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Deviations from isochronism for the system of hairspring and balance wheel are treated by
a method due to Haag. The results are given a geometrical interpretation. It is shown that
the deviations are related to the displacement of the end point of the hairspring in a set-up in
which this end point is free to move keeping its tangent constant in direction. Such an ar-
rangement can be realized with Bouasse’s pendulum. For the so-called “helical” spring a
more accurate solution than Phillips’ has been found for the shape of the terminals. Extensive
numerical calculations have been made for flat spiral springs, and a new simple terminal has

been designed.

I. THE PROBLEM

1. Introduction

HE system of hairspring and balance wheel
in use to regulate watches and chronom-
eters does not perform an exact simple harmonic
motion and the period of the vibrations depends
upon the amplitude of the balance wheel. In
watches this amplitude may vary from 270° to
each side, immediately after winding, down to
150° at the time the watch has to be rewound.
For the proper functioning of the watch it is
necessary to reduce the lack of isochronism of the
vibrations as much as possible.

One end of the hairspring is fastened to the
axis of the balance wheel, the other end by
means of the “stud” to the frame of the watch.
If the balance wheel is turned out of its equi-
librium position, a reaction force is set up in
the two end points. The mathematical analysis
of the problem shows that this reaction force is
the cause of the deviations from isochronism.
The simplest and most rigorous mathematical
treatment of the problem has been given by
J. Haag! of the Institut de Chronométrie at
Besangon, France. Unfortunately this beautiful
method appears to be described only in a very
short note in the Proceedings of the 3rd Inter-
national Congress for Applied Mechanics, which
does not contain any reference to a more detailed
publication. The present paper is based almost
entirely on the method used in Haag’s note and
the mathematical part gives a detailed derivation
of some of the formulas given there.

! J. Haag, Proceedings of the 3rd International Congress for
Applied Mechanics, 11 (1931), pp. 96-98.
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2. Method of Phillips

If the shape of the spring is designed so as to
make the reaction force at the end points as
small as possible the deviations from isochronism
will be correspondingly small. This is, at least in
principle, the approach to the problem as given
in the famous classical article by Phillips.2 For
the spring of finite length fastened to balance
axis and stud, the reaction force can never be
made exactly zero, but by using a special shape
for the end portions of the spring, the ‘“‘ter-
minals,” this force can be reduced considerably.

3. Method of Résal and Caspari

It is also possible to design the shape of the
hairspring so that the reaction force changes the
period by an amount which is approximately
independent of the amplitude. This is, in prin-
ciple, the solution given by Résal and Caspari.?
In this case the reaction force does not need to
be small. The Phillips’ type of solution, however,
seems to be preferred in practical applications.

4. End point displacement of free-end spring

Bouasse has pointed out that perfect iso-
chronism for a flat spring would result if the
outer end point were not fixed at the stud, but
were free to move in the plane of the spring,
provided the direction of the tangent at that end
point remained the same. This parallel displace-

(1;2/[)' Phillips, Ann. des Mines, Mémoires 20, 1-107
1).

8 See the excellent survey of the problem in Pendule,
Spiral, Diapason by H. Bouasse, Vol. II, Chap. V (Delgrave,
Paris, 1920). Unfortunately Bouasse does not give any ref-
erences and we have been unable to locate the original
articles by Résal and Caspari.
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ment can, of course, not be realized in a watch,
but it may be visualized by means of the large
scale model, shown in Fig. 1. Bouasse proposes
that the end point of the model spring be fastened
to the end of a long rod which can move as a
spherical pendulum. The end point will, indeed,
move parallel with itself and, if the pendulum is
well balanced by means of the counter weight at
the top, it will not create a reaction force on the
end of the spring. We shall call this arrangement
a “free-end spring.”’

If the axis to which the inner end of the spring
is fastened is turned over a certain angle, the
outer end point will experience a displacement.
This displacement is approximately proportional
to the reaction force which would exist at the
end point if it were fixed at the stud instead of
free to move. The Phillips solution is therefore
equivalent to designing a spring for which the
free-end displacement is as small as possible.

This approach reduces the dynamical problem
to a geometrical one. Furthermore a crude large
scale model like that of Fig. 1 can actually be
used to give some information about the end
point displacement and the isochronism for
various shapes (see Fig. 2); whereas measure-
ments of the reaction forces and periods are more
difficult to perform. We shall, in the following,
obtain the dynamical properties of the actual
spring with both ends fixed by studying the end
point displacement of the same spring considered
as a free-end spring.

