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Computer-aided calculations, based on experimentally-fitted pairwise interaction terms, give the com­
plete exciton density-of-states profile for the entire Brillouin zone. The restricted Frenkel model, with 
short-range interactions, is the key assumption. Results are given and discussed for the out-of-plane a2u 

normal mode Vll (C6He and C,D6) , for V12(b1u) , and for vlo(b,"). The wide range of parameters used makes 
this investigation pertinent to other vibrational and electronic exciton bands of benzene and any other 
molecular crystal with the same interchange symmetry. Also, Van Hove singularities are found to be more 
important for symmetry-based critical points than for "accidental" critical points. Present-day experi­
mental and theoretical intermole:ular excitation exchange interaction terms are compared. 

INTRODUCTION 

The usual experimental investigations of the vibra­
tional and electronic states of molecular crystals 
involve the observations of the infrared or ultraviolet 
transitions between the ground and excited states of 
the crystal. Since the ground state is characterized 
by the reduced wave vector k = 0, the general crystal 
selection rule for this region, ~k'-'O, restricts the 
optically allowed transitions to those involving only 
the ~ ° states of the vibrational or electronic exciton 
band. Recently, however, the study of the band 
contours of carefully selected "hot-band" transitions 
in crystals of benzene and naphthalene have led to the 
observation of the density-of-states distribution of the 
entire exciton band of the first excited singlet states of 
these systems.! These band profiles were then com­
pared to theoretically calculated density-of-states 
distributions based on independent empirical data. 
No vibrational exciton bands in molecular crystals 
have yet been observed experimentally, but we have 
attempted to predict the band shape of some of the 
benzene vibrational excitons by applying the same 
theoretical formalism used to calculate the electronic 
exciton bands. The restricted Frenkel model used 
here2 is applicable not only to many vibrational 
excitons, but also to all electronic Frenkel exciton 
states that are not associated with strong transition 
dipole moments.3 It is particularly applicable to 
triplet exciton bands.4 

Another aim of this investigation was to follow the 
changes in a density-of-states function with changes in 
pairwise interaction parameters, within the restricted 
Frenkel exciton theory. A large number of computa-

tions have been collected (only a few shown here), 
providing some insight into the nature of these relation­
ships. Another point of interest has been the role of 
critical points in restricted Frenkel density-of-states 
functions. The computed curves are also of interest 
because they encourage experiments designed to in­
vestigate the density-of-states function in the liquid 
as well as the solid state. 

THEORY 

The energy distribution of the density of exciton 
states of a molecular crystal can be easily determined 
once the eigenvalue problem for the exciton band has 
been solved. For molecular' crystals such as ~ benzene 
and naphthalene, Frenkel exciton theory and the 
assumption of pairwise molecular interactions are the 
standard approaches for obtaining exciton energies.5 .6 

References 1 and 6 contain the formalism for deriving 
the matrix elements for the excited state of crystalline 
benzene. These matrix elements, LqqJ (k), defined by 
Eq. (7) of Ref. 6, correspond to the excited state of 
the molecule, whether electronic or vibrational: 

.'I'll. 

= L [exp(ik)· (Tq'-Tq)] 
n'=l 

X [exp(ik)· (r",-r"l]fcp,,/*Il¢"'q.fJR. (11 

In general, the diagonal element Lq/(k) is not equal 
to the diagonal element Lq'qJ(k) because"the dot 
products of a given k with the vectors (rn+Tg) of 
sublattice q are differenl2,",5 from the dot products with 
the vectors (rn+Tq,) , associated with sublattice q'. 
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However, in the restricted Frenkellimit,2,3 

(2) 

This limit is justified for the benzene crystal if, 
for example, the summation in Eq. (1) is truncated 
after summing over the 12 nearest interchange equiv­
alent neighbors and the 8 nearest translation ally 
equivalent neighbors along the a, h, and c axes. When 
Eq. (2) is invoked,2,s the eigenvalues of the secular 
determinant, relative to the band center, can be 
written as 

h 

Efa(k) = L aq"Lr/(k), (3) 
q=I 

where the aq"'s are coefficients corresponding to the 
character elements of the ath irreducible representation 
of an interchange group G of order h. G is a group 
whose h elements comprise the symmetry operations 
which generate the h molecules of the primitive cell 
from one arbitrary molecule7 [labeled q=I in Eq. 
(3) ]. 

