strong

oL
ly rejects t) then

TOi(t> < s iﬁl (ﬁi + 2?)

Proof: Let Pl be the rectangular parallelepiped of dimensions
ﬂl X ﬂg X soes X zD that encloses the initial cell and the non-blank cells
of t. ZEnclose Pl with a larger rectangular parallelepiped Po such that the
corresponding sides of Py and Pp ame?? cells apart. P2 therefore has dimen-

sions (ﬂl + ég) X (ﬂg + ég) XooooX (ﬂD + 25). Let Ol work on t, its head

= D =
. After S T (4 + 25) = T machine
1 i=1

starting on the initial cell inside P
cycles one of three poséibilities must have occurred:
Possibility 1) Cﬂ,accepts or strongly rejects t; in which
event the theorem holds.
Possibility 2) ()Lneither accepts or strongly rejects t and the head
of Ol never left Py But 7 equals the total possible
combinations of head position in P, and state of Ol;
if after T machine cycles Ol never left Py nor accepted

or rejected t than Ol must be in a loop and therefore

never will accept or reject t. Thus the theorem holds.
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Possibility 3) (]Lneither accepted norrejected t and the head of Oliert
Py, let h (the head of QL) have left P, for the first
time during the i-th machine cycle. By the construction
of Py and Py one knows that h has read B for the last??
machine cycles preceeding the i-th. Since in reading
these S B's Olneither accepted nor strongly rejected t
but instead moved away from Py we are assured that oL
will continue to read blanks and move further away from
Pl’ never accepting or strongly rejecting t. Thus the
theorem holds.

QED

Note 5.3 In the trivial case of Ol being a 0O-head machine the acceptance

or rejectance of all tapes is a function only of S and M of OL. If TCﬂ5t>
is defined in this case then for all t, TO'I,(t) _<_?°
Note 5.4 Minsky(S) has shown no procedure exists for determining if a

general 2-head 2-tape machine accepts or strongly rejects a particular input
t. His results in no way require the heads of the machine to work on separate
tapes and so one can conclude that: if n > 2 no procedure exists to determine
if a general n-head machine accepts or strongly rejects a particular input t.
In contrast with theorem 5.2 it is a direct consequence of
Minsky's result that‘there is no function £(OL,t) of Oland t such that if
() < f£(OL,t) if 7

o ol

exists. If such a function existed then there would indeed be a procedure

Ol is a general n-head machine and t an input 7

to decide if any general n-head machine accepted a particular input t.
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The Emptiness Decision Problem

Of the several decision problems one can propose dealing with
n-head machines there are three which can be shown to be equivalent. These
decision problems are:

1) The emptiness decision problem: given any n-head machine Ol goes OL
accept any input whatsoever? (ioe, does T(OL) = ¢)n

2) The state accessibility problem: given any n-head machine Q| and any
internal state s of Cﬂxis s accessible?

3) The transition accessibility problem: given any n-head machine Cﬂ,and
any transition T of Ol is T accessible?

Theorem 5.3 The emptiness decision problem (1), the state accessibility

problem(2), and the transition accessibility problem (3) are equivalent in

the sense that one can devise a general procedure to answer one of the

problems for all n-head machines if and only if one can devise a general

procedure to answer all of the problems for all n-head machines.

Proof: One can present the proof by showing that a general proce-

dure to solve (3) —>> a general procedure to solve (2) —>> a general
procedure to solve (1) > a general procedure to solve (3) [ or in
short notation gp(3) = gp(2)=3gp(1)=3gpr(3)].

a) ep(3)=>gp(2): let Ol be any n-head machine and s any state
af(ﬂ,, gp(3) assures us we can determine if any transition
of Ol is accessible. Consider each of the transitions enter-
ing s and determine if each is accessible. s 1s accessible
if and only if one or more of the transitions entering s is

accessible. Thus gp(3) =>gp(2).
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b) gp(2)=> gp(1): let Olbe any n-head machine with ACCEPT
state A, T(OL) # § if and only if A is an accessible state
of Ol. But gp(2) assures us we can determine 1f A is
accessible. Thus gp(2)=>gp(1).

¢) gp(1)=>gp(3): let Ol be any n-head machine and T any
transition of OL . Alter Ol by letting all inputs to A
go to R and by changing the destination of T to A (if T
goes to A originally then leave it). Call this new machine
()C, T(Cnf) # ¢ = T accessible in Ol and gp(1) assures
us we can determine if T(an) = . Thus gp{l)=gp(3).