Ik
|

F16. 1. Bouasse’s pendulum.
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II. RESULTS AND APPLICATIONS
1. The “helical” spring

The calculations of Phillips deal with the so-
called “helical’ spring. As, however, the height
of the helix is neglected, they are strictly valid
only for a fictitious flat spring of several windings,
all having exactly the same radius. Nevertheless
the consideration of the idealized spring is useful
as an illustration of the problem, because the
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F16. 2. End point displacement in cm for a semicircle of
radius 15.5 cm; (@) calculated, (X) obtained by the model
shown in Fig. 1. Numbers on curve indicate the angle of
rotation of the balance wheel. Positive values mean un-
winding and negative mean winding up.

calculations can be executed explicitly. Figure 3
shows the actual path of the end point for a
“‘helical” spring of 10 windings and total length
L. The line from the balance wheel axis to the
end point in the rest position is chosen as the posi-
tive x axis. Figure 4 is for 101 windings.

The end point displacement is greatly reduced
when the “terminals’” of the spring are given a
different shape fulfilling the first approximation
calculated by Phillips. The magnitude of the dis-
placement is roughly 20 times smaller, which
reduces the deviation from isochronism by a
factor of the order 400. If the terminals fulfill
both the first and second approximations, the
displacement will be about 300 times smaller.

2. Résal-Caspari solution for the helical spring

The mathematical treatment shows that the
period of the vibrations of the fastened spring
will be changed by an almost constant amount if
the shape is such that for the free-end spring
the ratio (|A|/@)? is a constant plus an odd
function of «, where |A| is the magnitude of the
end point displacement, and « the angle turned
by the balance wheel. This is realized for a
“helical” spring with #+% and »—1 windings,
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F1c. 3. End point displacement for ‘““helical’’ spring of 10
windings (displacement decreases with the square of the
number of windings), total length L.

according to Résal and Caspari, as we shall
prove below.

3. Flat spiral spring

For the hairsprings used in watches the calcu-
lation must be done numerically. The terminals
usually applied to a flat spiral are the same as
those calculated by Phillips for a “helical” spring
with the same radii as the inner and out-most
windings. Figures 5 and 7 indicate the smaller
end point displacement. A disadvantage is that
the outer terminal has to be bent out of the plane
of the spiral, because it comes nearer to the axis
than the outer windings. This deflection is not
considered in the calculation.

An ingenious solution has been proposed by
Van den Broek,* who considers a spring which
first winds outward and then spirals inward
again: the two spirals unfortunately must lie in
different planes. Figure 6 shows that this double
spiral has indeed a small end point displacement.

Figures 5 and 7 indicate also the reduction in
end point displacement for a new terminal. It is
certainly as satisfactory as the Phillips’ terminal
and has the great advantage that it is completely
in the same plane as the spiral. Its construction is
shown in Fig. 8.

4. Center of gravity

The mathematical analysis shows that the
deviation from isochronism depends not only
upon the end point displacement A but also
upon dA/da. The deviation is in fact proportional

¢ J. A. Van den Broek, Trans. Am. Soc. Mech. Eng. 53,
APM page 247 (1931).
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to the product «|A|d|A|/da averaged over a
period of the balance wheel. Considering A as a
vector it is possible to show that dA/da is con-
nected with the position of the center of gravity
of the free-end spring. If the vector G indicates
the position of the center of gravity as a function
of the rotation angle we shall show later that the
above-mentioned product can also be written as
a|[GXAT]|.

It is obviously advantageous to have the center
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F16. 4. End point displacement for ‘‘helical”’ spring of 10}
windings, total length L.

of gravity as near as possible to the balance
axis in order to make this product small. How-
ever, it is not necessarily best to place the
balance axis at the center of gravity of the un-
distorted spring. This will certainly make the
product small for small angles &, but for the usual
large amplitudes a|[G XAT| may become larger,
as is the case for Archimedes spirals.

The vectors A and especially G are rather
complicated functions of the rotation angle a.
The occurrence of a vector product adds to the
complication. It is, therefore, advisable to dis-
regard the interpretation in terms of the center
of gravity of the free-end spring and to consider
the much simpler quantities |A| and d|A|/de.
Figure 7 shows the change in |A] for an Archi-
medes spiral of 13.5 windings after addition of
Phillips’ terminals, and also for the new outer
terminal.