For benzene, we have chosen a D2 interchange 
group7 to generate the four sets of Ef,,( k). These 
correspond to the four branches of an exciton band in 
benzene. Equation (3) for benzene, after substituting 
Eq. (1) for LI/(k) and truncating the summation 
after the nearest translation ally equivalent neighbors, 
can be written l 

Efa(k) = 2M" cos (kaa) + 2Mb cos(kbb)+2Mc cos(kcc) 

+4aII"M1 II cos(ka!a) cos(kb!b) 

+4aIII"M1 III cos(kb!b) cos(ke!c) 

+4aIV"MI IV cos(k,,!a) cos(ke!c), (4) 

where the notation is that of Ref. 1 [Eq. (3)]. The 
density-of-states function can be calculated directly 
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FIG. 2. a2,,(vll) exciton band. M a=Mb=M',=O, MI u= -0.4 
M I III =2.8, M I Iy=0.5 Resolution is 0.3 em-I. 

from Eq. (4) simply by counting the number of states 
having energies E' between E and E+llE. The plot of 
this number p(E') versus E' is then assumed to be the 
exciton band profile.s 

CALCULATIONS AND RESULTS 

The calculation of the band profiles from Eq. (4) 
involved a total of 864 000 energy states arising from 
the choice of a crystal of that number of molecules. 
The density of the energy states was then determined 
to a resolution of 1 cm-I for the CSH6 I'll bands, 0.3 
cm-I for the C6Ds I'll and the C6Hs 1'12 bands, and 0.1 
cm-I for the CsHs 1'15 band. It was determined that at 
these resolutions and with the number of states chosen, 
the "noise" in the band profile is too low to be de­
tected. All the features displayed by the band contours 
are thus believed to be real to within the approximation 
that the band profile is determined by the density-of­
states function and Eq. (4). As mentioned above, 
Eq. (4) is derived from Eq. (1) in the restricted 
Frenkel limit, i.e., by truncating the pairwise lattice 
sum after the eight nearest translationally equivalent 
neighbors. In view of the fact that the intermolecular 
forces in the benzene crystal are relatively short-range 
and the values of even M a , Mb, and Me are claimed to 
be close to zero,8-IO the truncation probably does not 
introduce any measurable error in the energies of the 
exciton states. The shape and width of the exciton 
bands are determined entirely by the values of the 
interaction constants. It can be seen from Eq. (4) 
that the larger the size of these constants, the wider 
the band will be. 

The band profiles derived from Eq. (4) are shown in 
Figs. 1-11. Figures 1-7 are various band contours for 
the CsHs vibrational a2u (I'll) exciton band. Depending 
on the choice of data and the scale on which the density 
of states is plotted, the I'll band varies in appearance 
from figure to figure. Figure 1 shows the band profile, 
plotted at a resolusion of 1 em-I, obtained from the 
experimental work of Bernstein and Robinson on neat 
and mixed crystals of benzeneY The band center, ad­
justed to zero energy, is at 696.9 cm-I, and is taken to 
be the ideal mixed-crystal value. The four dotted lines 
at -14.8, -7.6, 10.8, and 11.6 cm-I are the values of 
the four Davydov components, three of which have 
been observed in neat-crystal experiments, while the 
fourth (11.6 em-I) was calculated from the other three 
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with the aid of mixed-crystal data. It was assumed, in 
accordance with indirect experimental evidence,l1 ,12 e e that this band has a translational shift of 0 em-I, and e e ~ ~ that the three interaction constants, Ma, Mb, and Me, ~ ~ 

~ e ~ 

g I + ::: ~ 

involving transla tionally equivalent molecules, are + I 
~ S ~ ~ ~ ~ 

" ~ 

each 0.0 cm-I in value.8- 11 The interchange equivalent 
.... S S ~ 

0 

-----kI ~ e ::: e 
interaction constants, M I II, M I III, and M I IV were ~ ~ 

... 

