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The bispectrum I (0) (1)I(7)) of the intensity I of light scattered quasielastically from a fluid system is
shown to be a potentially useful tool for studying complex fluids. Bispectra and time cumulants are
calculated, in the time domain, for systems with 1, 2, or many diffusing components, treating separately
the consequences of homodyne and heterodyne detection at times O, t, and 7. The experimentally
accessible cumulants of the all-homodyne bispectrum distinguish between systems with exactly two
relaxation times and systems with more than two relaxation times. The signal-to-noise ratio in a
bispectral measurement is shown to be proportional to T '/%, T being the integration time. Clipped scaling
of the heterodyne intensity I(¢) allows study of the odd powers {a,(0)a ;(t)a, (7)) of the density

correlations.

. INTRODUCTION

In a quasielastic light scattering experiment, one ob-
tains information about a system by illuminating the
system with a beam of coherent monochromatic light and
studying the temporal behavior of fluctuations in the in-
tensity of the scattered light. The intensity fluctuations
are usually characterized by measuring their power
spectrum S;(w) or their autocorrelation function G (1)
=(I®)I¢+7). Spw)and GV (1) are both commonly re-
ferred to as the “spectrum” of the scattered light.

It is well known that the higher moments of a stochas-
tic process X(t) often provide a better characterization
of the process than the lower moments do. In particular,
the triple moment G® (¢, 7) =( X{(0) X(t) X(7)) and its
double Fourier transform

S (1, wp) = f f at dv{ X(0) X(t) X(7)

(1.1)

also known as the bispectrum, may contain more infor-
mation about X(¢) than the regular spectrum S does.
Formal aspects of bispectra and polyspectra are treated
by Brillinger.!

x expl - fwt —iw, 7],

This paper treats some uses of the triple moment
(“bispectrum”) G® (¢, 7) in quasielastic light scattering
spectroscopy, including results for scattering from
solutions containing one, two, or many noninteracting
solute species. With realistic signal-to-noise ratios,
G®(, 7) is shown to give more information about some
systems than GV () does. In particular, in the study of
moderately polydisperse systems, measurements of
G™ (¢) can readily differentiate between systems char-
acterized by a single decay time and those characterized
by a distribution of decay times; however, GV (¢) can
usually not give detailed information about the form of
the decay time distribution. In contrast, under the
same conditions, G® (¢, 7) allows one to distinguish be-
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tween systems characterized by fwo decay times and
those characterized by three or more decay times, Bi-
spectral analysis may thus be used to validate the “two
decay time” models often used in the analysis of nonex-
ponential spectra,

A conventional statistical argument might be inter-
preted as casting doubt on the utility of bispectral anal-
ysis in light scattering spectroscopy. In many fluid
systems of experimental inter\est, the positions and
momenta of the component molecules are not correlated
over macroscopic distances, The field E(t) of light
scattered from bulk equilibrium samples of these fluids
is therefore described by a Gaussian random process.
Since the higher correlation functions of a Gaussian ran-
dom process are all determined by its lowest correla-
tion function, one might expect that the bispectrum of
light scattered by a large volume of fluid would give only
the information already available from the conventional
spectrum.

However, real measurements only determine approxi-
mate forms for the spectrum and bispectrum. There is
no reason to suppose that the partial descriptions of the
scattered light given by measured spectra and bispectra
will be the same,

While the results are somewhat different, the internal
logic of this paper follows that which is used to discuss
light scattering spectroscopy. The physical variables
which affect the regular spectrum (number of solute
species, heterodyne and homodyne detection, signal
clipping, and signal-to-noise ratios) are also relevant
to bispectral analysis; here each of these is treated in
a moderately exhaustive way. We first review some
mathematical and chemical results used in the remainder
of the paper. In Sec. II, bispectra and their correspond-
ing time cumulants are calculated for experiments using
homodyne detection of the light scattered from one, two,
or many independently diffusing solute species. Section
III repeats the calculations of Sec. II for experiments
using heterodyne detection and for experiments using a
mixture of homodyne and heterodyne detection. In Sec.
IV, effects of signal clipping on heterodyne measure-
ments are discussed. Clipping at the average light level
changes the symmetry of the bispectrum so that the
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concentration correlation functions which contribute to
clipped and unclipped bispectra are not the same. This
result also applies to the regular heterodyne spectrum,
a point which seems to be overlooked in some discus-
sions, In Sec., V, signal-to-background ratios are cal-
culated; it is also shown that the signal-to-noise ratio
in a measurement of the bispectrum is well behaved,
depending on the measurement time T as T*/%, Section
VI treats possible designs for a digital bispectral ana-
lyzer, Section VI discusses our results, and compares
them with other reported applications of bispectral
analysis, #%

In the absence of strong absorption or multiple scat-
tering, the amplitude E, of the field of light scattered
quasielastically from a fluid system is given by

E (k, t)=E, e'“0t a(k, #), (1.2)

E; and wg being the amplitude and frequency of the in-
cident field and a(k, ¢) being the (fluctuating) amplitude
of the spatial Fourier component of the index of refrac-
tion, wave vector k, at time £, In an equilibrium solu-
tion, afk, #) is determined by fluctuations in the density
p(k, t) and composition a(k, ¢}, which usually relax on
greatly different time scales. At low frequencies, the
time-varying envelope of E (k, ) is determined en-
tirely by a(k, ¢); with an appropriate choice of units,

E (k, t)=a(k, t)ef¥ot , 1.3)

For a system containing a single solute component

i, alk, t) is readily shown to be an Uhlenbeck—Ornstein
processs, © in that

d

e [ak, £)]=-T,alk, t)+4,¢), 1.4)
where I', =D, E, D, is the mutual diffusion coefficient of
species 7, and A;(t) is a random source term satisfying
(A,(t) =0 and (A, () A¥(t,, 7)=a® 6(1). One therefore has

alk, ) =alk, 0)e™ v [ dra@e™. (1.5)
0

To simplify the notation, we denote a(k, t)=a;.

