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The slow steady rise of a solid sphere along the axis of a uniformly rotating viscous liquid is studied
when the Reynolds number, based on the translational velocity along the axis of rotation, is less
than unity. The terminal velocity of a sphere rising slowly along the axis of a uniformly rotating
viscous liquid has been determined experimentally. Spheres of varying sizes with a density less than
that of the fluid were released at the bottom of a rotating cylinder filled with castor oil. The subse-
quent terminal velocities along the axis of rotation were measured. It has been found that the rise
velocity decreases from the Stokes velocity as the angular speed of rotation is increased. The governing
equations show that this is due to the Coriolis acceleration.

INTRODUCTION

HE motion of solid bodies in rotating, in-

viseid and incompressible fluids was studied by
Taylor," Proudman® and Grace,” who published sev-
eral papers during the period 1915-1926. Since then
many other researchers have made contributions to
this field. In contrast, comparatively little work in
this field has taken the effects of viscosity into
account. It seems desirable, therefore, to investigate
the motion of solid bodies in a rotating viscous
fluid. A logical beginning to such an investigation
is a study of the motion of a symmetrical body,
such as a sphere, at low Reynolds numbers. Proud-
man and Taylor predicted by theory and later
Taylor confirmed by experiment that the slow mo-
tion of a sphere along the axis of a rotating inviscid
fluid is two dimensional. That is, the veloeity com-
ponents are independent of the coordinate 2 measured
along the axis of rotation. Just what effects does
viscosity have on this motion? From a different
point of view, what effect will rotation have on the
terminal velocity of a sphere in the Stokes range?
These questions have motivated this study.

It has been found that viscosity acts to destroy
the two-dimensionality predicted by Taylor and
Proudman for weak steady motion of an inviscid
fluid under rotation, and that the effect of rotation
is to reduce the speed of fall or rise of the sphere
in the Stokes range. Specific data are presented in
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the results section of this paper. It has also been
found that, in general, spheres which are less dense
than the surrounding liquid move to the axis of
rotation and that spheres more dense than the
liquid spiral out from the axis of rotation.

THE GOVERNING EQUATIONS

The problem considered here is the motion of a
sphere along the axis of an infinitely long cylinder
which is filled with a viscous liquid and rotating
about its axis. It is convenient to use a Cartesian
reference frame which rotates at the same angular
speed w as the eylinder and which has its origin at
the center of the sphere. The coordinates with respect
to this frame are denoted by =z, ¥, 2, with the z axis
coinciding with the axis of the eylinder. The coordi-
nates with respect to the inertial frame of reference
with origin at the center of the sphere are denoted by
X, Y, and Z, as shown in Fig. 1. The components of
the velocity of the fluid relative to the rotating frame
are denoted by u, v, and w. At a time that the co-
ordinates z, y, and z momentarily coincide with

wt

Fic. 1. Reference frames.
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X, Y, and Z, the velocity components in the inertial
frame of reference are

U=u—wy, 1
V = v + wk, (2)

and
W = w. (3)

For a flow which is independent of time, the choice
of the origin of time at which the rotating reference
frame coincides with the inertial reference frame is
immaterial.

The differential system for the fluid medium to be
satisfied between the boundaries are the Navier-
Stokes equations along with the continuity equation.
Substitution of (1), (2), and (3) into these equations
gives*

U _ —_— iy = __I_Qp_ 2
Di 200 — wx plax-l-ﬁz—l—vv Uu, (4)
Dy 2 _ _1dp 2
Dt+2wu WY play+F,,+vVL, (5)

_Dﬂ= _la_g_{_F +Vv2w

ou , O ow
9 + @ + w = 0, (7
where D/Dt and V? represent the substantial deriva-
tive and the Laplacian operator, respectively, with
respect to the rotating reference, F represents the
body forces per unit mass, » and p, are the kinematic
viscosity and mass density of the liquid, respectively.
The size and density of the sphere and the viscosity
and density of the liquid may all be chosen such that
the translational velocity (W,) of the sphere along
the z axis will be small. It is assumed here that the
Reynolds number based on W, and the sphere
diameter, d, is less than unity. Hence u, v, and w
are small compared with »/d for all values of .
Further, we consider here only the motion after
terminal velocity of the sphere has been reached.
The experiments show that the sphere reaches a
terminal velocity rapidly. The unsteady-flow prob-
lem may now be looked upon as a steady-flow
problem by considering the center of the sphere as
fixed, with a uniform velocity equal and opposite to
W ., superposed on the rotating liquid and cylinder.
With these assumptions, one can neglect the sub-
stantial derivatives of the velocity components in
Eqs. (4)-(6). The only body force present in this
treatment is that due to gravity. Therefore, if

