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The matrix elements of the linearized Boltzmann collision operator with respect to the Burnett func-
tions are constructed for arbitrary power law potentials. The result of Mott-Smith for elastic spheres

appears as a special case.

1. INTRODUCTION

The matrix elements of the linearized Boltzmann
collision operator formed with respect to the so-
called Burnett functions are useful for calculation
of kinetic and transport properties for nearly ideal
gases. They were first introduced by Burnett, and
were used extensively by Chapman and Cowling,
who give general expressions for the lower-order
matrix elements.’'? Some years ago Wang Chang
and Uhlenbeck and, independently, Mott-Smith,
proved that the matrix is diagonal for the case of
Maxwell molecules, i.e., the Burnett functions are
eigenfunctions of the linearized collision operator.’~*
These authors also found the general expression
for the eigenvalues. In the same work Mott-Smith
obtained a general expression for the matrix elements
for the case of elastic spheres.

This result of Mott-Smith can be generalized
to the case of arbitrary power law forces, and it is
the purpose of this paper to present a succinct
derivation of this general result, which at the same
time encompasses the cases of hard spheres, Maxwell
molecules, and all intermediate power laws. In the
next section the linearized collision operator and
also the related Hilbert operator are defined; the
point here is to fix and clarify the notation. The
following section is devoted to the derivation of
the formula for the matrix elements. In the final
section the relations of this result to the results and
definitions of other authors is made explicit.

2. LINEARIZED COLLISION OPERATOR

The linearized Boltzmann collision operator J
may be written in the form®

1 D. Burnett, Proc. London Math. Soc. 39, 385 (1935).

¢ S. Chapman and T. E. Cowling, The Mathematical Theory
of Nonuniform Gases (Cambridge University Press, Cam-
bridge, 1958), 2nd ed.

3 C. 8. Wang Chang and G. E. Uhlenbeck, University of
Michigan Report, Project M999 (1952).

¢ H. M. Mott-Smith, Lincoln Laboratory Group Report
V-2 (1954).

5 See also L. Waldman in Handbuch der Physik, S. Flugge,
Ed. (Springer-Verlag, Berlin, 1960), Vol. 12, Sec. 38.

¢ The notation used here is that of G. E. Uhlenbeck and
G. W. Ford, Lectures in Statistical Mechanics (American
Mathematical Society, Providence, Rhode Island, 1963).

Jh = 2t f de, e

[ a9 01(g, DI + he) — (e) — AeN, @)

where dimensionless velocity variables are used.
Thus,

c = (m/2kT)%, (2.2)

with m the mass of a gas particle, T the local tem-
perature, k£ Boltzmann’s constant, and v the velocity
of a gas particle. The four velocities in (2.1) are the
velocities of a binary collision (¢, ¢;) & (¢, cl).
These are related by the conservation laws; from
conservation of linear momentum we have that the
velocity of the center of mass is constant,

G = 3+ ¢c) = 3(c" + ¢, (2.3)

while from conservation of energy we have that
the relative velocity is unchanged in magnitude,

g=¢C— ¢y g, =¢ - ¢, !g! = Igll =9. (2'4)

Thus a binary collision is characterized by the rota-
tion of the relative velocity. In (2.1) the quantity
I(g, 6) is the collision cross section for a collision in
which the relative velocity is rotated through angle
6 into solid angle dQ; the integral is over all direc-
tions of g’. Note that

g-g =g’ cosé. (2.5)

The collision cross section is determined from the
dynamics of a binary collision. If the interparticle
potential energy for two particles separated by a
distance r is ®(r), then

(2.6

where p is the impact parameter, determined as a
function of ¢ through the relation”

N0 -3
0= — 2f0 dn[l . —Wich(%’)} e

7 See, e.g., L. Landau and S. Lifshitz, Mechanic (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1960),
p. 18. Note that for binary scattering the mass must be
replaced by the reduced mass m/2 in their formulas. Equation
(3) on p. 78 of Ref. 6 is correct only with this replacement.
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Here 7, is the smallest zero of the quantity in square
brackets. For the special case of a repulsive power
law potential, where ®(r) is of the form

w0 = o(2)

with & and a both positive constants, one can readily
see from (2.6) and (2.7) that

(2.8)

2/

I(g, ) = a(-f—f;—T) 1.(6), (2.9)
where f,(6) is a purely numerical function of § alone.