Two methods of detecting scattered light need be noted.
In homodyne detection, one measures the intensity of the
scattered light as a function of time, finding

I%om(g) g, |2 . (1.6)

In heterodyne detection, the scattered field is first mixed
with a reference field Eqe'“0* and then detected, so that

I%t(t) = | Ey|* +2Re(Efa,) + |a,|? . Q.7

In a single-detector experiment, the phase of E; is ar-
bitrary. By suitable choice of the origin, one may
choose E; to be a real number, so that the cross term
in Eq, (4) becomes

2Re{(E¥ a,) =Eyla, +a¥) . (1.8)
It will be necessary to generalize on uses of cumulant
|
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(central moment) analysis in light scattering spectros-
copy. Koppel7 has demonstrated how one may obtain
the cumulants of the distribution A(T") of exponentials
in the scattering spectrum of a polydisperse suspension,
The spectrum is given by

GV () = j ATA(T) e ™ +B . (1.9)
After subtracting the baseline B, the cumulants of A(T)
are obtained as the logarithmic derivatives at =0 of
G™M(t) -~ B. Equivalently, the cumulants K, are generated
by the power series expansion

K, (-1
iV} - uied A Sl LN
6w -B-exp( 3 ML), (1.10)
which may be generalized for the bispectrum as
hoid nem
coy, 'r)=exp( > Xy (_11) T tnfm) a.11)
nymu0 nim:

The K,,, will be referred to as the time cumulants, With-
out extraordinary experimental effort, measurements

of GV (t) only give Ko, K;, and K,. An analogous limit
on Eq. (1.11) to terms quadratic in time would allow
bispectral determination of Kg;, Ko, Ky, Kyy, and Koz .

By fitting a power series to G (f) - B rather than to
C™(¢) itself, a further implicit use has been made of a
cumulant expansion, {I(0)I()) is the second moment of
the stochastic variable /; for a two-component system

(1) I@) =aI®) et +(I)?, (1.12)
and
CPy=GM (1) - B=(I(0)I¢)) - {I(O) {I¢t) (1.13)

is the second cumulant of I, Cumulant expansions of I
are as useful for analyzing bispectra as for analyzing
regular spectra, the third cumulant of I being

CA ¢ 1 =(10) I (),
=([1©) - CTOM 1@ = <IN [I(7) - I ()H
or
C®(t, 7)=(TOIE)I(1) - (IO) (I I(7) - (1) IO I(7))
(IO TE)IE) +2CION CIEN CI(T) . (1.14)

Cumulants of the sort defined by Eqs. (1.13) and (1,14)
will be referred to as intensity cumulants,

Il. ALL-HOMODYNE BISPECTRA OF SINGLE AND
MULTI-SOLUTE SYSTEMS

In this section, a calculation is made of the bispectrum
of light scattered from a solution containing one or more
solutes, using a single detector operated in the homodyne
mode. For clarity, the calculation is first made for a
single-solute {two component) solution and then repeated
for a system containing an arbitrary number of solute
species. Combining Eqs. (1.14) and (1.6) gives

CO(, 1= |ao|?|a,[*|ar |2 - (Jao|*)<lap|?|ae|®) = (la ) <lao|*|ar|®) — (lax|*)([ao|*|a,|*)

+2( a0 |®) (fae |*) (fae|*)

2.1)
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where £, 7>0, The double and quadruple moments are®

(lao|?y =7, 2. 23)
(|ae|?lar ) =31 +e27Y) , (2. 2b)
(asa¥) =@ e T, : 2.2¢)

The sixfold moment {laqyi?la;121a,|1?) may be obtained from Eq. (1.5) by using the procedures of Uhlenbeck and
Ornstein, namely,

T T
<laolz|a,|2|aflz>=<lao|ze'z“’"’{Iaol‘+laolz Lfo Aty dty e €% A(L,) A* (&)

t T t pt
s2am* [ ddtem R AG) 4G+ |aof? [ [ dtiat et R 4,00 A1 @)

t t T T
o[ [ dnatan dnexl st b+ LIIAG AR @ A A @) (2.9)
1] 0 [1] 0
The necessary integrals are
t t
Yag, L 24, 7D (A (L) AL =0 (2. 4a)
0
t H
f ag, fo ? dt, e" D (A(2,) A% (&) =7 fexp[+2T min(, , £)] -1}, (2. 4b)
. :

t1 t ot it
f J f diydédigdl, exP[r(§1+ So+ &y +§4)] (A(§1)A* (gz)A(ga)A* (Q»
0 0 0 0

=@t {(e"?T1 ~1)(e"?"%2 — 1) + [exp(+ 2T min(t, 7)) -1]%} 2.4¢)
(|aolt) =2@) (2.4d)
(|ao|®) = 6@@%3, (2.4e)
where min({f, 7)=¢, < Tand min(, 7)=7, 7<{, The triple moment of the intensities is
GO, 7)=a%[1+e"2"* 4" 471" L 2 exp(- 2P max(t, 7))], 2.5)
while the cumulant average is
C®(, 1) =2a° exp(- 2T max(t, 7)) . (2.6)

From Eq. (2.6), it is seen that the triple moment (bispectrum) of the light scattered from a two-component solution
is a single exponential of decay constant I', For this system, the bispectrum contains the same information that
the conventional spectrum does, that is, values for the decay constant I' and for the root-mean-square amplitude @.