1I1. MATHEMATICAL

1. Notation

We choose a coordinate system with its origin

-at the axis of the balance wheel. It is advan-

JOURNAL OF APPLIED PHYSICS



tageous, though not necessary, to take either the
inner or the outer end point of the spring on
the positive x axis. The shape of the spring is
characterized by giving at each point the angle
¥ which the tangent makes with the x axis as a
function of s, the arc length, measured from the
inner end point (Fig. 9). The formulas are
simplified by combining the x and y coordinates
into a complex number

g=x-+1y.
In this notation we have for the equation of the
spring

x(s) =x(0) +f8ds cos (s},

y{(s) =y(0)-§-f ds sin MS)

or

z(s)=z(0)+f dseW (), (0
0

where z(0) determines the position of the inner
end point. Differentiation after the arc length s
shall be indicated by a prime, thus

2 (s)=e¥®,

(2)
The curvature 1/p at each point is given by

1/p=y'(s). 3

When the balance wheel is rotated over an
angle a, the spring will be distorted and the new
shape can be characterized by giving the change
in ¥(s). This change of angle for each element is
denoted by ¢(s). It depends upon the amount «
the balance wheel is turned, and also upon the
conditions at the end point. It will be a different
function for the “free-end” spring and:the spring
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F1c. 5. End point displacement for Archimedes spiral of
13} windings, inner radius 1, outer radius 2.35, length
45.2x. The dotted circle indicates the range of the end
point path for this spiral plus Phillips’ terminals, or an
outer terminal as shown in Fig. 8.
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fastened at the stud. The change in curvature of
each element of the spring due to the distortion
is given by

change in curvature = ¢’(s). 4)
2. Elastic energy

If the deformation is within Hooke's law the
energy stored in each element of a distorted
spring is proportional to the square of the
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Fic. 6. End point displacement for Van den Broek
double spiral of 6 windings in and out, inner radius 1,
outer radius 2.2, total length L =37.2x,

change in curvature. The total potential energy
V is therefore

k L
V=§f0 ¢'2(s)ds. 5)

The constant 2 depends upon the material of
the spring and its cross section, L is the total
length of the spring.

When the balance wheel is turned, the dis-
torted shape of the spring will be such that the
energy V is a minimum, subject to the proper
conditions at the two end points, The determina-
tion of ¢(s) is thus a standard problem of the
calculus of variations.

3. The free-end spring

We denote by z:(s) and ¢,(s) the functions
2(s) and ¢(s) of the “free-end” spring after
distortion. When the balance wheel is turned
over an angle «, the inner end point moves in a
circle over the same arc, thus

27(0) =3(0)ete, (6)
The position of the outer end point is not pre-
scribed. The free-end spring was defined such
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Fi16. 7. Magnitude of end point displacement |A| as
function of rotation angle . (1) For Archimedes spiral,
inner radius 1, outer radius 2.35, 13.5 windings, (2) with
Phillips’ terminals, (3) with new outer terminal of Fig. 8.

that the tangent at the outer end point remains
the same as before the distortion. At the inner
end point the tangent turns over the angle e,

giving
64(L)=0, (N
¢5(0) =a. (8)

With these boundary conditions the minimum
of the potential energy .of Eq. (5) is simply de-
termined by

¢/'(s)=0, 9)
which has the solution
¢;(s)=—as/L+a. (10)
It also follows that
¢/ (s)=—a/L. (11)

The latter result means that for the free-end
spring the change in curvature is the same
everywhere along the spring and proportional to
the angle of rotation a.

4. End point displacement
The end point displacement A is given by

A=2z,(L)—2(L)=2z(0)ei=
L
+ [ dseiv+o—gy. (12
fo sei O —5(L).  (12)
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A partial integration, using Eqgs. (2), (7), and (8)

gives
L

A=—i f 2(5)e g (5)ds. (13)

This relation is valid in general, not only for the
free-end spring, because Eqs. (7) and (8) are also
true for the fastened spring. Substituting ¢(s)
for the free-end spring, we find
o L
A=i—eie f z(s)e—ie=e/L s,
L

0

(14)

This is the principal formula of the present
paper. The problem consists in designing the
undistorted spring, 2(s), so that this integral
becomes as small as possible.