Note that in Eq. (2.1) the interchange of ¢ and
¢, corresponds to changing the sign of g, ie., to
replacing 6 by = — 6. Since the quantity in square
brackets is symmetric under this interchange, only
the part of the cross section which is symmetric
under this interchange contributes to the integral.
Hence, if we replace gI{(g, 6) by the quantity

F(g, ) = 3gll(g, 6) + I(g, = — )], (2.10)
we can write (2.1) in the form
Jh ="} f de, e’

- f 49 F(g, 0)[2h(c) — h(e) — h(c)].  (2.11)

This expression will save some writing in the follow-
ing discussion.

The linearized collision operator (2.1) is a self-
adjoint linear operator, providing we define the
scalar product of two functions ¢(c) and &(c) to be

(b, ® =n} f de e " Y(0)d(c).  (2.12)
The self-adjoint property of J means that
¥, J@) = (Jy, ®). (2.13)

The so-called Burnett functions form a complete
set in veloeity space. They are given by

Xrlm(c) = Cll/il+%)(62) Ylm(é)v (2'14)
where Y ,.(¢) is the spherical harmonic and
1 _,.d . .. .
{a) — = a z z rta
L) = e (2.15)

is the Laguerre polynomial.®® The functions x,in

s For spherical harmonics the notation is that of A.R.
Edmonds, Angular Momenium in Quantum Mechanics (Prince-
ton University Press, Princeton, New Jersey, 1957), especially

. 19-24.

P For Laguerre polynomials the notation is that of W.
Magnus and F. Oberhettinger, Formulas and Theorems for
the Special Functions of Mathematical Physics (Chelsea Pub-
lishing Company, New York, 1949), especially pp. 84-85.
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are orthogonal but not normalized; we have that

D+ 1+ 3§

drriT@) O

(Xflm; Xr’l’m') = 6mm'- (2-16)

The normalized Burnette functions are denoted
by wrlm;

'3 3
V() = [ﬁ%_%g] X-m(€).  (2.17)

The linearized collision operator is a scalar op-
erator. That is, when operating on a function of the
form

hic) = f(0)Y..(6), (2.18)

where f(¢) is a function of the magnitude of ¢
alone, then

Jh = g(0)Y1.(6),

where g(c) is also a function of ¢ alone. This has the
consequence that the matrix elements of J with
respect to the Burnett functions are diagonal in
{ and m, and independent of m. Thus

(X:'klmv JXr’l'm’) =

(2.19)

ZW’II‘T' 611’ amm‘r
and
(¢;klmy Iwr'l’m') = Jfl'r' 6ll’ 6mm’v (221)

where

Jl = 4x0()

. rh!! b

It is often convenient to write the linearized
collision operator in the form

Jh = —m(c)h + Kh, (2.23)
where
Kh ==} f de, e f dQ gl(g, 9

[h(c") + h(c)) — h(c))], (2.24)

and

mlc) = w‘%fdcl e‘““fdsz gl(g, 6). (2.25)

The operator K, called the Hilbert operator, has
many simple properties: it can be written as an
integral operator, for the case of hard spheres it is
compact and positive definite, etc. The matrix
elements of this operator are of the form

(Wom, Ky iim) = Kipo 8000 8. (2.26)



LINEARIZED COLLISION OPERATOR

In the next section an expression for the matrix
elements M!,., will be obtained for case of repulsive
power law forces, for which I(g, 6) is the form (2.11).

3. THE MATRIX ELEMENTS M!

rrt

From (2.20) we can write

Z OFim, Jxorm). (B.1)

2l + 1 m=—1

If we recall the addition theorem for spherical
harmonies'®;

13
Mrr

+1

Z YO Y..@6) =

m==1

pP.e-¢), (3.2)

where P,(z) is the Legendre polynomial, then using

(2.1), (2.13), and (2.14), we can write

M. = dc f de; e < e LR ()
47r

. f 40 F(g, 8)[2¢"' L (¢)P(6-¢')

CLEVE) — dLTVEPE-E)]. (3.3)

We note the generating function for the Laguerre
polynomials’®

(1 _ x)—a—le—:rz/l—z — Z L:a)(z)xr‘ (34)
r=0

Hence, the matrix elements (3.3) may be obtained
from the generating function

Z Zﬂ[,,im '

r=0 r’

1
T 41— (1 — ]

f dcfdcI e“"”"fdﬂ F(g, 0)

i 11 __Z 2 Y
[266 exp( 1—2°¢ 1=y

Mz, y) =

’2> P,(é-¢')
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21 X Y 2
oo | (2 + k)