~ + I 
~ ~ then calculated from Eq. (4), in which k was set equal t I ::: ~ ... ::: ::: ~ ~ i i ~ to zero. ~ ~ Figure 2 shows the band in Fig. 1 plotted at a resolu-

I I .q< 
'-' :;; I I I .q< .q< .q< 

tion of 0.3 em-I. The 864 000 energy states used in the 
calculation are now distributed in a finer mesh, and as a 

,-.. ... 
~ 

result, statistical "noise" appears on the high-energy 
::: 

~ 1 side of the band. This "noise" could be eliminated by 
increasing the number of states used in the calculation. 

!; 

----- -----::: ::::: 
One advantage of using a higher resolution plot such as . 

~ ~ ..t>! 0 0 0 0 t- o 
that in Fig, 2 is that the shape of the band is easy to !; !; 
see. The basic features in this band are the high and low I I 
frequency edges, at -14.8 and 11.6 em-I, respectively, 
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the peak at the band center, and the two abrupt 
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larities: those critical points where the gradient of a fol -::: E 0-1 S 
branch equals zero.13 In our notation r:'I 

< ..r ~ ~ Eo-< 0 0 0 0 t- o 

VkEf"(k) =0. (5) ... !; <l 
I I 

By redefining the angular variables in Eq. (4) such '-' 
<Il OJ 

0 0 

that ~ 
u 
u ... 

kaa=k", kbb=ky, kcc=kz, (6) 
oj oj 

N N 

the critical points are foundI3 by solving the three '5 
simultaneous equations ~ • ! • oil :::: ~ ~ ~ oj 

~ ~ ~ ~ < ... 
aEfa(k) jak,,= aEfa(k)jal<y= aEf"(k) jak z= o. (7) 

~ 

We simplified the problem of solving the simultaneous 
equations by setting the "translational" interaction 

'" e S e constants, Ma, Mb, Me, equal to 0.0 cm-I and thus ~ 

reduced Eq. (4) to 
. .§ ~ ~ ~ :.0 
~ 

Ef"(k) = 4a II"M I II cos(!k,,) cos(!ky ) 
0 - - -u ~ :::: ... 
b 

~ ::: 

+4am"MI III cos(tky) cos(!kz ) 
oj ~ ::i ~ <Il 
<Il 
(1) 

AI u AI AI (1) 

+4aIV"MI IV cos(!k,,) cos(!kz)' (8) Z ... e ... ~ 
~ ~ 

The solutions to Eq. (7) can now be found in closed ~ ~ ~ 
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T.\BLE II. Critical points in henzene vibrational excitons. 

Vibration J1I II lv1I III M IIV Branch kx ky kz E(em-I ) 

(em-I) (cm-I ) (cm-I ) 

C6H, Vll ~0.4 2.8 0.5 Au 0 0 0 11.6 
(Fig. 1,2) B lu 0 0 0 ~14.8 

B2u 0 0 0 10.8 
B3u 0 0 0 ~7.6 

All 7r 7r 7r EO.O 
All 0 2 arccos[ (±O. 5) /2. 8J 2 arccos[(±0.4)/2.8J 0.3 '--; 

C,H6 Vll 0.7 4.1 0.9 Au 0 0 0 22.8 
(Fig. 3) BJu 0 0 0 ~ 17.2 (") 

B 2u 0 0 0 10.0 
~ 

Bau 0 0 0 ~15.6 > 
All 7r 7r 7r 0.0 C 
All 0 2 arccos[(±O. 9) /4.1J 2 arccos[(±O. 7)/4.1J ~0.6 »j 

C6D6 Vn ~O.4 1.8 0.1 Au 0 0 0 6.0 ~ 

(Fig. 8) BJu 0 0 0 ~9.2 
;;0 

B 2u 0 0 0 8.4 > 
B3u 0 0 0 ~5.2 Z 
.~ll 7r 7r 7r 0.0 t:t 
All 0 2 arccos[(±O.1)/1.8J 2 arccos[(±0.4)/1.8J 0.1 ?:I 

C6Hb Vn ~0.1 2.7 0.2 Au 0 0 0 11. 2 
(Fig. 7) BJu 0 0 0 ~12.0 71 

B2u 0 0 0 10.4 0 
B3u 0 0 0 ~9.6 >-;; 