QED

Theorem 5.4 Given any l-dim 1l-head machine Ol there is a general procedure
for determining if T(Ol) = @.

Proof: If Ol is 1-way then one can apply the result of Theorem 7
of Rabin and Scott(6) to Ol and thereby decide if T(OV) = . If Ol is 2-way
then Theorem T of Rabin and Scott can be applied tx>E§(Cl), the 2-head l-way
equivalent of Ol ; T(OU) = p if and only if T(qj(OL)) = §.

QED

Note 5.5 1f Ol is a 1-dim l-way machine then Theorem 9 of Rabin and Scott
can be applied to Ol to determine if G(OU) is infinite. If Ol is 1-dim
2-way then Theorem 9 of Rabin and Scott can be applied to E§GJL) to determine
if G(Ol) is infinite.

Note 5.6  Since every l-way n-head machine reading over 21,22,0.0.,Zh is

)y
'Vl
2

)

n it is evident via

isomorphic to a l-way l-head machine reading over
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Theorem 5.4 that a general procedure exists to determine if T(OL) = ¢ if
{y,is a l-way n-head machine,
Theorem 5.5 There is no effective procedure for deciding if T(CR) = ¢

for any general n-head machine CJL, if n > 2.

Proof: This result is proved by Rabin and Scott in their

Theorem 19.

QED

Theorem 5.6  There is no effective procedure for deciding if T(oL) = ¢
for any general l-head machine Ol ir OU works on tapes of dimension D > 2.

Proof: Consider the set’%g)of all 2-way l-dim 2-tape 2-head

machines such that the state set S of each machine in %gbis partitioned
into two sub-sets 57 and Sp and such that on all transitions from states
in Sl only head hl will move and on all transitions from states in 82 only
head h, will move. The set 7§§is precisely the set of "two-way two-tape
automata" described by Rabin and Scott.

The input to any machine }é in %%}Will be restricted to pairs
of 1=dim partial tapes of the form (htlh, htgh) where the initial cell of
each tape corresponds to the first cell in t; and to respectively and
where Z} the alphabet of t, and ) does not contain h. h 1s an endmark
and in operation %6 confines its head movements strictly to the cells
filled by ht;h and hish.

Rabin and Scott have shown in their Theorem 19 that in general
no effective procedure exists to determine if T(%é) = ¢o

One can show that for any ﬁg in ’65 there is a l-head machine OUL

working on 2-dim tapes such that T(}§) = ¢ if and only if T(OL) = ¢
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if a method did exist we could determine (contra Rabin and Scott) if

T(£§) = ¢ for all }5 in % .

Let }5 6’65, Let t) and to be any 1-dim partial tapes over

1 2

Y., the alphabet of }5 . One defines (ht,h) x (ht,h) as follows:

From }5 one constructs C&E such that Cﬂg has the same transition

structure as fs H howeverOL2 is l-head and reads over inputs in (Z U {h})

(htlh) X (htgh) will be a 2-dim partial tape written over
(Z U {n})® such that cell (0,0) will be the initial cell
of (htyh) x (htyh) and such that if o; is in the i-th
cell of htqh and Tj is in the j-th cell of hteh then
cell (i,J) of (htlh) x (htoh) will contain (Oi,Tj>, If
4g(ty) is the number of filled cells in t, then the
contents of cell (i,j) in (htjh) x (htoh) is defined only
for

-1 <1< g(ty)

and

-1ty

2

whereas ég is 2-head and each head reads over ZLJ{h}n Thus the input labels

to transitions irxcmg and %5 will identical. As for the head movements of

Cﬂ.e, if a particular transition of £§ had head movement

a)

(1,0) then Clg moves its head + 1,

b) (-1,0) then 012 moves its head - 1,

c)

(0,1) then Ol, moves its head + 2,

d) (0,-1) then Ol, moves its head - 2.
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By the construction of £5 all head movements of }5 must be one
of the four listed above; thus CKE is well defined for each ;5 .

It follows directly from the manner in which.Cl2 was constructed
that

(htlh, htoh) eT(é) ~<4—=—> (ht;h) x (htoh) eT(OLy).

One can construct a l-head machine (}Ll that accepts any 2-dim
tape t if and only if t has a subtape of the form (htih) x (htph). Further-
more(ﬂq_can be built such that it will halt on the initial cell of t if
t is accepted.

