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ABSTRACT

STOCHASTIC DYNAMIC PREDICTION
USING ATMOSPHERIC DATA
by

Eric John Pitcher

Chairman: Edward S. Epstein

A procedure is presented whereby an evolving ensemble
of possible fluid states may be predicted to any desired
level of accuracy for a simple system of one wave inter-
acting with a zonal flow. This is accomplished by utiliz-
ing the Lagrangian form of the Liouville equation for the
conservation of probability. The lowest order moments of
the solution are compared with the solution obtained by
solving the corresponding moment equations, referred to as
the stochastic dynamic equations, subject to the third
moment discard approximation. This closure scheme 1is
concluded to be a satisfactory one for stochastic dynamic
forecasting on the order of a few days.

A set of stochastic dynamic equations is derived for
an equivalent barotropic model possessing 106 degrees of
freedom. This model is used to make forecasts from atmos-
pheric data. The output of each forecast is an estimate
of the expected state of the atmosphere, and also the
uncertainty associated with that estimate as measured by

the variance information. In addition to the forecast of



the variance field, all of the covariances among the model
parameters are predicted. This enables one to make use of
Bayes' theorem from probability theory and utilize the
covariance information associated with both the forecast
and observed fields to arrive at an analysis.

Because the basic physical model is not an exact
atmospheric analogue, one must incorporate by some para-
meterization the growth of error during the forecast stage
attributable to the model deficiencies. This aspect of
the problem is rather difficult from both a mathematical
and practical standpoint, the latter implied by the fact
that the total computational problem must remain manage-
able. Two parameterizations are investigated and their
relative merits assessed.

The forecasts made are credible and the uncertainty
fields revealing. It is true that those regions of maxi-
mum uncertainty in the forecast are similar to the initial
uncertainty pattern, but there are significant changes in
response to model dynamiés, and the results indicate the
feasibility of the approach. Implications for more com-
plicated models are considered. The essential departure
from tradition hinges around the fact that the stochastic
framework allows us to investigate the evolution of an
ensemble of solutions rather than just one. This is
especially useful in predicting physical systems such as
the atmosphere, where the initial state is imprecise and

the dynamical model limited.
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CHAPTER I

INTRODUCTION

1.1 PRELIMINARY REMARKS

One of the major goals of meteorology may be stated
in rather broad but simple terms: to provide reasonably
accurate predictions of weather events and to extend the
prediction time over which these prognoses are useful.
Several obstacles have appeared in the path leading toward
a realization of this goal. Until relatively recent times,
not the least of these difficulties was the absence of a
device which could carry out the vast number of computa-
tions required in order to make a timely forecast. Yet,
it was recognized that a satisfactory solution would not
be possible unless the atmosphere were viewed as a system
subject to physical laws which could be expressed in terms
of a set of mathematical relations. An example of this is
the pioneering effort of Richardson (1922).

With the development of the earliest computers in the
middle 1940's, the prospect for a viable solution to the
meteorological prediction problem seemed brighter. The
physical complexity of the models was of course limited by
the computing capability, and this was one of the factors
which prevented a rapid increase in forecast skill. An-
other very important source of forecast error--one which
still persists and which will be of major interest in this

study--was the error present in the initial state.



The latter was always recognized as a real hindrance
to weather forecasting, be it by subjective or objective
means. Analysis error was pointed out by Charney and
Eliassen (1949), and considered explicitly by Thompson
(1957) in one of the early "predictability" studies. 1In
that paper an estimate of two days was obtained for the
doubling time of mean square wind error (equivalently,
error kinetic energy), which would arise from analysis
error alone. The latter is closely related to the dis-
tance between observing stations. We shall have further
to say about this study later in this section.

Few would argue that our ability to observe the at-
mosphere must keep apace with our ability to devise and
solve sophisticated and realistic models of the atmos-
phere, since the ultimate success of the latter hinges on
the former. 1In recent years an ever growing interest in
this aspect of the problem has attracted the attention of
many investigators. The effect of initial error, which
may be considered observational and/or analysis error, on
prediction error generally falls within the purview of pre-
dictability studies. These experiments typically study
the evolution of two states of an atmospheric model, where
one state differs slightly from the other initially. The
subsequent "error" growth is investigated in terms of
various criteria: dependence on grid spacing, whether

initial error is present in (say) the temperature or wind



field, size of initial errors, to name but a few. Ex-
amples of some of these experiments are Smagorinsky and
Miyakoda (1969), Jastrow and Halem (1970), Williamson and
Kasahara (1971), Wellck et al. (1971) and Williamson
(1973). These investigations yield a doubling time for
error growth of about two or three days.