All 7r 7r 7r 0.0 t=j 

All 0 2 arccos[ (±O. 2) . 2. 7J 2 arecos[(±0.1)j2. 7J 0.03 
~ 

~ 

C6H6 VIG 0.12 0.34 ~0.64 Au 0 0 0 ~O. 72 
,... 
;.-

(Fig. 11) B lu 0 0 0 1.68 Z 
B2u 0 0 0 3.4-l 
B3u 0 0 0 ~4.40 

All 7r 7r 7r 0.00 
:\11 2 arccos[(±0.34)/0.64J 0 2 arccos[(±0.12)/0.64J 0.25 

C6H, VI2 0.89 0.75 0.54 Au 0 0 0 8.72 
(Fig. 9) B,u 0 0 0 ~1.60 

B 2u 0 0 0 ~2. 72 
B3u 0 0 0 ~4.40 

All 7r 7r 7r 0.00 
All 2 arccos[(±0.7S)jO.89J 2 arccos[(±0.54)jO.89J 0 ~1.82 
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T,\HLE III. Interaction consln.nts of CJl; VI hand obtained from data of various investigators. 

Band 
center JIr II Af I III Nil IV 

Source (cm-I) (em-I) (em-I) (em-I) 

Bernstein and Robinson" 696.9 

Hollenberg and Dowsb 697 

Harada and Shimanouehic 695.4 

Rich and Dowsd 695.5 

a Reference 11. 
b Reference 14. 

form. However, many of the possible roots are physic­
ally meaningless and have to be excluded. We have 
listed the acceptable roots and their energy expressions 
in Table I and calculated these energies for the various 
vibrational excitons in Table II. 

The critical points of the band derived from the 
data of Bernstein and Robinson are given in the first 
entry of Table II. It is apparent that the four Davydov 
components and the corner of the Brillouin zone at 
(1T1T1T) are the critical points which are visible in the 
density-of-states function. The singularity at 0.3 cm-I 

is not visible, possibly because it is overlapped by the 
O.O-cm-I peak of the critical point at (1T1T1T). To within 
the approximation that the translationally equivalent 
molecules' pairwise interaction constants are zero, the 
four branches stick not only at (1T1T1T), but also at a 
second point in the Brillouin zone which is located close 
to the center of one of the zones faces. This critical 
point is determined by the values of the interaction 
constants and is not a point of special symmetry as are 
the other five points listed in Table 1. The degeneracy 
of the branches at this point is an artifact of the 
simplified dispersion relation [Eq. (8) ] used to describe 
the benzene vibrational excitons, and is expected to 
disappear if a more general dispersion relation is used. 
On the other hand, the four branches must all, for sym­
metry reasons, have the same energy values at the point 
(1T1T1T) . 

When all the bands listed in Table II are analyzed 
for features which can be correlated with their Van 
Hove singularities, it is seen that almost all the features 
can be explained in terms of symmetry-based critical 
points, i.e., the four Davydov components and the 
critical point at (1T1T1T). The accidental (nonsymmetry­
based) singularity does not appear clearly in any of 
the bands. Had the bands shown been calculated from 
a finer mesh in the Brillouin zone, this singularity 
would have had to appear; but in view of the present 
low resolution of any experimentally observed density­
of-states functions, and the fact that no vibrational 
density-of-states bands have been observed yet, It IS 
not of immediate importance to do more extensive 

-0.4 2.8 0.51 
> "Experimental" 

0.7 4.1 0.91 

-0.1 2.7 0.2 1 
f Calculated 

0.0 4.2 0.38) 

e Reference 8. 
d Reference (). 

(i.e., finer mesh) calculations. Nor do the empirical 
M's or equation (8) justify such calculations. 

Figure 3 shows the I'n exciton band calculated by 
using the slightly older neat and mixed crystal data of 
Hollenberg and Dows. 14 The large difference in width 
between the bands in Figs. 2 and 3 is indicative of the 
experimental difficulties in getting precise vibrational 
exciton spectra in the benzene system. It should be 
noted that the experiments by Hollenberg and Dows 
were conducted with emphasis on intensity measure­
ments. On the other hand, they agree better with the 
inferred, tentative resonance pair datal2 than those of 
Bernstein and Robinson,u The theoretical studies of 
the benzene vibrations8 ,9 give still different band 
profiles for the I'n mode. Table III lists the values of 
the M's derived from both the experimental and the 
theoretical results for this vibration. 