If one merges and identifies the A state ofCﬂq“with the initial
state of (7L2 one obtains a composite machine QU such that

T(oL) £ ¢
<= 1) N oy,) =9

<= does there exist a tl and t2 such that

1}

(ht1h) x (htpoh) € T (01,2)
<= () iy,
Since TK}S) Z § is not effectively decidable one concludes that
T(OL) ? § is not effectively decidable.
QED
Note 5.7 In a manner similar to the proof of Theorem 5.6 one can show
that no effective procedure exists to decide if any general 2-dim l-head

machine strongly rejects any tape.

Boolean Properties of n-head Machines

Theorem 5.7 If(}Ll and CR2 are n,-head and np-head machines respectively,
then there exist machines ﬁ%l_and é%)g, each with at most nj+np heads such

that
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2) () = TOL)N oLy

and

o) T(Bp) = TOL) U TlL,).

Proof: a) Let El have nj+n, heads with the first n, heads placed

on tapes in the manner of OL]_ and the second N, heads placed on tapes in

the manner of OL2° Let the statesof 51 be doubletons of the form (sil, Sie)

I I
where s1, € SOL:LU {A,R} and s, € SULEU '{A,R}o Let (s oy smz) be the
initial state of Ol,.

If }Blis in state (sil, 512) and reads input (oy, oo, ...., Onl-l-ng)

thenﬁ)lgoes to state (s;., s;.) with head movements (dj,ds,

7 Sl v Gnang)

where Sjl’ 532
tables of OLl and OLQ as follows:

and dy, dp, cese, dnl+n2 are determined from the transition

)-——-—}(sj » Q15 Aoy eeeny d )

Mml: (sil, 015 Opy ooee, G ] ny

gl
MO«LE: <Si2) Unl+l, o000y Unl+n2>"—>'(832, dnl+l, 000 dnl+n2).

[it is understood that on all inputs ml and Cl, go from
A to A].
The ACCEPT state in Bl is (A, A).
As constructed ﬁl will accept an m-tuple of tapes t if and only
if t is accepted by both Otl and 01,2; thus T(&l) = T(O\_l) N TOL,).
b) Constructé2 exactly as E) 1 above and then merge all states

of the form (A, A), (A, Sig)’ (sil’ A) into a single accept stateoé will

2
accept an m-tuple of tapes t if and only if OLl or 01,2 or both accept 1t;

thus T(ﬁg) = T(OL]_) U T(OL_g)e
QED
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Theorem 5.8 If Ol is any n-head machine that strongly represents T(OL)
(iaeo, any input to QU is either accepted or strongly rejected) then there
is an n-head machine iﬁ that strongly represents nJT(£§)°

Proof: Interchange the labels of the A and R states of oL .

One obtains an n-head machine £§ that strongly represents v T(OL) since
if t takes Ol to A then it takes ;5 to R and if t takes Olto R it takes&§
to A,

QED
Note 5.8 One is obliged to restrict the hypothesis of Theorem 5.8 to
machines that strongly represent their sets. The reason for this is that
there are some sets which can be weakly represented at best and thus the
construction of Theorem 5.8 would not be possible. A case in point: let
T be the set of all 1-dim tapes over {B, O} such that at least one cell
to the right of the initial cell contains O. T can be weakly represented

by l-way l-dim 1l-head machine ()% 5 shown in Figure 5.3.

Figure 5.3. Machine CX5 5
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Any tape t' with all blanks to the right of the initial cell is weakly

re jected bycx5°2 therefore any machine £§ that purports to representrVT(OLSBg)
must accept t'. But no such jg can exist for we would have to require

that 2§ check all cells to the right of the initial cell for blanks -

thereby implying that i§ must go through an infinite number of cycles

before accepting t'. But via Theorem 5.2 one deduces that }5 must accept

t' in a finite number of cycles. Therefore by contradiction.%%can not exist,

Speed Theorems

Theorem 5.9 If Cn,is any l-dim l-head machine and t any tape for which

T is defined then

aL (t)
T (t)> 7

oL 5@1)(t)°

Furthermore if in accepting or strongly rejecting t, Ol stands still or
reverses direction then

T () > 7

oL $on) (-

Proof: For any 1l-dim tape t let t, be the subtape of t consist-
ing of the cells -k, -k+l, ¢¢e., -1,0,1, ..., k. If t is accepted or
strongly rejected by Ol then there exists a smallest k such that Cﬂ/accepts

or strongly rejects tk and never leaves t Since k is the smallest such

"
number it follows that Cﬂ,must read cell -~k or +k of t. Therefore

TCl(t) > k. But by construction f(OL) is 1l-way; thus one deduces that

glou)