All cumulants of order greater than two of a Gaussian random process vanish. For scattering from a large vol-
ume of solution, a, ought be Gaussian random, so that one expects

(|a°[2|a,|2|a,|z)c=0, 2.7m
which is confirmed by Eqs. (2.1) and (2.6). (la,l®la,1%la,1%), differs from C?(, 7) by terms
(laol?|ae|?|ar|*),

=C®(t, 1) -2(asat)(afa,|a:|?) - 2{apa¥){a}|a,|?ar) - 2{a,a¥){|ao|®a, a¥)

+4(aoat ) a,af ) (afar) +2{|ao|?) [(a,a¥) |*+2{|a;|®) [{aoa¥) |* +2(|ar|?) [{aoa?) |2, 2.8)

the extra factors of 2 arising from the complex conjugate terms. The four amplitude averages are
(af ay|ar|?) =@t "t +exp{- T [t +27- 2 min(, D]}, (2.9a)
(a¥|a;|?ar) =@* (€T +exp{- T[2¢ + T-2min¢t, D]}, (2. 9b)
(lag|2a,a¥) =@ (715" 4T D) (2.9¢)

which may be combined to yield Eq. (2.7). Equations (2.6) and (2,7) emphasize the difference between the cumulants
of the intensity and those of the amplitude, the former containing cross terms which cancel out in the latter.

An extension of the above calculations yields the all-homodyne bispectrum of an N-component system, The am-
plitude a(k, f) must be replaced with a sum of amplitudes 3, a;(k, £)=3Y.,q;,. Each a,, is separately given by an
Uhlenbeck-Ornstein process with decay constant I'y =D, k¥ and root-mean-square amplitude {le,;12)}/23=3,. For

independently diffusing solute components, {a;; a%) < &;; and (A;(t) A¥(¢)) =a%6;;. The triple moment of the intensities
is
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N
G® @, T)=‘ Z <a10a}‘0alta:tapta:ﬂ'> , (2.10)
edrlem
Prqil

the cumulant average following from Eq. (1.14). Equation (2.10) is evaluated by considering all terms in which no
subset of the six indices containing an odd number of elements has all indices in the subset equal to each other and
not equal to any index not in the subset; i.e., one needs only terms in which all indices are pair, four, or sixwise

equal, From Egs. (2.2)-(2.4) and (2.9),
N

G?(t, 1= E AL +e78 1t 4072 4 BT ilt-Tl | 9 oxp [ - 2T, max(t, 1]}

i=1
N

+ 2 B3 +2eTOTP 42 THTIT LD exp [~ (T, +T) |t — 7| +exp[- Tyt + 1) =T, - 7]

fp 3wl
i#]

(2.11)

vexp[- T2t +7-2min(, M) ~T, 7] +exp[- T;@27+ —2min(, 1)~ T t]+e2T4t 420 4 2Milt=71}

N
+ Z {@a5ai[1 +2exp(- Tyt -T; 7~ Ty lt - 7)) +emTeTPE 4TI Logp(- (T, +T) |2 - ™},

fedel=l
i i L]

the corresponding intensity cumulant being

c®(, =2(; a8 exp[2T; max(t, 7))+ Z @@ lexp (- T,¢+ D -T,|t - 7|)

%]
i* )

+exp[- T2t + 7-2min{t, 7)) - T, 7] +exp[- T (¢ +27-2min(, 7)) -T,#]}

+ 2 @@EBRexp[-Ty-T,7-T,|t-1]

1# R

A direct calculation confirms that the last sum vanishes
if only two solute species are present, c@ ¢ 7is
again substantially simpler than G®(, 7).

As in the regular spectrum, trying to obtain the a;
and T; from a direct multiexponential fit of Eq. (2.12)
ought not be effective, In this section, the informa-
tion yielded by fitting C® (¢, 7) to the time cumulants
K., will be calculated, limiting consideration to terms
quadratic in time,.

To simplify terms, we may without loss of generality
take 0<#< 7, For a solution containing a single solute,
calculation of the cumulants from Eq. (2.6) shows

K10 =K2° =K11 =K02 =0 s (2. 13a.)
Ky =2T, (2.13Db)

Because the triple sum in Eq. (2.12) only appears if
three or more solute species are present, it is useful

to give separate forms for N=2 and N=3, For N=2 the
corresponding cumulants are
K19=0, (2.14a)
NL&+L,&
Ky =
01=2 —lc_;%l:—az:—l , (2. 14b)
ZEZEZ (r -Tr )2
Koy =Ky = — 2K =——1—zz—.;l_'zl—z‘—a— . .1l4c
0z =820 11 @+ ) (@ )
Finally, for N= 3 the cumulants are
Km =0 B (2. 153,)
K01=225%I‘,/Z 2, (2.15b)
i m

2.12)
r 2
Koz =Kpo= 3 BT, - r,)z/(z af,,) , (2. 15¢)
i, m
Kll = (" £ aga!(ri - rl)
'j
3
- @@ aE(; - T+ r,,))/(Zaﬁ,) .
1# frti m
{2.15d)

In every case, Ky, is zero; near {=7=0, c®¢, 7
does not have a linear dependence on {. Similarly, in
every case Ky gives the intensity-weighted average dif-
fusion coefficient 2I'. The second order cumulants give
information about the range of decay times observed in
the scattered light. Kg, is equal to K,, the second cumu-
lant of the regular spectrum; Kj, and X, both estimate
the mean-square range of decay times in the system.

The most interesting result is for Kypand Ky;. Ina

one exponential system, Kj, and K,, are zero, Ina two
exponential system Ky = - 2K,,, but in a2 system with
three or more decay times, Kjy and K;; are not related
by a simple constant, That is, by using bispectval anal-
ysis to determine Ky, and Ky, one can deteymine whethey
a system has exactly two relaxation times or whether
that system has more than two relaxation times.

iIl. HETERODYNE AND MIXED BISPECTRA

In conventional light scattering spectroscopy, homo-
dyne and heterodyne detection give the same information
about large equilibrium systems, As long as the scat-
tering volume can be broken into many physically in-
dependent subvolumes (a definition which excludes velocim-~
etry measurements in which the velocity of individual.
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scatterers is correlated across the entire scattering
volume), the central limit theorem guarantees that the
spectra C¥(¢) and C ), (1) measured by homodyne and
heterodyne detection, respectively, are related by

c @) = |cR0|?, (3.1)

so in conventional light scattering spectroscopy homodyne
and heterodyne detection give equivalent results,

In this section, the usefulness of heterodyne detection
in bispectral analysis is considered. Bispectra are cal-
culated assuming heterodyne detection of the light scat-
tered from solutions containing one or more diffusing
solute components. In contrast to the regular spectrum,
the homodyne and heterodyne bispectra are not equiva-
lent, the heterodyne bispectra yielding little more in-
formation than can be obtained from the regular homo-
dyne spectrum, Itis alsopossible to measure mixedbi-
spectra, in which a given coherence area of the scat-
tered field is observed both by a homodyne detector and
by a heterodyne detector; the mixed bispectra are shown
to be no more useful than the bispectrum obtained using
only heterodyne detection.