+H. Lamb, Hydrodynamics (Dover Publications, Inc.,
New York, 1945), pp. 318 and 722.
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Pa =P — Dss

in which p, is the hydrostatic part of the pressure
and if
Da wz 2 + 2) (8)
P=_——
0 2 @ + ),

the differential equations (4) through (6) reduce to

—2w = —dP/dx + vVu, 9
20u = —dP/dy + vV, (10)
0 = —dP/dz + vWw. (11)

Equations (7), and (9)-(11) along with the appropri-
ate boundary conditions constitute the boundary-
value problem which governs the flow of fluid
between the boundaries of the sphere and the cyl-
inder. Although these differential equations have
not yet been integrated, much insight to the problem
can be obtained by examining them. Once v, v, w,
and P are determined, the pressure and shear drag
on the sphere surface may be obtained by integration.

It is worthwhile here to point out the similarities
of this problem for the special case of a cylinder
with infinite radius to the classical problem solved
by Stokes for the slow motion of a sphere in a non-
rotating infinite medium. If the Coriolis acceleration
components are neglected in Eqs. (9) and (10), the
system reduces to a set of equations quite similar
to those of Stokes with the only difference being
that p in the Stokes problem is now replaced by P
and the velocity components here are relative veloci-
ties whereas they represent absolute values in the
Stokes problem. Integration of the resulting pressure
and shear stresses over the surface of the sphere
gives results identical to Stokes’ for the pressure
drag and shear drag. Thus it is the effect of the
Coriolis acceleration that leads to a sphere terminal
veloeity which is less than the Stokes velocity. The
physical explanation of this phenomenon can be
seen by considering a single fluid particle which is
atterapting to flow radially outward in order to pass
down and around the sphere. The particle is not
as free to flow out radially as it is in Stokes flow due
to the force associated with the Coriolis acceleration
resulting from the relative swirl velocity.

The angular rotation of the sphere is governed by
FEuler’s equation of motion for a rigid body. For the
steady-state case under consideration here, the
sphere rotates at a constant angular velocity. Thus
the angular acceleration and hence the torque on the
sphere are zero. It has been verified experimentally
by the writer (for angular speeds ranging from 60
to 400 rpm) that for translational velocities along the
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axis within the Stokes range the sphere rotates at
the same angular speed as the cylinder. This was
accomplished by means of a Strobotac light. How-
ever, this is true only for very low values of W, and
at any rate one should not have to rely upon this
experimental fact in the mathematical formulation
of the problem. The speed of rotation of the sphere
is determined by the condition that the torque on it
should be zero. At higher Reynolds numbers, the
spread of the center streamline over the sphere and
the motion of the fluid adjacent to this streamline
is likely to make the sphere rotate less fast than the
ambient fluid.

The governing system may be further reduced by
combining (7), (9)—-(11) to obtain a single equation
in terms of the dependent variable w, i.e.,

PVIVIVW + 40° 8*w/9 = 0. (12)
This equation is difficult to integrate unless one
resorts to the very tedious method of relaxation.

DIMENSIONAL ANALYSIS

By using the sphere diameter d as a reference
length and wd as a reference velocity, the nondimen-
sional form of Eq. (12) is

\VAR VAL vEL L R 4(%)2 3_21")2_*
L oz*

where the asterisks indicate dimensionless quantities
and w is the liquid viscosity.
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Newton’s second law applied to the sphere shows
that the drag is constant. By using p;(wd)’d® to
nondimensionalize the drag, one obtains

(14)

where v, and vy, represent the specific weight of the
liquid and sphere, respectively.

The boundaries of the fluid medium are described
by the sphere diameter d and the cylinder diameter
D. Also, the velocity at infinity in the z direction
must be equal to the terminal velocity of the sphere
W .. These conditions introduce two more dimen-
sionless parameters, i.e., d/D and W, /wd.

The dependent variable and the variable to be
measured experimentally is the terminal velocity
of the sphere along the axis of rotation. The func-
tional equation is

Ww = f(d) Dy‘*’y’Yl = Yy My pl)

There are several sets of nondimensional ratios
(m-terms) which the variables in Eq. (15) may be
arranged but it is desired here to have W, and o
appear in the first power in only one x-term each so
that the data can be advantageously presented.
Using d, vi — 7., and u as repeating variables gives

(11 — va)/pw’ d = const,

(15)

. _V_Vi<_u_> . _‘3(._#_>
1 = 2 ) 2 ’
d v — 7. d\y1 ~ 7. (16)
) N T DY
3 D ’ 4 o1 V2 y

for the four w-terms according to the Buckingham
m-theorem. Note that these w-terms are merely
combinations of the nondimensional parameters ob-
tained from the governing equations and the bound-
ary conditions. Equation (15) now reduces to

— d w — a4
Ww — d2 (’Yl ‘Ys) [___ w ( M ) (71 'Ys) __:l'
u D4 vi—=v/'\ o /5

(17)

Equation (17) furnishes the guide for experimenta-
tion. For a particular sphere, cylinder and liquid,
ms and m, are constant if the temperature is held
constant, m, can be controlled by controlling the
angular speed of the cylinder and 7, can be measured
so that the results can then be presented by two-
dimensional plots.