T k. Therefore 7 (t) 2_765(0L>(t)3
If in addition one knows that Ol stands still or reverses direction

in accepting or strongly rejecting t then

T(t) >k =T (t)
A 5 (ou) oI



h-

Theorem 5.10 If Ol is any l-dim l-head machine and t any tape for which

Tcﬂ(t) is defined then there is no n-head machine t% for any n such that

G(B) = G(ot) and such that Ty (%) < T

01,>(t>°

Proof: If tg is any such n-head machine then as in the proof of

Theoren 5.9, t% must scan cell -k or +k of t, in order to accept or strongly

reject t. Thus T%(t) >k=r1T (t). Thus it is not possible that

25 =TS

T.,(t) <7

g0 )

QED

Theorem 5.11  There exists an infinite collection of sets of 1-dim tapes

ch = {Aj}’ each set Aj representable by l-head machines such that if O,
J

is anyl-head machine representing A, (i.e., T«JLJ) = Aj> then for any tape

t for which TOLJ-(t) is defined

TOl,j(t> > Tg(mj)(t).

Proof: Let Aj be the set of 1l-dim tapes written over 2= {B,a}

such that A, = {tl there are at least j a's to the right and left of the
J
initial cell}° Aj can be represented by a l-head machine Cﬂé which

operates as follows:

1) OL.

3 reads the initial cell; if B go to 2), if a go to 3)

2) move right counting the a's but not the B's; after j a's
reverse and count left for 2 j a's. On the 2j-th a moving
left accept t.

3) move right counting the a's but not the B's; after j a's
reverse and count left for (2j + 1) a's. On the (2j+l)-th

a moving left accept t .
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Thus there is at least one l-head machine that represents Aj'

Let an be any l-head machine that represents Aja Cﬂb cannot
strongly reject any tape since if t' is strongly rejected by Cﬂj then tF
must have less than j a's either to the left or right of the initial cell
and no Cﬂﬁ could check this in a finite number of cycles. Thus for any Clj

TOL (t) is defined if and only if t € Aj" But if t € Aj then.Cﬂh must
J J

reverse direction in accepting t since the definition of Aj requires that
an check both to the left and the right of the initial cell. Thus via

Theorem 5.9 TCng(t) > TE§(OLJ(t) for all t such that T -, (t) is defined.

J A

J
QED

Note 5.9 The final paragraph of the proof of Theorem 5.1 assures one that

T . (t) defined => 7 (t) defined for any 1l-dim l-head machine Ol and

oL g (ou)
and any tape t. Furthermore if & (OL) is constructed such that dj(OL)

weakly rejects t if and only if Olweakly rejects t then

Tcnﬁt> defined<—> ﬁawét) defined.

Theorem 5.12 For any integer k>0 there exists an infinite number of sets

of 1-dim tapes all representable by l-dim l-head machines and such that
if A is any such set and.Cﬂ,any 1l-head machine representing A then
for all t in A T (t) > 7 t) + 2k
2) for a o) 2 ey @)
b) for all t in A'; A' being an infinite subset of A,

7. (t) >k T

o 3 (o)

Proof: Part b) of the theorem will be proved first. For

convenience and without loss of generality one can limit k to the even

integers.
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Let

L = {B, 015 Oy sevss 0k+3}

Let the set A, be defined as all l-dinm tapes over 2, of the form

shown in Figure 5.4 where qli7é qxj and Oy, # B for all i,j,i%é.

! z
— *‘ Yo = Yo —> Y= Ya =1 > )5 Yier [<—
. O\Olkk 0‘;‘\4—1 ...... 0‘&2 %1 ...... 6;0 ...... 0\&\1 ..... 0;\?_ Goks ..... O&'K .
* )
<2— 0&010;\1_-,“50&\@) (2"0" 705\1) B* (2_ 0:(30;“0;(?)* (2_ 0&0"“76;\()*

Figure 5.4. Form of Tapes in A.

There exists at least one l-head machine()L that represents Ap.
(ﬂ,works as follows:
1) Read initial cell and remember dg ; if an = B reject t.
2) Move right to first non-blank cell. This contains Odio Check
Gdl % Odo and odl % B and remember 001‘
3) Move left past qao to first occurance of Gal, Check that Oy

has not occurred more than once. Move left to read o, .