For a solution containing one solute component, the
heterodyne bispectrum is
]

Hat(t T) 2E22a

For E¥>»g°, the cumulants are

(3.6a)
(3.6b)

#/(s ),
Kgg=—2K;, =2 z @a@ri-r, r!)/( hzj'dfﬁﬁ) ’

(3.6¢c)
)/
19

The cumulants satisfy K, = — 2K,; for all N, so that the
heterodyne bispectrum does not (through terms quadratic
in time) readily distinguish between two and three com-
ponent systems, though the difference between Ky, and
Ky, may be useful in some cases.

_.2_

2% oo
Ky=2 ; & ((r, S B @ . (3.6d)

It is also in principle possible to measure mixed bi-
spectra of forms such as (™™ (0) I¥¢t(¢) I%™ (7)), Ex-
perimentally, a bispectrum of this form could be ob-
tained by isolating a single coherence area of the scat-
tered field, dividing the scattered light between two
M|

CEt, 7) =(Iom Q) 17t (1) 1Hot (7)), =252 ) BT exp(- T 1 - T; ) +CD ¢, 7)
ij
CRe, 7 =(It Q) 1% () 17 (7)), = 2E? Z @dexp(-Tyt-T,|t—7|)+C®(, 7)

CRe, 1) =18t Q) IEt () I%m(7)) =2E ) dlexp(-T, 7-T,|t—7|)+C®¢, 7).
7

[exp(~T;t~T; 7) +exp(~ Tt =Ty |t - 7|) +exp(- Ty 7= T, |t - 7|)] + CE)
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CELt, 7)=((|Ey|? +2Eqaqp +|ao|? -1y
X(IE,[ +2EtatR+‘at' -1,)

X(|Er|2 +2E;arp + |ar |2 - L)), 3.2)

where a,p and I; are the real part of @, and the average
intensity at time ¢, respectively, the average heterodyne
intensity being Iy = 1 Eg12 +{lay1%), Recalling that the
average of an odd power of ay vanishes, the procedures
of the previous section give for a one-solute solution

glze)t(t .,.) 2Ez-—4(e-r(t~rr) +e-1"‘r -r(z‘r-t)) (3.3)

+2aﬁ -zrf

where 0<f<7. All terms of hlgher order in E vanish in
the cumulant average, the @® term is exactly analogous
to the homodyne background term in a regular hetero-
dyne spectrum, If we assume E2>2%, the cumulants
corresponding to Eq. (3.4) are

Ky=0, (3.4a)
Ky=4T, (3.4b)
Kpy=-2K, =212, (3.4c)
Ko =§T2, (3.44)

For N solute species, the all-heterodyne bispectrum is

W . {3.5)

1

detectors with a beam splitter and using a reference
beam to operate one detector in the heterodyne mode.
The mixed bispectra are found by cross correlating the
detector intensities,

The choice of detector may be made independently at
each of three times, so six possible mixed spectra exist.
Spectra using heterodyne detection at one time are not
interesting. These spectra can be written

(Z)(t 7= <(2E1013+,a1| —a
% (|ag|? - %) (|as|2 -2 . (3.7)

Only even powers of a; have nonzero averages, so all
terms of C(z’ mvolvmg E;a,r average to zero. Ignoring
these terms,

fe n=C®q, 1, (3.8)
but C® (¢, 7) can be obtained directly.

Spectra using heterodyne detection at two times are
marginally more useful, Using the subscript M to de-
note homodyne detection at time 7,

(3.92)
(3. 9b)

(3.9¢)

Denoting the time cumulants of Cy; =K £, and taking E2> g2

J. Chem. Phys., Voi. 72, No. 11, 1 June 1980
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Kgo=—K1io=Kg1=K31=%K{u= 2;631‘«/(2 'd%)
K=K} =0

1
Kgo’-%Kéo =K =~Kij=-K} =ng =Kéz=%K;z=§ -

> a
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(3.10a)
(3.10b)
zai(r{ _ rj)z/( ;,aﬁa?) . (3. 10¢)

The time cumulants of these bispectra contain the same information that the cumulants of the regular spectrum do, .
namely, the average decay time and the mean-square range of decay times.

IV. SIGNAL CLIPPING AND THE HETERODYNE
BISPECTRUM

In measuring the correlation function C'¥ (), it is
sometimes convenient to manipulate the recorded photo-
counts I(¢) before taking the cross products I{¢)I(t + 7).

It is usually asserted that certain standard manipulations,
such as single clipping, scaling, and random scaling,
change the signal-to-noise ratio without affecting the
form of the spectrum, (There are known techniques,
e.g., double clipping, which do distort the form of the
spectrum, )

In this section, the effect of single clipped scaling on
the heterodyne bispectrum is calculated. This clipping
procedure is shown to change the form of the bispectrum
in a novel way; the clipping procedure is shown to alter
the symmetry of the correlation process so that the con-
centration-concentration correlation functions which
contribute to the clipped heterodyne bispectrum are not
the same as the concentration-concentration correlation
functions which contribute to the full (unclipped) correla-
tion functions, Specifically, it was assumed above that
triple moments of the density such as {aga¥ a;) vanish
on time averaging because the product is equally likely
to be positive or negative. However, if the heterodyne
bispectrum is measured and if one clips the signal at
the average light level, one is removing from {aya¥ a.)
all terms in which ¢;<0, leaving only terms of positive

i

o0
200 Q;Or) = Z (Z a1a2a3Pt,.,(a1, az, as) - 2 alaZaSPt,‘r(a!.’ az, as)> .

