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Analytic expressions are derived for the motion of a pair of interacting, straight, parallel (or
antiparaliel) screw dislocations in an applied stress field. Analysis of the equations of motion
of the dislocations shows that, under most circumstances, the velocity of a dislocation is
proportional to the driving force (i.e., the motion is overdamped), and, in this limit, the resuits
are exact. Howeéver, when the two dislocations are very close together, inertial terms begin to
play a role, and the resultant “finite-mass™ corrections are treated perturbatively. For the case
of antiparallel screw dislocations, a capture cross section exists and is given by the product of

the shear modulus and the Burgers vector over the applied stress. Based on these results, a
simple statistical analysis of the motion of a large number of screw dislocations is presented.

LANTRODUCTION

The role of dislocations as the mediators of deforma-
tions in metals is both well known and ubiquitous. In addi-
tion to controlling plastic deformation, disiocations play a
major role in determining the fracture behavior of 2 wide
variety of materials. In both of these cases, material proper-
ties are determined by the motion of large numbers of inter-
acting disiocations. ( Typical dislocation densities in metals
lie in the range 10°-10'? dislocations/cm® ) The difficulty
inkerent in the analytical treatment of such large densities of
defects is compounded by the relatively slow rate of decay of
their stress fields with separation {1.e., o~ 1/#). In contrast,
the properties of individual dislocations are rather well un-
derstood.! The stress field about an arbitrarily oriented dis-
location in an anisotropic material is now well established.”
Similarly, the dynamical properties of individual disloca-
tions have received considerable attention.” However, little
progress has been made in employing the well-established
properties of individual dislocations in & description of the
dynamical behavior of collections of dislocations.

Previous experience with dynamical systems has shown
that, while true many-body problems are, inherently, ex-
tremely difficult, two-body problems are often tractable. In
this same spirit, we attempt to solve for the motion of a pair
of dislocations. While, admittedly, such solutions do not
constitute tremendous progress toward a description of the
collective motion of realistically large numbers of disloca-
tions, they do constitute a first step towards solving the prob-
tem of multidisiocation dynamics. Furthermore, such solu-
tions are directly applicable in the low-density limit. In
addition, computer simulation technigues have recently
been developed which numerically simulate the motion of
many dislocations under a restricted set of assumptions.*’
One of the difficulties encountered in such approaches oc-
curs when the separation between 2 pair of dislocations be-

4428 J. Appl. Phys. 85 (11}, 1 June 1988

0021-8979/89/114188-06%02.40

comes much smalier than the mean interdislocation spacing,
In such cases, proper integration of the equations of motion
requires formidably short time steps. However, an analytical
description of dislocaticn trajectories of unusually closely
spaced pairs helps alleviate this problem. Such approaches
are commonly used in studying the molecular dynamics of
hard-sphere systems.

In this paper, we derive analytic expressions for the mo-
tion of a pair of screw dislocations in an infinite body in two
spatial dimensions (i.e., parallel or antiparallel, straight dis-
iocations ). In Sec. i, we derive an eguation of motion ap-
propriate for a pair of straight dislocations interacting with
each other and with an externally applied stress field (which
can inciude the average field of other dislocations). The tra-
jectory of the center of mass of a pair of parallel or antiparal-
{el screw dislocations is the subject of Sec. IIf. Sections IV
and V present exact solutions for the relative motion of a pair
of parallel or antiparalle! screw dislocations in the over-
damped limit, both with and without the presence of an ex-
ternal stress. The effects of relaxing the constraint of over-
damping are treated perturbatively. Finally, a simple,
statistical application of these results to the many-body
problem is presented. Similar results for edge dislocations
are presented in a separate publication.®

H. EQUATION OF MOTION

When a dislocation moves through a crystalline lattice,
there is movement of both the atoms in the core region of the
dislocation: and those far away. The faster the dislocation
moves, the more Kinetic energy is imparted to these atoms.
Neglecting the relatively small contribution of the disloca-
tion core, Eshelby” and others®® have shown that this kinetic
energy scales as the square of the dislocation velocity (for
the velocity v much less than the transverse sound velocity
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¢, ). Therefore, the dislocation has an effective mass m*,
which is given by
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where g is the shear modulus, b is the magnitude of the
Burgers vector, and R, and r, are the outer and inner cutoff
radii, respectively. Since & moving dislocation has mass, it
carries momentum, and, hence, should behave as a Newtoni-
an particle: m*% = F, where the dots indicate differentiation
with respect to time, x is the vector position of the disloca-
tion, and F is the foree on the dislocation.