EXPERIMENTAL EQUIPMENT AND PROCEDURE

The apparatus consisted mainly of a clear plastic
cylinder 30 in. long with a 5-in. id. filled with
castor oil and mounted on an adjustable-speed turn-
table as shown schematically in Fig. 2. The speed



MOTION OF SPHERE IN .ROTATING FLUID 563
i
"o
x
—~ -
1inl e
> o e o o a T=e4'r
F[% d=1/4", D=s" Eoap T:715°F
é sl T,= d/D = 0.050 "o . |
Y7, d? 3
— e (s y 9 ®
e
o | 2 3 4 5 L3 7 8 9 10
@ (RAD /SEG)
2 I

i i
3

£
¢y

F16. 3. Curves of constant =, for w3 = 0.050.

of rotation was determined by use of an electronic
counter and magnetic transducer. The transducer
was mounted close to a steel gear which turned with
the cylinder. The gear teeth actuated the transducer
which in turn supplied the counter with an input
signal.

Castor oil was found desirable for these experi-
ments because its viscosity is high and its change of
viscosity with temperature is relatively large in
comparison with other common oils and liquids.
The high change in viscosity with temperature made
it easy to vary the viscosity simply by varying the
ambient temperature. The variation of the physical
properties with temperature for the U.S.P.-grade
castor oil used is shown in the Appendix.’

For motion along the axis, it was necessary to use
spheres which were slightly less dense than the castor
oil so that they would remain on the axis and the
motion would be small enough for the Reynolds
number to be less than unity. Polyethylene spheres
(specific gravity =2 0.92) were found satisfactory
for this purpose. The sphere was first pushed to the
bottom center of the cylinder with a wire rod. The
cylinder of liquid was set into rotation at the desired
speed and a few seconds were allowed for the castor
oil to attain solid body rotation. The rod was then
pulled out setting the sphere free to move along
the axis. By the time the sphere reached the test
section, the distrubance created by the wire rod had

§ This information was kindly supplied to the writer by
the manufacturer, The Baker Castor Oil Company.

decayed and the sphere moved at essentially the
terminal speed. The test section was one half foot
long and was located in the central portion of the
cylinder in order to minimize end effects. Since the
motion was very slow, the time for the sphere to
travel one-half foot along the axis was easily meas-
ured with a stopwatch. Data could be taken directly
above and below the main test section to verify that
the sphere was not accelerating,.

Starting the cylinder from rest to the desired
speed of rotation created shear stresses in the liquid
until it reached a solid body rotation. Shear stresses
were again created while bringing the liquid back to
rest after the data were taken for a particular value of
w. These shear stresses created small amounts of heat
which affected the viscosity to some degree. Con-
sequently, it was desirable to measure the viscosity
between each data point taken. This was done when
the liquid was quiescent by checking the rise velocity
W, of the same sphere being used for the experi-
ment and by using the well-known Stokes relation
for an infinite fluid

Mu= d2(’Yl - “/s)/lSWO,

along with the Francis equation® for wall-effect
correction

(18)

1—4d/D

W, ¢
W= {m} d/D < 09). (19

¢ V. Fidleris and R. L. Whitmore, Brit. J. Appl. Phys. 12,
490 (1961).
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The nondimensional ratios involving viscosity are and
then 8wy {1 — 0.475 d/D}S_ ©2)
W, { 1—d/D } 0 T dgl — /) \ 1 —-4d/D
™ T 18W, \1 — 0475d/D/ RESULTS
wd 1—-4/D |* Figures 3-7 represent the data taken for five
T = 18W, {1 — 0475 d/ D} ! (1) spheres ranging in size from % to 1% in. in diameter.
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The range of =, for each sphere is from 0 to 4. The Figure 8 represents the data taken for eight values
data for each sphere are shown in a plot of =, vs m; of 7, when =,/d° was held approximately constant.
for three constant values of m,. =, was varied by The relations given in the Appendix for v, and p,,
varying the temperature of the castor oil. with a quadratic approximation for the data given
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for u in the Appendix (Fig. 9), give
T4 (3.739 — 2.289 X 10* T)(1.911 ~ 7.113 X 107* T)

d® = (160494 X 10°T° — 308.609 X 10°° T + 15,602.183 X 107°)