A
Check cdéu Check 0@2 # Bcn~q12 # Oy ©F %
4) Move right past Oy 7+ Oy ? Oy s e £0 Oy peees etec..

0L will finally move left to read o , will check for proper
Q-1

occurances of 0. , 0. , ... and will move left to read o, . Check
Qo™ 0f Qe
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that Odk % B, ¢ g Then move right passing

, ’ 0000, 0 °.

%" N O 1

0, o/ cooey O o] coooey G P o and stop.
Xe1? o’ ? TGy T ’ 1’ N P

Accept t.

The complete process described above requires only a finite
memory and therefore can be done by a finite state machine.
Referring to the tape form in Figure 5.4 let the distance from

the initial cell to Oy, On the left and on the right be X571, and %R
i

respectively. Any tape in Ay is governed by the relations

vi =2 1 for all 1
IR T N1

¥or = X1R T Y3

st = XER + 1

XLLR = X3R + y5

X 1)R T F(k-2)r T T

R~ F(k-1)R T kel

X1, T Y2

= +
X1, = Xpp, T
X3L = XQL + yh

X = + 1
KL~ *(k-1)L

Consider any l-head machine(jL' that represents Ay. Consider

also the set of tapes in Ak such that y; >>?fcnf for all i. Call this
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subset of Ay by the name Ago

(‘dt)t% T8 2 T (8)

since @' 1f it represents Ak can go at most a distance <-§cn
- 1

past each Oy, before reversing direction and discovering the value of
i

g .
Oi+l

Consider Ai the subset of Ay that contains all tapes of Ay

2
such that y; > rk” + k(k-2)
2
and
Ypr Y35 weees Y41 = T
where

r =7§ + 1.

ot

Al is an infinite subset of A _and for any teAy, T () > 1 ()
. ' n
since Ak c Ak'

But 'rOL(t) = le + 2(y2 +1) + 2(y1+y3+l)
+ 2(yptleyy 1) + e
ooooo + (yl+y3+l+y5+l+ coe +l+yk+l)
> kyl + Ve
Thus
T%(t) >ky; + ¥y for all teAj.
Now (
T t) = max [x ., x ]
S (0L) KR” Tk
A = + .
But for all teAk X R X vy > X1
Thus
TE§(O¥)(t) = yp Y3 F Ll s+ Ly
= v 4 rk+k-2

for all teAﬁ.
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So for all teAé

2
- - rk® +k(k-2)
TO’\',(JG) k Tg)(%) > kyl + Y1 kyl - = ARTE

2
> v - rk® + k(k-2)
1 2
But if teA! then
k 2
rk” + k(k-2)

I 5
and so

T _(t) - kT > 0

ol o)
or

T |(t) > KT

QL J (oL)
which proves the first part of the theorem. If A, satisfies the theorem
then Ak+2£ for all £ > O also satisfies the theorem. Therefore the number

of sets of tapes satisfying the theorem for any particular k is infinite.

To deduce part a) of the theorem one can argue that if Cﬂ}is
any l-head machine that represents Ak then QU must at least go out to
read Ok on one end and then reverse and read out to 0, on the other end.
Thus for any teA,

To,t(t) > min [2XkL + Xeps 2Xp + Xy 1.
But for any teAk
Ta(m)(t) = max [x1, ¥Xgl
Thus for all teA, .
A G?L)(t) = min [XRL + Xypy 2Xyp1,  2XR]
> 2k

or

QED
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Theorem 5.13 Let@) = {OLi} be the set of all 1l-head machines recognizing
some set of 1l-dim tapes A, Let {3 Qaf) be the l-way 2-head equivalent of
any machine in @o . Then for any particular tape to in A there is a machine

OL in go such that

T (t.) < 3T (t.).
oL ° = T J(g) ©

Proof': & (@o) is independent of which machine in go was used
as 1ts basis since all machines in go have the same set of generators.

Let t €A and let T \(to) = x. Ol can be constructed to first

@)

check any tape t by reading left x cells and then right 2x cells - this
gives OLenough information to decide if t and to have the same generator.
If t has the same generator as t, then oL accepts t; if not Ol moves x
cells left (which returns its head to the initial cell) and then proceeds

to examine t according to the procedure of any machine O\Lin go .