Since dislocations in metals exit on a lattice (and, there-
fore, have cores) instead of in a true continuum, a moving
dislocation radiates phonons. Such effects are well known
for dislocations, as well as for essentially ali defects moving
through a lattice. Therefore, the movement of the disloca-
tion dissipates energy, and its motion is nonconservative. In
addition to the aforementioned phonon-emission/core-dis-
sipation mechanism, a number of other dissipation mecha-
nisms are known to exist (e.g., thermal-phonon scattering,
electron scatiering, etc.). In metals, the scattering of thermal
phonons by the moving dislocations is the dominant dissipa-
tion mechanism, except at very low temperatures.

The presence of dissipation modifies the equation of mo-
tion: for the dislocation:

F=m*+yx, {3)

where y is the damping coefficient (see Ref. 10 for a discus-
sion of this damping term}. For the case of thermal-phonon
scattering,'® we have

y={(ub/c,)g(T/B), (4)

where 8 is the Debye temperature, and the function g(7/8)
varies from approximately 1072 at T=0.18 t0 2 10" * at
T = @&. While we ignore crystailine anisotropy in the present
analysis, we note that, in general, both the dislocation mass
m* and the damping coefficient y are second-rank tensors
instead of scalars (i.e., we have taken m* and y to be muiti-
ples of the identity matrix).

For a pair of screw dislocations, the force in Eqg. {3 has
condributions from both the externally applied stress o, and
that due to the interaction between the two dislocations. The
force on disiocation 1 due to dislocation 2 {(in the coordinate
system of Fig. 1) may be written as

FIG. 1. Hlustration of the
coordinate system used for
the relative  coordinate
r=r,--r, The Burgers
vectors b, and b, are each ei-
ther into or out of the paper.
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Fi,= + (#bzbz/Zsz)(fix +§'y)
= + {(ub,b,/2mr}¥, (5)

where a caret (") indicates a unit vector, and the upper and
lower signs are for parallel and antiparalle] screw disloca-
tions, respectively. Equation (§) may be derived from the
siress field of dislocation 2 at the position of dislocation |
and the Peach-Kohler formuia."

The dissipative term in the equation of motion (3} may
be expected to dominate the Newtonian or inertial term as
long as the dislocation is not accelerating too quickly. For
the case of two attracting (antiparallel) screw dislocations,
we can estimate how close the two dislocations must get for
the inertial term to become important. Seiting m*® to zero
and inserting Eq. (3) into Eq. (3) we find

— (b2 2mry = yi. {6

Differentiating Eqg. {6) with respect to time and rearranging
terms yields

P = ub 2wy {7}

In order for the inertial term to dominate the dissipative
term, we must have m*¥ > v {#/F> y/m*). Inserting Eq.
(7} into this inequality shows that the inertial term is impor-
tant only for

F {um® /2wy b /y) ~50b . (8)

Therefore, for dislocation separations greater than about
100 A, the moticn of the dislocations is overdamped, and the
inertial term is negligible. Under these conditions, we write
F~v%, and the inertial term may be treated as a perturba-
tion.

1. CENTER-OF-MASS COORDINATES

We consider two screw dislocations of effective mass
m*, with Burgers vectors of equal magnitude b, which ave
either parallel (e = 1) or antiparallel (¢ = ~ 1). The equa-
tions of motion (3) for dislocations ! and 2 are

we b7 (r{—1y)
=

+ ¥, —yr, {9a}

P2 T
_ eub?® (v, —ry)

= (5b)
2 | —1,]°

m¥E, = +€eF, —yr,,
where F, = g, b, is the applied, external force. Here, we
have taken the system to be infinite in extent, and we have
neglected any Peierls stress, which is valid if the total stress is
not too smail. We now switch to center-of-mass and relative
coordinates R = (1/2)(r, + v} and r = (r, — 1, }, respec-
tiviey, in terms of which Egs. (9) become

MR =11+ OF, 1R,

m*E = (eub /mr)e + (1 —e)F, —yi.