Ggragame a1>0 a4<0

r
sign, which clearly cannot cancel each other,

The
clipped heterodyne bispectrum thus depends in part on the
odd powers of the density fluctuations, and therefore has
a different time dependence than the full heterodyne
bispectrum, It is interesting to note that single clipping
also introduces terms depending on odd powers of aq

into the regular heterodyne spectrum C, (1), so that
single-clipped and unclipped heterodyne spectra also do
not have the same time dependence, a fact sometimes
not emphasized in the literature.

Here we calculate the difference between the clipped
and unclipped cumulant spectra. This may usefully be
done by introducing the antisymmetrized triple moment

4.1)

where @, =ay(a,>0) and 3y = -a,. (,<0))gaea} a,) is the
difference between the clipped and unclipped triple mo-
ments. The discussion is usefully phrased in terms of
the three time transition matrix (matrix of conditional
probabilities) P, .(a,, as, a3) which gives the probability
of observing amplitudes a,, a,, and a3 at times 0, £, and
7, respectively. The symmetric correlation function is

Yoaga¥ ar) =(&Data¥) ’

o

(agaar)= Y,

al, az. a3

arazas Py 1ay, az, a,) , (4.2a)

o 0O

while the nonsymmetric function discussed here is

(4. 2b)

To measure )qaoa;ar), the clipped variable a} is introduced.

aE:a, a;>0, al=0, ay<0.

4.3)

Measurements of a} may be implemented by post-detection digital manipulation of gg. One has

w© «©
<aoata’f>c1ivped§<a3ataf> = Z 2 alazaspt,r(al, a, as) .

agy ag== a1> 0

4.4)

By breaking the sum on a, [Eq. (4.2a)] into its positive and negative parts, Eqs. (4.2) and (4.4) may be combined

Yo@oasar) =2{ala,a:) —{aga,a:) .

4.5)

While Eq. (4.5) refers explicitly to the triple moment aga, a,, the derivation uses identities on sums of moments of
the transition matrix, so Eq. (4.5) is valid for other moments of a.

ag may be obtained by heterodyne detection of the scattered light. The heterodyne intensity is

1%t =E®+2Eag + |ag|® ;

4.8)

clipping at I¥et =T7% 5 almost exactly equivalent to clipping at @pr>0. In the Appendix, the prescription of Eq.
(4.3) is shown equivalent to clipping @o at Re(ay) =%a@*/E. In a photon counting experiment, clip levels are neces-
sarily integers, so in a real experiment there will necessarily be a systematic error in the clip level. In a large
linear system this error will simply reduce the efficiency of data collection,

The effect of signal clipping of the sort indicated by Eq. (4.3) is here calculated first for the conventional hetero-
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dyne spectrum and then for the all-heterodyne bispectrum. A single solute is assumed. The clipped cumulant
spectrum is

Yol(0) ~DUE) - 1) =2(0) ~ DU () - D egsppea — CTOVED, , @.7)
where I(0) is given by Eq. (4.6) and T=E?+g% By direct calculation
(@) -DU@) -1 =2E%a2 Tt +a% 2"t @4.8)

while for the clipped average

(IO =DU®) =D q1ppea

=4E? <aon am)m +2E <00R(a§R —a'2)>[01 "'ZE(atR (aﬁ "52»01 +( (aﬁ _-52)(‘,% '52»01 . “4.9)
For n even
1r” exp(~adz /a°
=1 == €XP\-agr/a7)
(afr)cy=%(agr) = 2 I dagr agg XP(‘/%a/- ) . (4.10)
For n odd, the lower limit on the integral becomes
o _ 2 /=2
(abr)cr = I daor aor ?ﬂﬂ__‘/_ﬁ_qiﬁ_) . 4.11)
0 Ta
so
(@O)-DUW) -Dy ey =E*@ T+ E@®/Vr )t ve ™) +384 72Tt @.12)
and the a.ntis'ymmetrized heterodyne intensity cumulant is
YT BtV 1P (1)), =E@/ V7)™ +e7) 4.13)

Equation (4.12) contains terms in E‘Zz", which terms are not predicted by many analyses of the effects of signal
clipping on the heterodyne spectrum. While these terms are weaker than the E% terms which dominate the hetero-
dyne spectrum, they are only weaker by a factor a/E, and therefore may contribute significantly to the clipped
heterodyne spectrum even when E%>>3% These terms arise because the clipping procedure of Eq. (5.3) treats agg
>0 and agz <0 in different ways, destroying the symmetry which causes {dozla,!?) to vanish. Consequently, in dis-
cussing how clipping affects a heterodyne spectrum, the spectrum itself must be recalculated, a calculation of the
effect of clipping on the signal-to-noise ratio of the unclipped spectrum being insufficient.

On computing the antisymmetrized, all-heterodyne cumulant bispeetrum, all terms involving even powers of E
and @ cancel, Taking E2/a@#> 1,

)OIH“(O)IH“ (t)IHet(,r»c =4E3(53/\f17)(e'r(’”) +e-I’lt-‘rl) +O(Eﬁs) , 4.14)
which is different from {Iet(Q) 1"t (r) 1%t (1)), [Eq. (3.4)]. The time cumulants of (4.14) are K,;=0, Ko =T, Ky
=T% K,,=0, and Kg;=0. The antisymmetrized bispectrum of a one-solute system tells as much about the system

as the conventional spectrum does, but in a different way, Fitting Eq. (4.14) to the forms calculated in Sec. I
would give erroneous results.