Figures 4-6 demonstrate the effect on the band 
shape when Ma, Mb, and Me were allowed to have 
nonzero values. Once the values of the "translational" 
interaction constants were chosen, the "interchange" 
interaction constants were obtained by the same 
method described before. Figure 7 is the band profile 
of the I'n band using the interaction constants derived 
from the Davydov components calculated by Hirada 
and Schimanouchi.8 ,12 Since these calculated Davydov 
components give a narrower exciton splitting than is 
observed experimentally, the band in Fig. 7 is narrower 
than the band in Fig. 1. The unusual height of the peak 
in Fig. 7 is simply a consequence of squeezing the 
exciton states into a narrow energy range. Figure 8 is a 
band profile of the I'n vibration for the perdeutero­
benzene crystal,u The zero values for Ma, Mb, and Me 
were assumed. 

Figures 9 and 10 show 1'12 band profiles. In Fig. 10, 
unrealistically large values of M", Mb , and Me were 
chosen to demonstrate the sensitivity of the band 
shape to the size of the interaction constants. Figure 11 
is the band profile for the 1'15 band. ll As in previous 
cases, the values of Ma, Mb, and Me were assumed to 
be zero. It should be noted that the critical points, as 
given in Table II, apply to most, but not all figures. 
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DISCUSSION 
The band structures displayed in Figures 1-11 can 

be viewed as an empirical computer study, relating 
parameters to band shapes within the restricted Frenkel 
theory. By looking at these figures, as well as at about 
50 more figures of the same kind, we can suggest that 
large Ma, Mb, or Me parameters result in at least one 
"plateau" (see Fig. 10). Obviously such parameters 
also cause the band to "spill" outside the outer Davy­
dov components, often only on one side. Another ob­
servation is that the symmetry-based critical points 
usually correspond to clearly visible Van Hove singu­
larities in the density-of-states functions, even with 
coarse-mesh calculations. In bands derived from Eq. (S) 
there are no clearly visible Van Hove singularities 
corresponding to the accidental critical points. These 
singularities would obviously appear13 in a fine-mesh 
calculation. However, it is doubtful whether fine­
mesh computations, such as those of Sommer and 
Jortner13 for electronic states, are presently justified 
in view of both the crudeness of the available param­
eters, experimental or theoretical, and the truncated 
dispersion relations used. 

It should be noted that in the restricted Frenkel 
approach the band shape (density of states) is essenti­
ally determined by a small number of nearest and near­
neighbor interactions. This dependence on only a few 
interactions has been demonstrated to be applicable for 
certain electronic exciton bandsl ,6 and should apply 
even more so to vibrational exciton bands where it 
is well known that the magnitude of the intermolecular 
interactions (involving the excited state) falls off 
drastically with distance. ls Thus, both the use of the 
restricted Frenkel model and the additional trunca­
tions [Eqs. (4) and (S)J seem to be fully justified here. 
It may be noted that even for the intense azu band 
the dipole-dipole interactions are about one order of 
magnitude too small to account for the band (see 
Appendix). For "forbidden" bands, like 1115, these 
dipole-dipole interactions vanish if free benzene 
molecules are considered, or are negligible if site-dis­
torted molecules are considered. 

No vibrational exciton band structures have been 
observed experimentally so far. Work in this direction 
is now in progress in our laboratory. A preliminary in­
vestigation of the azu liquid exciton band16 reveals an 
exciton band shape not very different from the ones 
given in Figs. 1-3. 

The calculations by Harada and Schimanouchi8 

(Fig. 7) and by Rich and Dows9 seem to be in the right 
ballpark, but do not agree in detail with our "ex­
perimentally derived" bands. However, in view of the 
experimental difficulties mentioned above, it may be 
too early to draw any definite conclusions about the 
significance of this discrepancy. 

SUMMARY 
Density-of-state functions are represented for four 

vibrational excitons. These are based on experimental 

data combined with the restricted Frenkel theory. 
Symmetry-based critical points play a major role in 
these band shapes. Present-day experimental tech­
niques and theoretical models are compatible (i.e., 
equally crude) . 