By the construction of Ol it is necessary that Ole goand that

TM%)gﬁ=&6@g%%



CHAPTER VI

TOPICS FOR FURTHER STUDY

Reduction Problems

Among the possible criteria one can use as a measure of the
complexity of n-head machines are three that arise naturally from the
structure of n-head machines; namely, the number of heads, the number of
states, and the speed in accepting or strongly rejecting inputs. Relative
to these criteria three problems can be formulated:

1) Head Reduction Problem: given a set of tapes T produce

a machine with as few heads as possible that represents T.

2) State Reduction Problem: given a set of tapes T produce

a machine with as few states as possible that represents T.
3) Speed Reduction Problem: given a set of tapes T produce

a machine that represents T and that accepts or rejects

inputs as quickly as possible.

The above three problems, both in their most general form and
in many special forms, constitute an area of almost totally unexplored
questions. A collection of remarks and observations on these reduction
problems follows below.

1. Head Reduction

Two heads, hi and hj’ of any machine Cn,will be said to be hound
if and only if hj and hj are on the same tape and if for all inputs to ()k
there is a finite upper bound on the distance that ever exists between hj

and hje The bound property determines an equivalence relation on the set

-81-
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of heads H of‘()L in that heads are in the same equivalence class if and

only if they are bound to each other. It is a consequence of the bound
property that if H is divided into p such equivalence classes then Cﬂ,

can be shown to be computationally equivalent to a machine with p heads

(one head per equivalence class of H). However, no general method 1is

known to determine if two heads are bound and further there 1s no guarantee
that the p-head machine i1s indeed the minimum head machine equivalent to Cﬂ/o

One might try to show that for each i =1,2,... there is a set
of inputs Ci such that Ci can be represented byamachine with i-heads but
no fewer. This is indeed the case if C; equals some non-trivial set of
i-tuples; thus to represent C; any machine must have at least one head per
tape or at least i-heads. In order to render the question more significant
one might re-ask the question but restrict Ci to be a set of 1-dim tapes.

It is the author's conjecture that the set Ci defined as the set of 1l-dim
tapes written over L = {B,O,l} and having generators of the form

10 3..... 1 OXi'll OXlx2 ooooo i-1 can be represented with no machine
having fewer than i-heads. Certainly C; can be represented by an i-head
machine.

It is an interesting application of Minsky's paper that if the
initial cell of every tape submitted to a machine is uniquely distinguish-
able then every set of m-tuples definable by a Turing machine is represent-
able by an n-head machine with at most m+2 heads. This result follows from
letting two heads in conjunction with the uniquely distinguishable initial cells
of their tapes represent the total state transition of the Turing machine
via Minsky and letting the remaining m heads be placed one head per tape

and read and move according to the inputs and the state of the Turing machine.
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2. State Reduction

If one confines one's interest to l-way machines then the
classical reduction methods as introduced by Moore<l¥> suffice to yield
the minimum state equivalent of any machine. The general problem for
2-way machines is, however, unsolved. Namely, given a representable set
of inputs, no method is known for securing a minimum state machine to
represent the set.

Some remarks can be made about reducing the number of states
in a given machine. All inaccessible states can be eliminated from any
machine. All inaccessible transitions can be made "don't care" transi-
tions. Further, given a machine OL possibly  with some don't care tran-
sitionsone can ignore the head movement associated with each transition and
apply a conventional state reduction procedure to Cﬁ¢thus partioning the
state set of Cﬂ,into equivalence classes of mergable states; given any two
states in the same equivalence class one proceeds to merge them 1f and only
if for any input the transitions leaving each state on that input have
identical head movements. The above technique of state reduction never
alters the number of heads in a given machine,

In general the head reduction and state reduction problems are
not independent - consider the machines(jL6.l andC>L6°2 shown in Figures
6.1 and 6.2 respectively:()h6nl has 1l-head and four states while CjL6.2
has four heads and one state (A and R are not counted here). Cﬂ’6 lis a l-way
1-head machinein reduced form but Cﬂ“é.E is a 2-way 4-head machine with
fewer states than 01'6.1' Careful inspection will show that

Gl = o = ga¥hh¥cc¥
G(\A.6 a( J6'2) aa¥bb¥cc*B.