(10a)
{10}

The motion R(7) of the center of mass may be solved for
by direct integration of Eq. (10a). One integration yields

m*R— V) + 7(R— Ry + (1 +e)F,7=0, (i1)
where Ry=R(r==0) and V,= R(r=0). Multiplying
though by e”*/" and integrating once more yields
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/1+6)ﬁ m*{ /1+6) }
BR=E F o4+ —{V,—1i ¥
0+K 2 A v d ‘\27/ A

X(i . e—yr/m*).

In the overdamped limit (i.e., m* —0), this reduces io

R:R()+—(1+E>FAI.
2y

(12)

(13)

For the case of parallel screws (€ = 1), this shows that the
center of smass translates with a constant velocity F /7.
However, when the screws are antiparallel (€ = — 1}, the
center of mass is stationary.

1t is important to note that this exact solution illustrates
the fact that the effects of the finite effective mass of the
dislocations decay away exponentialiy fast with time con-
stant 7 = m*/y. Employing Eqs. (2} and (4) and choosing
c, =23x10° m/ss, r.=b=25x10"" m, and
R, =5%1077 m yields 7 = 3.3 107 ? 5. This again sug-
gests that the overdamped limit is appropriate.

i¥. PARALLEL SCREWS

When the screw dislocations are paralle] (i.e., identical
line directions and Burgers vectors), the equation of motion
{Eq. (10b)] for the relative coordinate reduces o

{14)

This equation is independent of the applied force or stress,
which only translates the center of mass. Noting that

> A » g
f=¢tr+ 6r9

m¥ = (ub /7)) — ¥ E.

and

= (7 —r07) + B(rD + 2/,
Eqg. (14) may be rewritten as

m*(F — r8?) + vi— (ub/mry =0, (13a)

m*(r@+ 2 10) + yrf=0. (15b)
In the overdamped limit (m* = 0), these equations may
readily be integrated to yield

9 = 8() .

r=1r + Qubit/my3}'"?,
where 8, = 0(t =0) and r, = r(t = 0). ’

We obtain finite-effective-mass corrections to Eqgs. (16)
by returning to the original equation of motion for 8 [Eq.
(15b)]. After multiplying by #2e"/"", this equation may be
integrated to yield

6 = wolry/r)? e """, (17}

where @, = &(t = 0). In this equation, note that r is a func-
tion of time. Inserting the overdamped solution for r{¢) | Eq.
(16b)] into Eq. (17) and integrating with respect to time
yields the lowest-order, finite-effective-mass correction to
Eg. (16a):

{16a)
{16b)

?T?ré @y eﬂ";/jr[’,/z,ub T
2ub?

7Y 2 s
><[El(-~—722° )—Ei<~———,w7° +l’~)}, (18)
2ph “m* 2ubim*  m*
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where E,(z) is related to the exponential-integral function
and is defined as
“ dx

_——e T, (19)
z X

Expanding this to lowest order inn m* yields

6?::60+m*w°[1~—(1+2“b2t)~le»ﬂ/’”*!. (20)
y 1 Ty

As for the center-of-mass coordinate, the finite-effective-
mass contribution decays exponentially with time constants
mi*/y. In the limit as ¢ — oo, this becomes

6= 0, + (m*wy/y) .

Thus, & changes very little over the entire trajectory.

The lowest-order, finite-m* correction to r(¢) {Eg.
(16b) ] is found by inserting this overdamped solution into
the inertial term of the original equation of motion (15a).
Retaining only those lowest-order terms in m*, we find

E\(z) =

(21}

21 1/2 2,,% 2 2t -1/2
r=(r§+2”b ) Ll 2 )
Ty 27y \ Ty
2.
xinf14 22 ’). (22)
\ TR

Thas, the separation between the two parallel screws grows
ast'/? at long times. On the other hand, the finite-m* correc-
tion decays as ¢ ~"/? In  at long times.