— c'el exp (—1 i x02 -3 g_ ycf)P,(c‘-él):l' (3.5)

Next we note the integral representation of
Laplace and Mehler for the Legendre polynomials''

2r
P,(cos B) = 21—_n_ f do (cos B + 7 sin B cosa)'. (3.6)

Hence,

c'eiP(é+¢))

2r
:lﬂ_/‘ da (¢ ¢, + i [cx¢,| cosa)’. 3.7
0
But we can write
lc x¢,| cos a = [-c xc,, (3.8)

where [ is a unit vector which is perpendicular to
some fixed direction in the plane of ¢ and c,, say,
to be definite, the direction of ¢ — ¢, (see Fig. 1).
Therefore, using this expression in Eq. (3.6) and
then multiplying both sides by ¢'/I! and summing,
we obtain the result

2 c'eiPy(é-6)
=0

1 2 -
- gf dac exp [i(c-e, + il-e xc)],  (3.9)

where, to repeat, the integral is over all directions
of 1 perpendicular to ¢ — cy;
[-(c —¢) =0. (3.10)

Since the relation (3.9) is valid for arbitrary ¢
and ¢,, if we form the generating function
MGy = XMk

then, using Egs. (3.5) and (3.9) we can write

(3.11)

MG,y ) = g = 5(1 — y)]%fdcfdcl f a2 F(g, 0) f do

Joew[ -

2
& - —

Y 0/2 _I_

t(c-c’ + dl-c xc’):l
I —y

1 =21 -y

‘”m(‘Lix+1gy‘u~@h—w}“”0

—exp[— 1 ¢
1 —2

10 Reference 8, p. 63.

- ¢+
- Y

(3.12)

1, tcec, + ii-cxc,)]}.
1

IO’
11 Reference 9, p. 52.



F1a. 1. The angle o

. FORD

the second term is independent of « so the « integra-
tion just gives a factor of 2r.

In this last expression we change variables to G
and g given by (2.3) and (2.4). That is, we put

lies in the plane per- =G + 3g,
pendicular to ¢ — ¢,
=G — ig, (3.13)
cxe, >€ while
¢ ¢ =G+ ig, (3.14)
with g’ given by (2.5). It is easy to show that
Here in the first term the « integration is over all di- .
rections of [ perpendicular to ¢ — ¢’ and in the last de de, = dG dg, (3.15)
over all directions of [ perpendicular to ¢ — ¢,; and, therefore, that (3.12) becomes
M, u3 0 = o= [ 46 [ de [ a0 P, o) oxp | 220t ge)
8r {1l — )1 — )] 1 =21~y
’ a(l — yg+ y(d — x)g’ — $ig + g') — $itlx(g — g
J, {2 e"p[ -9l -y ¢
-z —yg’ — gg +ilg xg’)}
41 — )1 — y)
(1 -y +yl —2) — Z—x—y-}-tz}
_ - Y ¢ e - S R
P [ 1 -2 -y =21 —p?
(z — y)g —itl-g 2 —z—y+t ]}
— -G — .16)
exp [ A-oi-y = 4-20-9’ (816,

Here the « integration is over-all directions of I such that i-(g — g’) = 0 in the first term and {-g = 0
in the last term. We now perform the G integration, using the integral formula

a
—aGi4b e T\ b4
fdGe aGi+b G — (E) eb /4 .

(317

Then (3.16) becomes, after working out the algebra and using (2.5),

1
42 — ¢ —

M, y; 1) =

— exp(

Remember that the « integration is over all direc-
tions of | perpendicular to g — g’. Since g xg’ is
itself perpendicular to g — g’, we have

l.gxg’ = lgxg’| cosa

= ¢°sin 0 cos @ = 2¢°sin g cosg oS a. (3.19)
If we put this in Eq. (3.18), and then replace
g— 2 —z—y—2lg (3.20)

1 —ay — ¢ )_e (* 1
Z—x——y—tg P 2—ax—y—1t

fy— [ dgfdQF, (g, 9)

27
{lf daexp[—
™ Jo

[1 — (zy + t) cos® 36)g° —
2 —x—y—1

Litl-g xg’]

gz)}- (3.18)

we get

1
M,y;t) = o [ dg [ a0 P2~ 2y — g, 0)

L 1= 2 0 L
[Wfo da exp{ l:l Ty cos 2+ tcos2
.<cosg + z'sing cos a>:|g2} ‘

—exp [—(1 — 2y — )¢°'] — exp (—92)]- (3.21
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Up to this point we have made no assumptions
about the form of the cross section; the expression
(3.21) is quite general. If we specialize to the case
of repulsive power law potentials, for which the cross
section is of the form (2.9), we see from (2.10) that