V. SIGNAL-TO-NOISE RATIO IN A BISPECTRAL MEASUREMENT

In this section, we show that bispectral analysis should work experimentally, in the sense that measurements of
the spectrum and bispectrum should obtain similar signal-to-noise ratios, The demonstration has two parts: (@)
the post-detection signal-to-noise ratio is shown to be well behaved, i.e., it increases as the square root of the
duration of the measurement; (b) the pre-detection signal-to-background ratio of the homodyne spectrum and the
homodyne bispectrum are shown to be nearly the same, X C*(t) and C*® (¢, 7) can be measured equally accurately,
they can be used to measure time cumulants to the same order in time, as was assumed in Secs. II-IV,

The moments and cumulants are obtained by time averaging, terms such as (Iy) (I, I,) being computed as {I,I,I;),
where % is a time much greater than any correlation time in the system. For the triple moment the integrated
signal {S) is

T
(S)= fo dslaslzlaat,zlaﬁflz
. R ot
=j ds]aoe'r'+e'rsf e ALY dg|?lageT M s T f A A [Flaoe ™
0 0 ’

ST
e Jo die™iARL)|?, (5.1)

where the index ¢ runs from 1 to 6 through the six terms. Rearranging terms

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980



6130 G. D. J. Phillies: Quasielastic light scattering

T
()= J(, ds exp[- F(6s +2t +27)] {a, A}, o2

where {a, A} is a polynomial in aq and JA(£) exp(T'¢). A full expansion of {a, A}, which would be quite long, is not
needed. From Egs. (2.3) and (2.4), each term of {a, A} depends on s like exp(Is), 2=0, 2, 4, 6. If n<6, the in-
tegral on s is [ exp(—aT's) =[exp(- aT'T) -1] /(- aT), which at large T is independent of integrating time. The only
terms of {a, A} which contribute to (S) terms proportional to T'! are from the terms containing all six factors of
A(¢,), since these terms can be proportional to exp(+6Ts), so as to cancel the overall s dependence of these terms
of the integral (4.2). The sixfold integral over {; may be done by using the Gaussian random nature of the A(g;) to
write

(A(L) A* (L) A(Lg) A* (£,) A(L5) A% (&) = s MZQI - (A(LDAX (L) (AL DA* (L) (A(L)A* (L) (5.3)
{my nyp1=12,4,6}

the sum being over all permutations of {1, 3, 5} and {2, 4, 6}. By using Eqs. (2.3) and (2.4)
T
(5)= f ds exp[- T(6s +2¢+27)]a° [(*7* = 1) " — 1)(™ 7 - 1) + (*7* = 127 - 1)
0

+(e2TS 13T _1) +2(e27 — 1) {exp[2T(s +min(t, 7))] - 1}+ (€®¥* - 1) (exp [2D(s +min(, D)]-1)%] (5.4)
or
(8)=Ta* {1 +&¥ +¢72" 4 274"l L2 exp[- 2T max(t, 7)]}+0(T) . (5.5)
Equations (5.1)-(5.5) are also sufficient for calculating the cumulant {S},. (LI} (L) is

j ds {|ag|?|ags |2 | @gy)?) =TT (1 +€727F +727% 4037 4D 1 20-2T4) L O(T") .

and similarly for {IyL) {I,) and {Iy){I,I;). Terms in exp(- 2Tx) vanish, so that
(S),=2a° T exp[- 2T max(t, 7)] . (5.6)

The integrated signal therefore grows linearly in time. For a practical experiment one also needs to show that
the noise (the fluctuations in {S),) grow more slowly than the integrated signal. The noise {N) may be calculated
as

(N)=((S?) - (S)3)t/2, (5.7)

The mean-square signal is

(50 = [ [ ards 10y 21ms 2 |2~ Lapul?1tps lane | = 11 2yl [ e 2

|2+2|a,|a|a,.u|2\a,.zula) (|aslzlas+t‘2|as¢f|2 - ‘ashulzlasvtlzlasw‘z

|2 ‘Z\asmulz) . (5. 8)

- |“r|2|ar¢tlzlar’u
- |as|2|asiul2|as"|z— laslzlas*t‘zlasfu

which may be rewritten

+2|a,|*|ag,

($%) = jf drds exp[- T'67r +6s)]{a, A} . (5.9)

The only terms of {a, A}’ whose integrals grow faster than T9 at long times are those containing twelve factors of
A(g,). The average over the produtt of the A(¢,) factors into a series of products of averages over pairs
(A(£,)A*(¢,)). The products of averages may be divided into the cross terms between a, and a,, which all contain
double integrals involving both » and s such as

T s
L= < J f didt, exp[T(4, + 5)]A () A* (§z)> s (5.10)
o Jo
and the non cross terms, in which limits involving both 7 and s do not appear in the same double integral. The non

cross terms are the same as those appearing in {S)? and cancel the ~(S)? of Eq. (5.8); the cross terms contribute
to (N). A typical cross term is

T ,.T r,s 2
I=f J’ drdsexp[—!‘(67+63+4t+47)]| j f exp[T(¢, + &) A(L) A* ()| @

o Jo o Jo (5.11)
X (ezr(rtt) -1) (ezr(rvr) - 1)(e21‘(s~t) -1) (ezl‘(svr) -1).

The final integrals over £ are [exp(2T' min(r, s)) - 1}%; choosing 7 <s, the only term of (5.11) which does not
decay exponentially with » and s is
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T T (s~r) =12 _ o =1 *7-1)
I J ds dr e " g =252 (T+ T) , (5.12)
0 Jo

the integral being done by a change of variables: 7 +s
=w, -8 =u. The cross terms in (S2) thus depend on
T no more strongly than T!, so that

N=(S?%) - (S22 (5.13)

Since the total integrated signal increases linearly with
integration time T, the signal-to-noise ratio increases as
T*V/2%  ag required for a well-behaved experiment.