The finite-effective-mass corrections derived above are
valid for

7e > ub*m*/2mey’,
wo L2y /m*,

(23a)
(23b)

where e is the base of the natural logarithm. These conditions
guarantee that the acceleration of the dislocations at 1 =0
(and, thus, at all successive times) does not violate the as-
sumption of the dominance of dissipation over inertia. Im-
proved estimates of the finite-effective-mass correction can
be obtained by inserting the corrected #(¢) [Eq. (22)] into
Egs. (15a) and (17). Arbitrarily high accuracy may be ob-
tained by continued substitution of the increasingly accurate
solutions for (¢} into the exact expressions.

V. ANTIPARALLEL SCREWS

Antiparaliel screw dislocations (i.e., the same line direc-
tion, but opposite Burgers vectors) move in opposite direc-
tions when subjected to the same externally applied stress. In
the overdamped limit (m* = 0), this results in no net mo-
tion of the center of mass of the pair [Eq. (13} }. The relative
coordinate, on the other hand, evolves with time as given by
Eq. (10b):

m* = — (ub %/ mrr + 2F, —yF. (24)
In the overdamped limit, this reduces to

vi= — (ub*/mr) —2F, cos 6, (25a)

yr0=2F, sin 6, (25b)

where we have chosen the x axis to lie along — F,. The
coordinate r gives the position of dislocation 1 relative to
dislocation 2, as illustrated in Fig. 1. Cross multiplying Eqgs.
(25a) and (25b) and integrating yields
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(ub?/2m)0 + F,rsin 6 = C, (26)

where Cis a constant which is determined by the initial con-
ditions: namely,

C= (ub*/2my9(¢t = 0) + F, (¢t =0) sin (¢ = 0)
— (ub/2) 0y + F 1y sin 6, .

Eguation (26) gives the path along which dislocation 1 tra-
vels. It is convenient to replace » by y = rsin 6, in which
case, Eq. (26} becomes

y=(VF)IC— (ub?/2m)61],

with — 7<8<7.

A family of trajectories corresponding to different
choices of C= (ub?/27}8, + F,p, are shown in Fig. 2.
Since no trajectories cross the x axis, and the trajectories are
symmetric with respect to the x axis, we consider only the
case p> 0. AS f—» — o, we have 60 and y—~d = C/F,,
which is the impact parameter with which dislocation 1 ap-
proaches dislocation 2. In terms of this impact parameter,
Eq. (27) becomes

y=d— (ub*/2wF,) 8. (28)

I d>ub?/2F,, dislocation 1 approaches from the right
{Fig. 2} and exits to the left at

d' =yt =) =d—pub*/2F,.

Note that the interaction of the two dislocations will always
reduce the height of the trajectory by the same amount
d* = ub?/2F, foranychoiceofd > d *. Ford < d ¥, disloca-
tion i approaches from the right and ends up at y = 0 for
8 = 6% == 7d /d *. In other words, dislocations 1 and 2 meet
and annihilate if the impact parameter falls within the win-
dow — d* «d < d *. Inthespecialcase ofd = d *, dislocation
i approaches a stagnation pointat y =0, x= —d%*/7.

The velocity of dislocation 1 along its trajectory may be
calculated as

(27)

FIG. 2. Relative motion of two antiparallel screw dislocations in the over-
damped limit {(m* = 0} in the presence of an external force ¥, = — &F,.
Trajectory a, whose initial, asymptotic approach is along y == & * == ub '/2F,
approaches a stagnation point p as 7 . A trajectory b which approaches
alongy = d>» d *exitsalong y == & - d *, with the drop d * being independent
of the initial approach d. All frajectories which approach along y = d < ¢/ * end
up at the origin, resulting in the annihilation of the two dislocations. The co-
ordinates x and p are plotted in units of d *.
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b= (P + P67
_ 2 (i, 2b’sinfcos 0 1°b % sin? @ >3/2
y \ ' 2wdF, —ub’6  (2mdF, —pbgy)