P, 0 = (22) - re, G2
where
RO = 30.0) + i - 0] @329)

is a purely numerical function of § alone. Inserting
(3.22) in (3.21) and using the integral formula

1-(a/0) mat 402702 2 — (2/s)]
fdgg € = T®@) , (3.24)
we obtain
Mz, y; 1)
_ 2 &)Z/‘ T2 — (2/9)] e — 4 pk-t2re
= (lcT LT CTroyvoh

1 2 0 4
. dQF,(O); , da |1 ~ zy cos §+tcos-2-

6 o 0 (2/8)—2 )
-<cos 5 + t¢sin 5 cos a>:|

-1 —zy — H¥O? — 1}' 3.25)
Next we note the formula
(1—-a—-b""
N P<n + m + a)
-yt dar. G

So we can write

6
2 -_—
[1 zy cos 5

0 0 L 0 (2/s)—2
—_ tcos2 <0052 + zsmz cosa):|

© ©

Qim@/Oimithply L i k4 (2)s) — &
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~ T2 —=Cf)+n+m] ..nb
=22 T2 — @/glam!  °® 3

n=0 m=0

0
0 nogt
<cos >+ isin 5 008 a) (xy) ™. (3.27)

Hence, using (3.6) we obtain

1 2x 20
o ). dal:l—xycos§

0 0 L. 0 (2/8)—~2
{ cos B (cos 5 + ¢sin 5 cos a)]

Tin 4+ m 4+ 2 — (2/9)]
2 — (2/s)jnim!

e gP (cos )(xy) .

Similarly, we obtain from (3.26) the expansion

- COS (3.28)

)(2/3)—2

(1 —ay—1t

-2 >k

n=0 m=0

n+ m 42— (2/9)]
T2 — (2/s)n!m!

(xy) e, (3.29)

Using these last two expansions in (3.25), we have

Mz, y; )

— g’f 29, T2 — (2/9)] 1-2/0)
_2(kT) TG 2Tty —h
3 3 B @G, 3.30)
where
my - 2T+ m 42 — (2/9] 1
N FEcr ey = KLLIO

-[2 cos™* " g—P,,.<cos g) —-1- 6,,,06,,,,0]- (3.31)

But, by an obvious extension of Eq. (3.26), we can
write

)IDIDI

t=0 =0 k=0

2 —z—y— ¥ =

Using this in Eq. (3.30) we get

o2 T2 = 2/9] 5

1.k,
n,m=0

.2-&—(2/:>—-’-""“"’I‘[i + itk + @2/ —

T[2/5) — Hiljk! Rayit. (332)

1 . .
2] B':(s>xs+ny1+ntk+m.

T[(2/s) — 113l5%!

If in these summations we replace

t=r —n,

S
j=r —mn,

(3.33)

k=1—m, (3.34)
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we can write (3.33) in the form

M@,y t) =

©
r=0

=0 r’

where

G. wW.

MLy é—' ,

=0 1=0

FORD

14

(3.35)

—2n+1—-m+ 2/s) — 2]B"().

L <I>o>’”’ rf2 — @/9it"
M"I =a (kT F(3)2r+r +1+3

n=0 m=0

4"Tr + ¢’
Z Z rl2/s) —

e — )" — w1 — m)! (3.36)

Here the upper limit of the n summation is r or »’, whichever is smaller. This is the desired expression

for M!,..

4. EXPRESSIONS FOR THE MATRIX ELEMENTS

Using the result (3.36) of the previous section, we obtain the following expression for the matrix
elements of J with respect to the normalized Burnett functions, defined in (2.21):

Jl — Wag(&)2/s2%_,_r’—lr<2 _ g)ll[
”' kT s/ Lo 4+ 1+

rir’l ;
T 3

g)P(T +14+3%

" —=2n4+1— m+ (2/s) — 2]B”(s)

4°"T{r +
Z Z r{2/s) —

n=0 m=0

where the coefficients B,(s) are given by (3.31).
Alternatively, we can use the expression (3.23) to
write

e — )l — ) — m)! (4.1)

+ sin®**" ng<sin g) — 1 — 8, 6,,,,0]- (4.2)