1
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Figure 6.1. Machine oL

6.1°
e
(a,b,b,b)/0,0, l)l( a’b’C’B\ A
(a,2,2,8)/0,1,1,1
Figure 6.2. Machine Cﬂ'6 5

3. Speed Reduction

If Al is a set of tapes representable by some 1l-dim l-head machine
<)Ll then via theorem 5.10 one knows that E§(Cﬂl) is the fastest (or one of
a set of the fastest) machine that recognizes any tape in Ay. I A2 is a
set of D-dim tapes representable by some n-head machine OLE then if G(Obg)

'

is finite one can construct a machine O{é such that G(Clg) = G(Cn,g) and

such that no machine is faster than Cﬂ,é. [OL é will be provided with a
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suitably large number of heads that will fan out from the initial cell of
the tape such that after each machine cycle an increasing region of tape
will have been scanned; if g is any generator in G(Cm2> and if md(g) is the
Manhattan distance to the cell of g farthest away from the initial cell
then_CW; will recognize g in md(g) machine cycles - no machine could do it
faster. If A3 is a set of D-dim tapes representable by some n-head machine
Cné and such that G(Cﬂ,3) is infinite then in general it appears that there

is no single machine equivalent to Ol _ and which detects all geG((ﬂB)

3
faster than any other machine; rather it seems that for any machine OL;
computationally equivalent to 013 there is another machine Cﬂg such that
for all inputs(ﬁ,g is Just as rapid as O&é and for some inputs OL% is more
rapid.

One might also expect that the state reduction and head reduction

problems are not independent of the speed reduction problem.

Representability Problems

In the synthesis theorems of Chapter IV one was required to begin
with a realizable RE; failure to do so resulted in an "improper' machine,
i.e., a machine in which some of the states had several transitions leaving
it on the same input, each transition having a different associated head
movement. In general it appears that non-realizable RE's cannot be used as
a basis for machine synthesis; however, some techniques can be tried in an
effort to procure "proper" machines to represent sets of inputs based on
non-realizable RE's. For example:

1f Ol is the improper machine derived in an attempt to represent

a set of inputs based on B, a non-realizable RE,
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if one of the offending transitions goes to A then the remaining
offending transitions that leave the same state as the transition
going to A can be deleted from Ol without affecting T(oL);

if any offending transition can be shown to be lnaccessible then
that transition can be deleted from O\ without affecting T(oL);
if the number of times the machine will pass through a state s
from which offending transitions emanate is finite for all inputs
then by expanding the number of heads and states of the machine
one can construct a new machine (3\: that is proper in regard to
all transitions leaving s and equivalent to oL CX) operates by
dividing part of its head set every time it embarks on the offend-
ing transitions; a part of the set follows each transition; since
Ol passes through s a finite number of times Cﬁ: will have to
split its head set at most a finite number of times];

if 5¢f is finite then one can always construct a realizable RE g’
such that g'VE = g¥T, thus the machine O' based on g' will be
equivalent to Ol ; if Bwf is not finite one can still search for
a reslizable RE p' such that p'¥T = ¥ in which case a machine

derived from B' will be equivalent to the machine derived from B.



CHAPTER VII

SUMMARY

This paper attempts to treat the problems associated with multiple
head finite state machines. It begins, in Chapter II, by (1) defining
n-head machines, (2) defining the form of their inputs, and (3) prescribing
the manner in which these machines accept and reject inputs. As defined
in this paper n-head machines are the same as classical single head automata,
as understood by say McNaughton and Yamada, with the restrictions and addi-
tions that (1) there can be only two final states, namely ACCEPT and REJECT,
(2) if the machine enters one of these final states it halts operation
immediately, (3) each transition in these machines is specified by the pre-
sent state of the machine and by the n-tuple of input symbols scanned by the
heads, (4) each transition is accompanied by an n-tuple of head movements
which need not be identical for all transitions in a given machine, and (5)
the inputs are multi-dimensional tapes that in general can extend in all
directions from the initial (or starting) cell of each tape.

Resulting from these machines' ability to accept and reject inputs
is the notion of using them to define sets of inputs depending on whether
an input set is accepted or rejected by a particular machine. Chapter II
develops the concept of generators as it applies to sets of defined inputs
and shows that for each machine its generator set is equivalent to its set
of defined inputs.

It is evident from the examples included in Chapter II that n-head
machines are more powerful than single head machines. It is further demon-

strated that even with the restrictions that (1) n-head machines always
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start with their heads on the initial cells of their input tapes and (2)

all movements are one-cell-at-a-time-in-a-coordinate-direction, nevertheless
the computational power of the machines is Jjust as great as with machines
that do not start on initial tape cells and whose head movements may not
all be unit moves.