(29)
For d>d *, dislocation | approaches from x = o« with an
asymptotic velocity v = 2F,/y, speeds up, slows down
again, and finally leaves with the same asympiotic velocity.
For d «<d *, dislocation 1 approaches with the asymptotic
velocity v = 2F, /v, speeds up, and is captured by disloca-
tion 2 with infinite velocity, approaching from the angle 8 *.
In real solids, however, dislocation velocities are limited to
the shear-wave velocity. Finally, for d = ub?/2F,, disloca-
tion 1 approaches with the asymptotic velocity v = 2F, /¥,
speeds up, and then slows down and approaches the stagna-
tion point with vanishing velocity.
An exact solution for the time dependence of the motion
of the antiparallel screws is obtained by inserting Eq. (26)
into Eq. (25b) {with C = d¥F,) and integrating once with
respect to time, which yields

=

14 [ZmiF — ub26,)cot B,
477Fi { 4 i} o

(30}

sin 4§,

Unfortunately, Eq. (30) cannot be analytically inverted to
vield A(¢). However, one can directly find the time corre-
sponding to any value of 4. Similarly, one finds 7{&) and,
indirectly, #{#) by using Eq. (26) to write

= (2ndF, — wb?6)/(2nF, sin ).
For d <d*, we can find the time required for the pair of
antiparallel screws to annihilate by calculating the time re-

quired for & to go from 8, to 8 * = 2wdF, /wh * (see above).
Enserting 6 = 6 * into Eq. (30) yields the capture time

— (OwdF, — ub6)cot 6 — ub> m( Smg H

L4 {(272’@’}7,1 — ub?6,)cot 6,

47F2

mubzln(

7 decreases with increasing ¥, and with increasing &, for
B, < 8%

While it is not very illuminating to solve perturbatively
for the trajectorics of antiparallel screw dislocations with
finite effective masses under the influence of an applied, ex-
ternal force, significait progress is possible in the zero-force
timit. In this limit, Eq. (24) reduces to

T o=

sin{2wdF,/ub?®) )}

31
sin &, G

mE(F— B2y v i+ (ub ) =0, {32a)

m* (16 + 2#9) + yrf = 0. (32b)
Equation (32b} is identical to Eq. (15b} and, hence, is
solved in the same way. Similarly, apart from the sign of the
1/rterm, Eq. (322) isidentical to Eq. (15a). Thus, proceed-
ing as in Sec. 1V, for m* = 0, we find

g=28,,

r= [ — (2ub’t/ay} |~

{33a)
(33b)

Setting r = O yields the capture time 7 = myrg /2ub *. Note
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that, in the absence of an applied force, a pair of antiparallel
screws will eventually annihilate, regardless of their initial,
relative positions (assuming, of course, that they are close
enough together for their interactions to exceed any Peierls
stress). The finite-m* corrections are now calculated pertur-
batively as in Sec. IV to vield

12 % N o~ 172
TG L Mt CE R W AR B C IS
T 4y T/ T

* -1 .
6=6,+ " '”OE} n(l ‘_f_) e""""“*},
v

(34b)
-

where 7 is the capture time. These expressions are valid for
WL 2ry/m* and T — t>m*/4y.

Vi. DISCUSSION

In the three previous sections, we have calculated the
trajectories of a pair of parallel (or antiparallel} screw dislo-
cations in the overdamped limit, which is most appropriate
for dislocations in metals, ceramics, etc. Where possible, the
assumption of massless {i.e., overdamped) dislocations has
been relaxed. The motion of the dislocations has been calcu-
tated in the center-of-mass and relative coordinates. In order
to relate these results to the laboratory frame one needs only
to insert the expressions for the center-of-mass coordinate R
and the relative coordinate r into the expressions

r=R44T (35a)

(35b)

In addition to being an interesting exercise in disloca-
tion theory and kinematics, we foresee two main applica-
tions of these results. The first, mentioned above, is in com-
puter simuiations of large numbers of dislocations. In this
case, these solutions allow for the efficient integration of the
equations of motion for the disigcations when two disioca-
tions come within close proximity (relative te the mean dis-
location spacing). The second is as a basis for the develop-
ment of a statistical theory for the deformation of solids.