Here f,(6) is the purely numerical function of 4
defined by (2.9).

m+1 2 _ 2 1
B(s) = [n2+—7122-/|;)]n'm’( /)] i f dQ £.(0) The matrix elements of the Hilbert operator,
o defined in (2.26), are easily obtained; we need merely
onsm O P ( Q) drop the “1” in square brackets in Eq. (4.2). Thus
L8 2 "\ 9 we have
T (I>0>2/a R (2 _ 2)1[ rlr’) :r
K., = nalgp) e+ I+ DI + 1+ 9

—2n+1—m+ (2/s) —

4"Tr + o'
3393 TS — 50 — W0 — wid — )l

where

2" ' +m+ 2 —(@2/9] 1
2 — (2/9)Jnim!

2nsm 0 ( g)
-[cos 2 P,\ cos B

N ng<sin g—) — 8, 5m,o]'

A2 = L [ an .o

4.4)

We should note that this last expression diverges
for the repulsive power law potential, since it can
be shown that for small angles,'”

~ (T + 1)/2] e emase
oy 2 [ TOTLADZ [ o g5

12 Reference 7, pp. 56-57.

3 pny, @)

It is still, however, a useful expression for model
calculations where f,(8) is chosen to be an integrable
function of 4.

The case of Maxwell molecules, for which s = 4,
is especially simple. Here, from (4.1) we see that
J! .. vanishes unless r = 7/, in which case the only
nonvanishing term in the sums is that for which
n = 1 and m = l. Hence, using (4.2), we have

1_2%>%f [ 2s1 0 ( g)
Jr = a(kT dQ 1.(0)| cos 2P, cos 5

+ sin?" ! gPl(sin g) — 11—, a,‘n] 46

which is the well-known expression for the eigen-
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values of the Maxwell collision operator.'” Here

521

The case of elastic spheres of diameter a is
obtained by taking the limit s — . Here

. B __d cot 2¢
sin 6f,(0) = ———>—, 4.7) fo(6) = % (4.10)
where ¢ is given as a function of 8 by and, using the integral formula™*
- — YK (si 1
6 = m — 2(cos 2¢)*K(sin ¢). (4.8) f de 2P ()
Here °
T/2 — 2—m—1 (2n + m + 1)'77/! (4 11)
K@) = f da [l — Ksin’ ]t (4.9) @n+ Din + m+ D '
1]
is the complete elliptic integral of the first kind. one obtains from Eq. (4.2),
0 , n=m=0,
"(w) = 4.12
Bu(=) Gn+m~+1! .t m+ D! otherwise (.12
@2n + 1)!Im! nim! )
Finally, we should compare our notation for the (2 (3, 2 o (M)’ 1
matrix elements for the hard-sphere case with that (837 (er, 87 (c)eas = —d m M., (4.19)
used by other authors. The original result of Mott-
Smith is quoted in a paper by Pekeris et al., where and
the matrix elements are expressed in terms of a
1 ] .15 1 . . . . , . %
symbol [rlr']].”" The relation with our notation is SO SE0 @], = __8% <g,_]:?> ME.. (4.15)
vl = —2l4i - ML (4.13)

The well-known book of Chapman and Cowling
introduces a notation for the first few matrix ele-
ments.'® Thus, in their notation,

18 Z. Alterman, K. Frankowski, and C. L. Pekeris, Astro-
phys. J. Suppl. 7, 291 (1962). In their expressions one must
put F(8) = 2712 £,(6) and N,y = a~¥(2®/kT)™12 J',,. The
same F(9) is introduced in Ref. 3, p. 43 and Ref. 6, p. 88, but
each of these expressions is in error by a factor of 212,

14 Reference 9, p. 52.

5 C, L. Pekeris, Z. Alterman, L. Finkelstein, and K.
Frankowski, Phys. Fluids 5, 1608 (1962).

16 Reference 2, Chap. 9. See especially pp. 161 and 162.

Finally, Sirovich and Thurber have tabulated nu-
merical values of the first few matrix elements,
still for the case of hard spheres of diameter a.'”
They introduce the symbol B,;.,,,. which is related
to the J!,. of this paper by

1

Brl;r'l = Ef‘ Jrl‘r" (4'16)

17 1. Sirovich and J. K. Thurber, in Rarefied Gas Dynamics,
J. {-I.Ide Leeuw, Ed. (Academic Press Inc., New York, 1966),
Vol. I, p. 21.