Chapter III introduces a language which is later shown to be
equivalent to n-head machines in its ability to define sets of tapes. The
language presented includes the already well known language of regular
expressions which has been augmented to include the newly defined opera-
tions of column alphabets, indexed alphabets, and the separation, fold
and cover of tapes. These newly defined operations correspond in a
natural manner to the structure of n-head machines - i.e.,column alphabets
correspond to multiple heads, indexed alphabets correspond to the movements
associated with each head, separation corresponds to several distinct heads
working simultaneously, fold corresponds to 2-way D-dim head movements and
cover corresponds to several distinct heads scanning the same tape.

In Chapter IV an equivalence is developed in the form of twelve
theorems between the input generators defined by n-head machines and par-
ticular expressions in the language of Chapter III. The theorems constitute
six analysis-synthesis pairs which treat n-head machines of various complex-
ities beginning with l-way 1-dim 1l-head machines and concluding with 2-way
D-dim n-head m~tape machines. Aside from their academic value these
theorems are useful in that given a desired set of generators if one can
represent them by a sultable expression in the language then the synthesis
theorems allow direct implementation of a machine possessing the given

generators.
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Chapter V deals with a number of questions relating to n-head
machines. It begins by presenting two algorithms - one to decide if a
given n-head machine is l-way, the other to decide if a given regular expres-
sion is realizable; both of these algorithms are necessary for execution of
some of the theorems in Chapter IV. Chapter V develops a l-way 2-head equi-
valent of every 2-way l-dim l-head machine. Note that under the assumptions
of this paper a 2-way automaton is allowed to scan both sides of the initial
cell; under this condition the fifteenth theorem of Rabin and Scott becomes
invalid and is replaced by Theorem 5.1 of this paper.

The work of Rabin and Scott is extended in Chapter V to include
all n-head machines. The results of Theorems 5.3 to 5.6 can be summarized
as follows:

The existence or non-existence of effective procedures
to answer certain decision questions partitions the
class of n-head machines into three categories as per

the following table.

TABLE T.1

THE EXISTENCE OF EFFECTIVE PROCEDURES
FOR DECISION PROBLEMS

i Type of

' Machine 1-Dim D-Dim General
% 1-Head 1-Head n-Head
¢ Decision D >2

§ Problem a

1

i

% Particular Yes Yes No

Input Problem

Emptiness, State Acces-
sibility and Transition Yes No No
Accessibility Problems
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Chapter V continues by presenting a number of theorems treating

the Boolean properties of n-head machines and concludes with a number of

theorems treating the relative speeds of computationally equivalent machines.

The speed theorems are developed within the milieu of 1-dim machines. Some

but not all of the speed theorem results can be extrapolated to multi-dimen-

sional machines. The speed theorems can be paraphrased as follows:

For each l-head machine Otfworking over l-dim tapes there
is a 2-head l-way machine ES(O&) which is computationally
equivalent to oL . E§ Qn) is always as fast as Ol anda

is faster than OU if and only if Ol reverses or halts its
head movement during examination of an input. There are sets
of 1-dim tapes Ay, Apse.. Aj,... such that if OLJ. is any
1-head machine defining A; then E§(an) is faster than

Otj for all inputs. Furthermore, the Aj can be defined
such that for all inputs in Aj; E§(an) is faster than
ij by an arbitrarily large difference and for all inputs

in some infinite subset of Aj E§ (an) is faster than Cl’j
by an arbitrarily large factor. For any set A of 1l-dim
tapes definable by l-head machines and for any particular
tape ty in A there 1s a l-head machine Cno that defines A
and has the property that no machine that defines A is more

than three times faster than,CNt)in_recognizing tye

Chapter VI contains some suggestions for further study. These

suggestions lie in the areas of (1) head-state-speed reduction and (2)

representability problems. A number of partial results are included with

each suggestion. Some of the partial results are:
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It is evident that the number of heads and states a machine
has and the speed with which it recognizes inputs are not
independent quantities. The work of previous authors on
these reduction problems has been confined to l-way 1-dim
1-head machines; expansion of the field of inquiry to 2-way
n-head machines seems reasonable and re-opens many questions
considered answered for the l-way case.

Given any set of inputs one can ask if an n-head machine
exists that defines the set. Using the work of Minsky for
direction one can conclude that if the initial cellsof all
tapes are uniquely distinguishable by machines - as they
must be by us - then all sets of m-tuples of tapes definable
by Turing machines are definable by finite state machines
with at most m+2 heads. If, however, as this paper has
assumed, the initial cell is not uniquely distinguishable
by the machines then it is an open question in general as

to whether one can decide given a set of inputs if an n-head

machine exists that defines the set.
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