As an example we can take a “helical”’ spring
of radius R, consisting of #» complete windings
and a partial winding of arc 6. Its equation is

F16. 8. Plane terminal, consisting of two semicircles
joined by two straight portions ¢ with dimension indicated.
P is the point where it joins the main spiral.

z(s) =Re'*'E; L=(2rn+6)R. (15) (16)
This yields for A
A Ria (61 —gi) ~ * (e —ei=). (A7)
L—Ra 4r’n?

Figures 3 and 4 show some examples of this.

5. Terminals

We divide the spring of length L into three
parts Iy, L—1I;—1I, l; and take the ‘‘terminals’’

JOURNAL OF APPLIED PHYSICS



Iy and I; short compared to the total length L.
We can consider the end point displacements due
to each part separately. The contribution arising
from the inner terminal /, is

a h
Ay= i—e‘i“f z(s)eiasitds
L J

fo u
=j—gicg—iall/L f z{o)etielldy.  (18)
L 0

The latter integral results if we measure the arc
length ¢ along this terminal in the opposite
direction, ¢=1I;—s. Similarly the outer terminal
Iy contributes

2(s)eiesLds

o L
Ag=1i—e ‘af
L L—1is

a 2
= j—giallL f 2(o)e~ieolIdg, (19)
L 0

The second integral is obtained if the arc length
o is measured from the beginning of the terminal,
o=5—L+1l;. The terminals are supposed to be
short compared to the total length, the expo-
nentials in the integrands may be expanded in
powers of a/L. The problem consists in choosing
the shape of the terminals in such a way that
Ay and A, approximately cancel the contribution
to the end point displacement caused by the
main central portion of the spring.

6. Terminals for “helical” spring

Returning to the classical example we take for
the central portion a “helical” spring. Its équa-

tion is conveniently taken as
2(s) = Rei+—IE, (20)

The arc length over the helical part goes from J,
to L—1» and we choose again # complete windings
plus an arc 6

L-—l1-l2=(27rn+0)R. (21)
Its contribution to the end point displacement is

o L—12
A =i—gi= f a(s)e—tasilds
L 31

R2a
L—Ra

(eiﬂ . eicx /L 81'0: . e—ia hiL) .

(22)
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In order that Ay4As-+A.~0 we compare Eq. (22)
with Egs. (18) and (19) and set

iz

e“’R%/(L—Ra)rv—i% f 2(o)e==lldy, (23)

0

151

R?q/(L— Ra) ~i§ f z(o)etier/Ldg, (24)

0

The factor e” is immaterial, it merely means a
rotation of the whole outer terminal over the

F16. 9. Coordinates characterizing the spiral.

angle 6, the incompleted winding. Disregarding
this by taking =0, we see that Eqgs. (23) and
(24) are just complex conjugates. The two
terminals are thus the same, except for a reflec-
tion with respect to the x axis. Expanding Eq.
(24) in powers of «/L, the first term gives

vl

Ri=i j #(0)do (25)
or ¢ .
1
R2=—-f ydeo; (25a) -
0
{
0= f xdo. (25b)
0

These are the famous conditions obtained by
Phillips. They mean that the terminal must have
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F16. 10. The width of the shaded part is proportional to the fictitious density, and the solid line is the outline of the
terminal. The x (or ¥) moment of the required distribution (A) is equal to the sum of x (or ¥) moments of (Bi), (Bs)
and (C) minus that of (D). (A) Weighted terminal with starting point a to be analyzed; (B) similarly weighted terminal
with starting point b, which is in turn analyzed into (B.) and (Bo); (C) uniform strip of density & along the whole terminal;

(D) uniform strip of density / along the portion ab only.

its center of gravity on the negative y axis, a
distance R?/l from the origin. As Phillips pointed
out, one can satisfy these conditions in an
infinite number of ways.

7. The second approximation

Comparing the coefficients of («/L)? in the
expansion of Eq. (24) we find for the next re-
quirement

!
R3= —f 0z(o)do (26)

or ’

; !
R3=--f oxdo; (26a)
0

!

0=f oydo. (26b)
0

We must thus find a terminal fulfilling both Egs.