Of equal importance is the aspect of updating the
numerical model with new data at regular or irregqular
time intervals, and the question of four-dimensional data
assimilation has spurred a flurry of activity. For various
reasons, not the least of which is economic, future at-
mospheric observing systems will be composed of several
subsystems (Kasahara, 1972): satellites, constant-level
balloons, ocean buoys, conventional methods, etc. The
evaluation of these subsystems has lead to several studies
commonly referred to as Observing Systems Simulation Ex-
periments (OSSE). Demanding significant attention has
been the procedure by which new data are inserted into the
numerical model.

These experiments usually proceed in the following
way. A model integration is made and this is considered,
by definition, to be the "true atmosphere." Errors are
added to the initial true state and another integration
performed, only this time observations from the true at-
mosphere are inserted occasionally into what now may be

considered a prediction model. (These observations may



or may not be subject to errors depending on the purpose
of the particular experiment.) These investigations serve
to assess forecast error in relation to the frequency of
updates and the accuracy of the observations.

The methods of inserting new data may be divided into
two broad classifications. 1In the case where updating in-
volves temperature and/or wind information, then direct
substitution is certainly the simplest method. A pre-
dicted quantity is replaced by an observed value from the
control model atmosphere (see, for example, Charney et al.,
1969; Williamson and Kasahara, loc. cit.). It would seem
reasonable that the new information at the "updating" point
could also be uéed advantageously in adjusting values near
this point. This has been the subject of optimum data
analysis, and various approaches have been explored. The
method of "optimum" interpolation (Gandin, 1963) utilizes
statistics of climatological anomalies to interpolate mete-
orological variables. The calculation is made subject to a
minimization of mean square error of interpolation. Be-
cause short-range forecasts have errors not too much
larger than typical analysis errors, it would seem appro-
priate that forecasts should play a role in analysis other
than just serving to fill in gaps where there are no data.
Rutherford (1972) has proposed such a procedure in which
climatological statistics of apparent forecast error are

utilized in data assimilation. Tadjbakhsh (1969), Sasaki
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(1970) and Petersen (1968) discuss various aspects of op-
timum data assimilation in which a dynamic equation also
enters as an essential ingredient.

A recurring aspect of the whole problem of data as-
similation and prediction is the uncertainties which are
ever present. Observing the atmosphere at a finite num-
ber of points precludes a complete specification at some
instant. At best, we can only make a judgment about the
true state--a judgment which is subject to uncertainty.
That only a probabilistic statement can be made was clear-
ly demonstrated by Thompson (1957) in a related discussion
on the extent to which the atmosphere is deterministic.
Therein the argument was made that, although the determi-
nistic hypothesis is a plausible one, in which two identi-
cal atmospheric states would evolve in exactly the same
manner given equivalent absorption of heat energy, it is
not possible to know if two states are in fact identical
because of the coarseness of the observing system. Thus
two ostensibly "equal" states may subsequently diverge
only because the real differences were initially unde-
tected by the limited observing capability. Consequently,
the essential limit of predictability depends upon the aver-
age separation between observations. Further elucidation
of this point has been given in the theoretical and obser-
vational studies of Lorenz (1969a, 1969Db).

Not only the recognition that imperfect observations



and forecasts are a fact, but the desire to come to grips
with this problem in mathematical terms haé led to formal
procedures for incorporating these uncertainties in the
forecast-analysis problem. One such approach has been pro-
vided by Epstein (1969b). This method treats the atmos-
phere as a physical system subject to the well known laws
of hydrodynamics, but at the same time subject to uncer-
tainty in its specification from observations. The method,
referred to as stochastic dynamic prediction, provides a
forecast of the "best" state in the sense of least mean
square error, and the uncertainty associated with that
state. In this approach then, the total forecast informa-
tion includes a prediction of the degree of confidence that
one can place in the best estimates of the meteorological
variables. In the light of previous remarks, this feature
has obvious implications for optimum data assimilation.

The stochastic dynamic method is rather general and
involves the solution of inhomogeneous anisotropic equa-
tions of statistical hydrodynamics. Because of the non-
linear nature of the problem, a closure approximation
(cf. section 1.2) is necessary as with turbulence models.
This closure problem has been studied by Fleming (1971la),
with the result that short-term integrations appear pos-
sible without the necessity for the retention of statisti-
cal moments beyond the second. The method has been used

for the study of predictability (Fleming, 1971b), and other



investigations have demonstrated its utility (see, for
example, Epstein, 1971; Epstein and Fleming, 1971).

Tests of the stochastic dynamic method to date have
been based primarily on synthetic data. These simulation
experiments have contributed to an understanding of many
aspects of the method and demonstrated its feasibility.
The potential of the method suggests further experiments,
but now applied to real atmospheric data. One such recent
investigation is that of Knudsen (1973). 1In that study
a relatively simple model employs atmospheric data and
deals with some of the numerical aspects peculiar to the
method.