One also wants to know how favorable the initial signal-
to-noise ratio is, Even though S/N is well behaved, if
the pre-detection signal-to-noise ratio were poor, a suc-
cessful experiment could require excessive amounts
of integrating time. Comparing the signal and total in-
tensities at ¢ =7=0, one finds for the initial signal-to-
background ratios: (i) one component, all homodyne,

@
c ’(0, 0) 1

=% ; .14
0,0 -3 ° (5. 14a)
(ii) N components, all homodyne,
c®0,0) _1
oAl 7 N7 .14b
I0,0) 3 ° (5. 14b)
(iii) N components, all heterodyne,
C0,0) _8(Za}; |
I(O’ 0) - E; ’ (5. 140)

(iv) N components, mixed,

CR0,0)0 CR,0 C&O,0) 23
10,0 = 10,0 - 10,0 - £t - 6-14)
The all-homodyne cumulant bispectra amount to 3 of the
detected intensity., By comparison the all-homodyne
cumulant spectrum C' (¢) is  of the total intensity, so
the predetection signal-to-noise ratio of c® ¢, 7is
not substantially worse than that of C*(f). The mixed
and all-heterodyne bispectra are weaker than their back-
grounds by factors of 3a2 /E? and (3@2)?/E*. The former
is the same as the signal-to-background ratio in a nor-
mal heterodyne spectrum, while the latter is substantially
worse., Careful precorrelation background subtraction
would probably be required for observing C&,(t, 7);
fortunately, C\(t, ) is substantially less interesting
than C® (@, 1) is.

VI. EXPERIMENTAL ASPECTS

We find that the bispectrum may give considerably
more information about a system than the conventional
spectrum does. The bispectrum is not, however, con-
siderably harder to measure than the regular spectrum.
A digital bicorrelator designed to determine C?(, 7)
need not be substantially more complicated than a con-
ventional autocorrelator.

A conventional digital correlator works by dividing
time into intervals, counting the number of photons re-
ceived in each interval and recording these numbers by
loading them sequentially into a shift register, The
correlation function {I(s)I(s + 7)) is calculated by multi-
plying together the number of photocounts received at
times s and s + T, storing the product separately for each

value of 7, and time averaging by repeating the process
for a series of values of s. In most designs, s+ Tis

the current instant of time, the number of photocounts
received at the earljer time s being obtained from the
shift register. A similar design gives one a bicorrela-
tor. To measure C?(t, 7), one multiplies the number
of counts received at time (s + T) by the number of counts
received at each of the two previous times s +f and s,
This requires two multiplications; values of I(s +¢) and
I(s) may be found either by examining two positions in a
single shift register or by using two shift registers, one
for I(s) and one for I(s +¢). The use of two shift registers
ought to be preferred, in that a two-shift register design
permits cross correlation of three different signals,
while the single-shift register design can only cross
correlate two signals.

Modern digital correlators can compute the correla-
tion function simultaneously at as many as 400 points,
thus having 400 output channels., A similarly designed
bicorrelator has two time variables, and thus would
need (400)%, or 16000, channels. With some care, the
number of channels in a well-designed bicorrelator can
be kept under 500 without significant loss of accuracy.

The main reason that one does not need ~10* channels
for a bicorrelator is that increasing the number of chan-
nels does not give a proportionate increase in the mea-
surement accuracy. If one increases the number of
channels in the first few decay times, one reduces the
number of photons received per channel time span, which
reduces the signal-to-noise ratio of each E:hannel. On
the other hand, increasing the number of channels by
increasing the number of decay times over which the
correlation function is measured is not extremely ef-
fective because at long decay times the correlation func-
tion is nearly constant, By spacing channels unevenly
in time, accurate measurements of the first and second
time cumulant for a paucidisperse system are possible
with a correlator having as few as 19 or 32 channels, 2
A correspondingly built bicorrelator would have 400~
1000 channels. Since multiplication is commutative
C®(, 1)=C®(1, 1); by requiring £< 7, the number of
channels is reduced by a further factor of 2, For the
experiments discussed in this paper, a digital bicor-
relator would require no more than 500 channels.

Thus far, we have considered only bispectra measured
in time domain, the Fourier transform from C®{t, 7)
to S ®(w,, w,) playing no significant part in the results.
Brillinger! demonstrates that polyspectra may also be
measured in frequency domain by a complex demodula-
tion technique. Namely, one takes real Fourier trans-
forms U and U¥ of the signal I(f)

Ulw)=T"1 [ i dtI(t) cos(wt) (6.1a)
0

T
UH(w) =T fo At I(t) sin(wt) , ©.10)

as may be done with a bank of phase-sensitive frequency
filters, and then uses U(w) and U#(w) to compute poly-
spectra, The use of smoothing factors to improve the
convergence of Eqs. (6.1) is treated by Brillinger.
Frequency domain measurements have several advantages

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980



6132

over time domain measurements. The U(w) and U¥(w)
may be used to computer polyspectra of arbitrary order,
while C® (¢, 7) only gives the bispectrum. Furthermore,
digital computation of C*® (¢, 7) is limited to rather lower
frequencies than phase-sensitive filtering is. On the
other hand, theoretical treatments of diffusion are more
readily made in time domain.

VIl. DISCUSSION

Experimental applications of bispectral analysis are
quite rare, so little comparison between our results and
the literature is possible. Kim, Powers, and co-
workers? have discussed bispectral analysis of nonlinear
systems, applying their results to an experimental study
of density and potential fluctuations in a plasma. Hassel-
man et al.® report experimental data on the bispectra
of ocean waves. Sato et al.? have used a bispectral
analyzer in a laser doppler system, studying the forced
response of aerosol particles to nonsinusoidal sound
waves of fixed bispectral characteristics. The noise in
their experiment was largely an additive Gaussian back-
ground; because Gaussian signals have a zero bispec-
trum, bispectral analysis was successfully used to ob-
tain a bispectral signal in the presence of strong back-
ground noise,

In a previous paper, 5 we discussed how light scattering
studies of a third order intensity correlation function can
be used to measure the elsewise experimentally inac-
cessible triple dynamic structure factor S (k, ¢, ¢, 7) of
a bulk system. In that experiment, it was proposed to
illuminate the sample with two laser beams and study
cross correlations in intensity fluctuations at three dis-
tinct coherence areas (as opposed to the single coherence
area considered here), the detectors necessarily being
operated in the heterodyne mode. The triple cross-
correlation function C® (¢, 1) =(1,(0) L) L;(7)) is deter-
mined by S® (&, q, #, #'). The bispectral aspects of this
experiment are secondary to the use of phase-sensitive
detection, which serves to suppress terms dependent
on the pair correlation function S® (k).