(68°F < T < 86°F), (23)

where T represents the temperature in degrees Fahrenheit. Equation 23 shows that =,/d® is a function of tem-
perature only. The oil temperature, which depended upon the ambient temperature of the laboratory at the
time of a test, varied from a minimum of 70.25° F for =, = 0.125 to a maximum of 71.5° F for the values of
of 0.225, 0.200, and 0.100, with the average temperature for the eight values being 71.3° F. Hence =,/d*
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was held approximately constant, as stated earlier.
The value of =, for five of the runs shown in Fig.
8 may be found on the corresponding curve in
Figs. 3-7 which represent the same data.

The writer has taken data similar to that repre-
sented in Figs. 3-7 for eight different sphere diam-
eters which amounts to twenty four runs. In thirteen
of these runs the viscosity decrease from beginning
of the run to the end (due to heat created by starting
and stopping the rotation of the fluid) was less than
5%, less than 109 in eight of the runs and less than
15% in three of the runs. An average viscosity was
used for each run to calculate =,. v, was also calcu-
lated by use of the data in the Appendix and the
mean measured temperature for the run.

The maximum Reynolds number, based on W,
and the sphere diameter, was less than 0.7 for all
the data taken.

The run for d = § in. and T = 75° I was chosen
at random for a repeatability check. The data
acquired from both runs lie on the same curve as
shown in Fig. 5.

DISCUSSION OF RESULTS

The plots of the data shown in Figs. 4-12 verify
Eq. (17) which was derived by dimensional analysis,.

For the special case of a cylinder with infinite
radius, Eq. (17) holds if 73 = d/D is deleted. To
discuss this special case, we look at Fig. 3 which
represents the data with the smallest amount of wall
effect assuming that the wall effect is a function of
geometry only (W,/W. = 0.895 here for Stokes
flow). The velocity is only slightly decreased by
rotation for w < 1. This is as expected since the
Coriolis acceleration is very small and the problem
is little different from the Stokes problem. The data
here show that the velocity decreases from the
Stokes velocity, as w is increased, more rapidly as
the rotating liquid becomes less viscous. This sug-
gests that as the viscosity of the liquid is decreased
the amount of liquid affected or moved along with
the sphere is increased with the limiting case being a
cylindrical column as first found by Taylor. The
writer performed an experiment with a slowly moving
sphere (W, = 0.04 {t/sec, w & 150 rpm) in rotating
water and, with the use of potassium permaganate
as a dye, observed the column of fluid that the
sphere pushed along. The Reynolds number for
this experiment was approximately 300. A similar
experiment with castor oil is difficult. The writer,
however, by injecting a mixture of castor oil and
linseed oil, which had been dyed black, along the
axis of rotation, did observe that some fluid near the
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sphere was pushed along with the sphere but the
results were inconclusive as to the amount and
exact shape of this fluid.

CONCLUSIONS

The following conclusions can be drawn for the
slow steady motion of a sphere along the axis of a
rotating viscous liquid: (a) If the sphere is less dense
than the liquid and is released on the axis of rotation,
the free motion will remain along the axis of rotation.
(b) The sphere rotates at very much the same angu-
lar velocity as the eylinder. (¢) The velocity of the
sphere in a liquid with constant temperature de-
creases from the Stokes velocity as the angular
rotation is increased. Specific results are given in
Tigs. 3-8. (d) The rate of decrease of velocity, as
the angular rotation is increased, increases as the
viseosity of the liquid medium is decreased. Thus,
the effect of viscosity is to decrease the amount of
fluid affected or moved along with the sphere. (e)
From the equations of motion, it is concluded that it
is the effect of the Coriolis acceleration that leads
to a terminal velocity less than the Stokes velocity
for the sphere provided that the assumed slow mo-
tion is attained. (f) The velocity of the sphere along

the axis is given by
W oo g =) fl:i c_v< i ) (’y;—v,)d_z:l
¢ " =7\ o VL
a7

D’d

The funection is given graphically in Figs. 3-8,
APPENDIX

The coefficient of expansion of castor oil in terms
of density is 0.00066. Also, for the range of tempera-
tures used herein,

0.9849 — 3.667 X 107* T gm/cm®,

p =

p = 19107 — 7.113 X 107* T slug/ft®,
and

v = 61.4873 — 2.2891 X 1072 T Ib/ft?,

where T is measured in degrees Fahrenheit.
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