(25) and (26) and moreover
z(e)=R for ¢=0, (27)

because the terminal has to fit onto the helical
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part of the spring. Haag® states that he has
been unable to find a solution. However, here
follows a solution found by one of us (Miss W.).
A terminal, as shown in Fig. 10(A), with the
following specifications: (1) Symmetrical with
respect to the y axis, (2) symmetrical with re-
spect to a line through its center of gravity ¢
perpendicular to the y axis, (3) with center of
gravity at a distance of kA(=R?/l) below the
x axis, (4) with ab and its corresponding portions
parallel to the y axis, will fulfill conditions
(25a) (25b) and (26a) simultaneously. Since the
form of ae and three similar arcs is not specified,
one can adjust it to satisfy condition (26b).
Now conditions (25a) and (25b) are taken
care of by specifications No. 3 and 1, respectively.
The geometrical interpretation of condition (26a)
is as follows. If we give each element of the
terminal a fictitious density equal to its arc
length o from the point @, where it joins the main
part of the spring, the x moment (3_:x.dm;) of
this weighted terminal must be —R3. Such a

5 Cf. reference 1. See also F. Keelhoff, Mémoires de
L'Académie Royale de Belgique 6, (1922).
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weighted terminal can be analyzed into several
simple density distributions, as shown in Fig. 10,
so that the x moment of the former can be
obtained from those of the equivalent distri-
butions.

By virtue of specifications No. 1 and 2 the
x moment of the density distributions (B} (B.)
and (C) are all zero. (D) will give an x moment
of amount /- %+ R, therefore the net x moment of
the original distribution (A) is the negative of
(D), i.e., —IhR. Combining this with the con-
dition Ih=R?, we have the x moment of the
weighted terminal equal to —R3

As a simple example, one can assume the
portions ge, etc., to be corners of a rectangle,
which fit onto the straight parts ab, etc., to make
the terminal a perfect rectangle of width 2R and
height 2g. We can adjust the length g in order to
fulfill (26b). This gives for g the equation

g*+4g°R+4¢2R?—17R4/16 =0

(28)

with the solution

g=0.425R. (29)

8. The Archimedes spiral

In polar coordinates, the equation of the
Archimedes spiral is

r=af. (30)
It follows that in our notation
z=abe®. (31)

The hairsprings are not complete Archimedes
spirals which begin at the origin, but several
inner windings are omitted. Therefore, the angle
does not start from 0, but begins at 6,, which is
usually of the order 15x. There may be from
10 to 15 windings in the spiral, thus 6 goes up
to about 50x. The arc length is given by

s=3a[0(1+6)1+log {0+ (14691} ],°

~3a(6*—0o%). (32)

The latter approximation is certainly sufficient
in view of the range of values of 6. For the end
point displacement we obtain, using @ as the
variable,

oL
a@

A:_-z',_giaf a20%eife—(iaal2L) (00010 (33)
L LD

This integral has to be evaluated numerically

VOLUME 11, DECEMBER, 1940

with the help of tables or asymptotic formulas
for Fresnel integrals. Results are shown in

Figs. 5 and 7.

0. Spring with fixed end point

We have studied above the end point dis-
placement of the “free-end” spring and must
now prove that this displacement is a measure
of the reaction forces set up in the end points of
the actual hairspring which is fastened to the
stud. We denote by 2.(s) and ¢.(s) the coordi-
nates 2 and the function ¢ for the actual spring
after rotation of the balance wheel over an
angle . We now have the additional requirement
that the end point remain fixed

24(L)=2z(L) = constant (34)

or in components

x.(L) =2x,(0)
L
+ f ds cos (Y+¢.) =constant, (35a)
yo(L)=y +(0)

. L .
—l—f ds sin (Y -+¢,) =constant. (35b)
[

‘'We must now find the minimum of the potential

energy V, Eq. (5), subject to these constraints.
Using Lagrange multipliers 2\ and 2u which are
proportional to the x component and y com-
ponent of the reaction force caused by the
constraint, the Euler-Lagrange equation now
becomes

¢a"'(s)+X sin (Y+a) —u cos (¥+¢a) =0.

This equation for ¢,(s) cannot, in general, be
solved, but we can derive some useful conclusions
from it. Anticipating that the distribution will
differ little from that of the free-end spring we
write

(36)

ba(s) = ¢(s) +e(s) = —as/L+a+te(s). (37)
This changes the differential equation into
€' () Ay —pxs =0 (38)
wifh the boundary values
€(0) =¢(L)=0. (39)
813



Integrating once we get
(40)

The constant is determined by integrating once
more, now from 0 to L, using the boundary
values for €(s). We finally obtain

€(s)=—Nyo— Vo) +ulxa—X,) (41)

with X, and Y. the coordinates of the center of
gravity of the distoried spring, defined by

€ (s) +Ay,— ux,=constant.