Our main interesting conclusion is that bispectral
analysis can be usefully applied in light scattering spec-
troscopy, especially in the study of complex systems.
In particular, the all-homodyne bispectrum can effec-
tively distinguish between bidisperse and polydisperse
systems, All-heterodyne and mixed bispectra are less
useful than the all-homodyne bispectrum,

We illustrate the utility of bispectral analysis by con-
sidering light scattering from a tridisperse system with
amplitudes a; =a, =a3 and decay times T, 2I', and 3T,
respectively. The spectrum of this system would show
an average decay time of 2T and a variance (VK, /K,)
=0.41. A bidisperse system with a; =g, and I'; =1,18T,
T, =2, 82T would yield the same values for the average
diffusion coefficient and variance. Measurement of the
spectrum to the usually attainable level of accuracy
therefore cannot distinguish between the model tridisperse
system and a matching bidisperse system. In order to
distinguish between the two and three exponential systems
by measuring cw (t), one would need to obtain an ac-
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curate numerical value for K,, which is usually impos-
sible.

A measurement of the bispectrum would immediately
distinguish the tridisperse system from its bidisperse
model, The bispectral time cumulants for the tridisperse
system would be K,g=0, Ky =2T

Kp=8$T2, Ky =-HT?, andKp,=%T?

In a bisdisperse system, K,j+2K,,=0, in this system
Ky +2K;, =58 T2 which corresponds to a variance (K
+2K,,)1/%/K,, =0.27. Variances of this magnitude may
readily be measured [at least in C*¥ (), whose signal-
to-noise ratio is the same as that of C®'(t, 7)], so a bi-
spectral study of the tridisperse system will readily
serve to reject the hypothesis that the system is only bi-
disperse,

We emphasize the difference between this result, show-
ing the utility of bispectral analysis and the result which
is obtained if one ignores the noise in the experiment.
With a (mythical) noise-free measurement of C% ®,
one could fit the spectrum exactly to a sum of 7z exponen-
tials, determining not only how many exponentials are
present but also their amplitudes and decay times; mea-
suring C® (¢, 7) would be entirely redundant. In a real
experiment on a moderately polydisperse system, C ()
gives only limited information on the distribution of ex-
ponentials; with the same signal-to-noise ratio, C®(,
7) gives more information than C™ () does.

Being able to distinguish between bidisperse and poly-
disperse suspensions is of specific interest in the problem
of protein denaturation, Light scattering has been used
to observe the expansion of lysozyme and other protein
molecules during thermal denaturation®; the results are
consistent with a two-step model for protein denaturation
but do not entirely exclude a more complicated process.
In favorable system, bispectral light scattering should
be able to distinguish two-step and more complicated
denaturation processes.

Innonideal solutions, interactions between solute mole-
cules may give rise to nonexponential decays of concen-
tration fluctuations.'® A cumulant analysis of the spec-
trum! is clearly suitable for slightly nonexponential
decays. For strongly nonexponential behavior, an in-
terpretation of the spectrum is sometimes made in
terms of two exponentials, *2 “fast” and “slow,” even
though comparison with mode-coupling theories sug-
gests that a long-time power law decay might be ex-
pected. The results of this paper do not indicate pre-
cisely what the bispectrum might reveal about the dif~
fusion of interacting species. In an interacting system,
each species has a complex relaxation; here we have
assumed that each species has its own exponential re~
laxation,

Our results indicate that in bispectral analysis, homo-
dyne detection of the scattered light is to be preferred to
heterodyne detection. The signal-to-noise ratios ob-
tained for C, (¢, 7) and C'¥(¢) are predicted to be the
same. For suspensions of noninteracting Brownian
particles, bispectral analysis following heterodyne de-
tection gives the same sort of information that regular
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spectral analysis does, with an inferior signal-to-noise
ratio. The use of signal clipping in bispectral analysis
of heterodyne-detected light is predicted to lead to ex-
perimental difficulties, in that the clipped and unclipped
bispectra depend on different concentration—concentra-
tion correlation functions. As is sometimes not pointed
out, this final effect also occurs with the regular hetero-
dyne spectrum,

APPENDIX: RELATION BETWEEN CLIP LEVELS OF
Met AND a,

To measure the antisymmetric correlation function
Yodoa, dr), one needs to separate the signals with ayr>0,
agr being the real part of a;. Section IV proposed to do
this by clipping the heterodyne intensity at I5et =(7Het),
that is, one clips at #=0 by considering only signals
which satisfy

E%+2Eagy+|ay|?> E2+a® . (A1)

In the limit E/ay—= (Al) is only satisfied for azy>0.

Here we examine more generally the relation between
clipping 7%t and actually clipping age, by calculating
the average value of which ag, attains when (Al) obtains
as an equality. This is, we consider the average value
of ap, satisfying

2EaRo+|a°|z-52=0 . (Az)

6133
Since lagl?=ak, +a%,, and @iy =a% =24, Eq. (A2)is
equivalent to
(are) = - E+3[4E? - (a5 -@)] /%) , (A3)
For E2>d%, this becomes
(aro) =(E(@@* - a3)/8E®) =a*/16E , (A4)

which is substantially smaller than a.
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