APPENDIX 

The magnitude of the dipole-dipole interactions in 
a vibrational exciton can be estimated by obtaining 
the value of the dipole transition moment from the 
absolute intensity of the vibration in an ideal mixed 
crystal, and then using this transition moment with 
dipole-dipole lattice sums to calculate the Davydov 
components of the exciton band. Hollenberg and 
DOWS17 report the absolute absorption intensity of the 
a2u vibration of 5.03% C6H6 in a C6D6 lattice to be 
7S00± 1200 darks. For a vibrational transition from 
the ground to first excited state, the relationship be­
tween the absolute absorption intensity AD! and 
I fJ-0l 12, the square of the dipole transition moment, 
is given by18 

AOl=[S,rN/3hc(1000)JpOll fJ-olI 2
• (A1) 

In Eq. (14), Pm is the ideal-mixed-crystal frequency of 
the transition in wavenumbers (697 cm-1 for 1111), N 
is Avogardo's number, h is Planck's constant, and c 
is the speed of light. 

1 fJ-0l 12 for 1111 is found to be 4.4X10-38 erg·cmo• 

Dipole-dipole lattice sums for crystalline benzene are 
given by Thirunamachandran in his Ph.D. thesis.19 

The sums are in units of cm-1·A-2, which means that 
the dipole moments must be translated into units of 
angstroms. The conversion is as follows: 

I fJ-olI 2=4.4XlO-38 erg·cma 

= 4.4X 10-38 esu2• cm2 

= [( 4.4X 10-38) (1016) / (4.SX 10--10 ) 2J A2 

= 1.92X 10-3 A2. (A2) 

The lattice sums are given for the dipole-dipole inter­
actions between different sublattices, so it is possible to 
calculate from them the positions of the Davydov 
components relative to the band center: 

Au, - 2.4 cm- 1; 

B2u, -1.2 em-I; 

B1u, 3.1 cm--1; 

Bau , 0.5 cm-1• 

The total bandwidth in the dipole-dipole approxima­
tion is thus 5.5 cm-1. Figure 3, which is derived from 
the data of Dows and Hollenberg, shows this band, 
calculated from experimental observation of three 
Davydov components and mixed-crystal spectra, to be 
40 cm-1 in width. In the above calculation no retarda­
tion effects were included. The latter may even cancel 
part of the nonretarded terms. It is therefore con­
cluded that the major contribution to the a2u exciton 
bandwidth comes from short-range contributions. 
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This conclusion is confirmed by the observation of 
resonance pairs (see "Note added in proof" of Ref. 12). 
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Born-Oppenheimer and adiabatic vibrational-rotational eigenvalues are determined for the (lsO'.) '~.+ 
ground state of H 2+ by a combination of Runge-Kutta and Adams-Moulton numerical techniques. These 
eigenvalues are believed to be more accurate than any previously reported. Dunham expansions of the 
potentials are used to determine Born-Oppenheimer and adiabatic spectroscopic constants; the adiabatic 
constants are considered to be the best set, theoretical or experimental, available for the ground state 
of H.+. The tJ.G curve for this state has two points of inflection and a positive curvature tail, presumably 
to be associated with long-range 1/ R4 forces in the molecular ion. The B. curve has a shape similar to 
the tJ.G curve; more striking, inflection points occur at essentially the same values of the vibrational quantum 
number v. The D. curve has a negative slope at v=O, but rises rapidly near dissociation. The H. values 
decrease and become negative at large v values. The sharp rise at high 'IJ in I H v I, like that in D v , is probably 
due to the dominance of the centrifugal reaction over the true potential at large nuclear separations R. 

INTRODUCTION 

P'ractical considerations have prompted study of the 
hydrogen molecular ion in a number of different con­
texts; notable examples include the scattering of H 2+ 
by a variety of targets! and measurement of H2+ 
hyperfine spectra.2 A few low-lying H~+ energy levels 
have been located experimentally3 from H2 Rydberg 
series limits; several ground-state spectroscopic con­
stants of H2+ have been estimated by extrapolation of 

hydrogen excited-state constants.4 However, ordinary 
band spectra from H2+ have not as yet been observed. 
As a consequence, detailed information on the vibra­
tional-rotational structure of H 2+ provided by high­
resolution optical spectroscopy is not available. 

The simplicity of H2+ places it in a unique role. It 
alone (along with its isotopic and isoelectronic species) 
among molecules possesses a fixed nucleus Schr6dinger 
equation that is separable and can be conveniently 
solved to a predetermined accuracy when only static 