L
LXa=f Xads; (42a)
0

L
LYa=f Vods.
o

We must now connect this with the displacement
A by observing that

A=2z,(L)—3(L) =2¢(L) — 2.(L)

L L
= f ds(ets —ee) = f dseis(e—ic—1)
0 1]

(42b)

L L
=1 f z.(s)e e ds ~1 f za(s)€'ds. (43)
0 0

The last line is obtained by partial integration
and in the final approximate expression the
exponential is replaced by unity. Next substi-
tuting Eq. (41) for ¢ and writing the components,
we obtain

Ag= f[)\(yaz —Ya Ya) - xu(xaya "ana) ]ds

=NLA—uLF,

and

(44a)

A,=—ALF+uLB, (44b)

where A, B, and F are the moments and products
of inertia, with respect to the center of gravity
of the distorted spring, defined as

L
LA= f v2ds~LY.?%; (45a)
0

L
LB =f x.2ds —LX,2; (45b)
°
L
LF= f x¥alds—LX Y. {45¢)
o

814

We find at once for the square of the reaction
force
(BA,+ FA) +(FA,+AA,)?

L*AB—F?)?

N u?=

(46)

Usually A~B and F=0 so that a first approxi-
mation gives

At~ | A |2/ 4202, )

This result proves that the reaction force is
approximately proportional to the displace-
ment A,

10. Deviation from isochronism

We finally consider the energy of the dis-
torted spring with a fixed end point

k pL k pl
rz f bo/(s)ds =— f (67 +¢)ds
2 J, 2J

k L
= f ¢ids. (48)
2V,

The last result is obtained by using the known
solution for ¢, Eq. (10) and the boundary
values for ¢(s), Eq. (39). Substituting the formula
for ¢ found above we can write

kot
Ve 4 (BAS+AA+2FAA,) /L(AB— F?)

2L 2
ka? E|AJ2

oL 2I4

k
= (g a)). (49
ZL( +&(a)). (49)

The correction term, abbreviated £(a), causes the
deviation from isochronism. The balance wheel
is very much heavier than the hairspring and is
alone responsible for the kinetic energy, which
is thus proportional to (da/dt)?. The equation of
motion of the balance wheel has, therefore, the
form

dra/dit= — a+3idt/de), (50)
where w=2x/T, T being the period if the cor-
rection term were absent as in the free-end
spring. Writing

a~ag sin w(14+8)t+4---, (51)
we find by well-known methods the first approxi-
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mation of 8, the fractional increase in frequency

1 Td¢
6~ f —odt
(X()?T 0 da

2 et d|al
~ f A ot
C!()2TA 0 da

(52)

We shall not discuss this expression in detail but
call attention to the fact that if £(a) is an odd
function of «, the integral vanishes. However,
£(a), being proportional to the square of |A(a)]|,
can never be a pure odd function of «. If the
even part of £ is a? only, § will be some constant
value independent of the amplitude a,. Therefore
if |A|2/a?is a constant plus an odd function of «,
the period will change by a constant amount.
For example, in the case of a “helical” spring

(53)

A~a(e?—ei?),
which gives

|A]2/a2~[1—cos (a—8)]. (54)

When 6= -£7/2, cos (a—6) = +sin o, and |A|2/a?
fulfills the requirement for constant change of
period, which proves the theorem of Résal and
Caspari.

Because £(a) is proportional to |A|%, the
integral representing & will be small if [A] is
small, provided, however, that d|A]/d«a does not
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become too large. This confirms our point of
view that the best way to achieve isochronism is
by making the end point displacement A be as
small as possible. This result can be connected
with the motion of the center of gravity of the
free-end spring. Using Egs. (10) and (12) we
obtain

L

dA . i pt
——=iz(0)ei°‘+if e"Pfds——f se¥sds
d 0 L,

{04

,i L
_! f 24(s)ds =4G. (55)
LY, :

G is the complex coordinate of the center of
gravity of the free-end spring and changes its
position with different rotations a. We may now
write for Eq. (52)

2 T
o= f GXAT]| adt.
7 ) exadla

e 71}

(56)

It is obviously advantageous to have G as small
as possible for all values of a. To have the center
of gravity of the undistorted spring (a=0) fall
exactly on the axis is, however, not necessarily
the best solution (except for small amplitudes),
because G is a complicated function of a. We
verified this numerically for a few examples.
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