For the two-dimensional case considered here (i.e.,
straight screw dislocations ), a2 number of interesting results
may be derived in a relatively straightforward manner. First,
however, we ncte that the equilibrium thermodynamics of
such systems is well known as it appears in the fiterature of
the Kosterlitz—-Thouless transition (the interested reader is
referred to Ref. 12 for an overview ). Most of the interesting
cases of dislocation dynamics are noneguilibrium, with the
density of dislocations p evolving in time. Assuming a ran-
dom spatial distribution of screw dislocations {(g.ua

= Pontiparatiel = £, We estimate the rate of change of the dis-
focation density as

p=R—-1r.

%P_ — ag*up?,

at

(36)

where o* is the applied-force-dependent capture cross section
for a pair of dislocations, and v is the mean dislocation velocity
(v = F,/y). Thus o*vis the rate at which a dislocation sweeps
area (and annihilates other dislocations). The p° dependence
in Bq. {36) accounts for the fact that the dislocations annihilate
in pairs.
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In order to make use of Eq. (36), we use the results of the
previous section to find

o* =2d* = pb*/E,. (37)
Inserting Eq. (37) into Eq. (36) and using v = £, /7, we find

b () (5),
at F, ¥
= — (ub¥/y)p*. (38)

Hence, the rate of annihilation is independent of the magnitude
of the externally applied force or stress. Integration of (38)
shows that the initial dislocation density p, decays as

N o E— (39)
14 (ub2/¥)pyt

While Eq. (39) describes the decay of an initial dislocation
density, we should expect that additional dislocations are gen-
erated during deformation. In general, we may write

B (K2 g
where « is a constant which may be a function of both the
applied stress and the temperature and, v is a constant which
depends on the mecharism for dislocation generation.

For v#£2, Eq. (40) yields 2 finite equilibrium density (dp/
gt =10)

p* = (ay/ub?y’' . (41)

The qualitative behavior of the dislocation density p(f) may be
found by examining Fig. 3. For v < 2, we see that, when p <g*,
we have do/dt >0 and p increases, while, for p > g*, we have
9o/t < and p decreases. Thus, for v <2, the density p(#)
approaches the steady-state density p*. On the other hand, for
v> 2, a similar analysis shows that p(7) evolves away from p*,
approaching zero for p, < p*, or infinity for g, > p*.

Eguation (40) may also be solved analytically. Changing
variables and integrating vields (for v#2)

. P
t:1 /l(ay)fz’l"‘(i—z)"dz,

a \ub* -

ple)y =

(40)

(42}

ve?2

¥

v>2

FIG. 3. To describe the time evolution of the density p of parallel and antiparal-
lel dislocations, we plot do/3t vs p from Eq. (40). For v < 2, we see that, when
o< p*, we have dp/dt > 0 and p increases, while, for p > p*, we have do/dt < 0
and p decreases. In either case, p(¢) approaches the steady-state density p*. On
the other hand, for v 2, p(r) evolves away from p*, approaching either p = @
Orp = 0.
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where A = (1 —v3/(2 — v}, = (p/p*)> ™", and 3, = (py/
p*)? ™. For integer v#2, this integral is an elementary func-
tion, and we have the following results [for v =2, Eq. (40)
may be sclved directly]:

v =0
_of pocosh it + p* sinh a
P = (pg sinhwt + p* cosh et/ ()
p¥ = (ay/ub®'?,
= ((zwz/?/)f/z;
v=1:
p(8y =p*t —[1— (p*/pgle” 3", (43b)
pr = ay/ub?;
V=2
p(t) =poll + (ub*/y — a)pot 1 7. (43c)

For integral v> 2, the integral yields ¢ as an elementary func-
tion of p, but this cannoct be analytically inverted to yield g(¢}.
Similarly, for nonintegral v, the integral can be expressed in
terms of incomplete beta functions, but this expression also
cannot be analytically inverted to yield p(#).

White such resuits do provide information about the evo-
fution of the dislocation density, they are incapable of provid-
ing any insight into the dislocation-generation mechanism.
Furthermore, since the assumption of randomly spaced dislo-
cations has been made, these results do not include the effects of
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special multidisiocation structures (e.g., dislocation celis)
which are known to be important. Computer simulation is re-
quired to include such effects.
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