To conclude this section we outline the scope of the
present study. The remainder of this chapter provides
much of the mathematical formalism which will be required.
An analytical study is presented in Chapter II. This is
a study of the simple three-component system given by
Lorenz (1960), and having the pleasing feature of anal-
ytic solutions. As will become apparent, this will be an
aid in obtaining closed-form solutions of the correspond-
ing stochastic equations. It is then possible to compare
directly these solutions and the solutions obtained via
the usual closure approximation. The major contribution
of this study, however, is contained in succeeding chap-
ters in which our goal is to make hemispheric stochastic

forecasts of the 500 mb flow using real atmospheric data.



We shall make use of the vast amount of information in the
stochastic forecast and utilize a procedure for optimum
data assimilation in the manner proposed by Epstein and
Pitcher (1972).

It might be useful to point out that, with section
1.2 as backgound, it is possible to read Chapter III
essentially independent of Chapter II. The results from

the latter required in the former are simply quoted.

1.2 FORMULATION OF STOCHASTIC DYNAMICS

We have already given, in somewhat general terms, the
rationale behind the applicability of the stochastic dy-
namic method to atmospheric prediction. Further amplifi-
cation of the points discussed earlier is postponed until
Chapter III, where we shall consider more fully the rel-
evance of thé method to the problem of weather forecasting.
This section discusses the mathematical details of the
stochastic approach as applied to forced dissipative fluid

systems in general.

1.2.1 Stochastic Dynamic Equations
Much of the formalism which we shall require has al-
ready appeared in Epstein (1969b) and Fleming (1970, 197la)
We shall review this here for the sake of completeness.
Consider a physical system specified by N parameters,
x.(i=1,2,....N). Define a corresponding N-dimensional

Euclidean space with coordinates X . Each point in this



phase space defines a possible state of the system. The
evolution of the system from one state to another is pre-
sumed to follow a dynamical law which may be reduced to

a set of N differential equations of the form:

X, Z.a‘“ X% - Zb X +C; (1.1)

where the a,; ik’ b. i and C; are constants. The dot denotes
differentiation with respect to time and the first summa-

tion on the right-hand side is carried out over all j and

k.

Let us postulate, for the moment, that our knowledge
of the system at time to is given by a probability density
¢ (X, to), where X is a vector composed of the X - We need
not be concerned with the details of ¢ at present, noting
only that the initial specification of the system is in
terms of a cloud of phase points, with the density of

points in a particular region proportional to the value

of ¢ there. By definition,

Plx,t) 20
Scp(x.,t)&zsu

J (1.2)

where dX = dxldxz....dxN and the integration is performed

over all X.

The fundamental problem is the prediction of ¢ (X,t)
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for t>ty, given ¢(X,t,). From (1.2) the total probabil-
ity must always be one; equivalently, no members of the
cloud of phase points may be created or destroyed. This
is simply the conservation law for probability and may be
expressed analytically by the Liouville® equation:
QJE.+ éé’§£35:32 =0 . (1.3)
at iz ; X
This is the N-dimensional analogue of the ordinary three-
dimensional continuity equation expressing conservation of
mass. In the present context ki is the ith velocity com-
ponent of a phase point and is given by (1.1). The ex-
cessive computation required to solve (1.3) directly on
(say) a grid of points in phase space for even a small
value of N(al0) is prohibitive. We seek a compromise.
In short, the course to be adopted is to solve for
the lowest order moments. Define the expectation operator

for a quantity f(X) as follows:

E[HX)]‘ §¥(x)q>(>_s,t) dX. (1.4)

*Because of the canonical simplicity of the equations en-
countered in particle dynamics, zaii/axi= 0, and the usu-
al form of the time dependent Liouville equation is some-
what simpler than (1.3) (see, for example, Tolman, 1938).
This simplification is deceptive however because a system
of N particles defines a 6N-dimensional phase space, both
positions and momenta being required in order to specify

the state of the system completely.
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We now introduce the following definitions:

M, E(x;), (1.5a)
EE[(x;-,q;)(xg—A;)}
= E(z(_x‘i) ~ A M_) , (1.5b)

'tt. KE E[(Z;"Hi)(z:‘ -'/qj)(xk—lqk)]
= E(X;szk)"}-li GEK ‘Mj G"‘,_K
~Me Ty - Me M M (1.5¢)

where Hy is the mean, Oij the variance (i = j) and covar-
iance (i # j) and Tijk a third moment quantity, likewise
centered about the mean.

Taking the time derivative of (1.4), making use of
(1.3) and the condition that xicb —p 0 as xi—-vi ©, one can

easily show that

& & E[$(x)]= E[‘%ul

(1.6)
Consequently, ﬁi= E(ki), and from (l1.1l) we may write
}.{["‘E% Q.ij E(ijk)"?bisM&-&'CL (1.7)

or using (1.5b),

Aa""20-3.“()”}&-1*%0"25;,3){;*6; (1.8)
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A predictive equation for Oij may be obtained by

taking the time derivative of (1.5b), i.e.,
a‘i1=E(x¢xj+x; 7‘3)"/‘1i)43"z‘hﬂj : (1.9)

By utilizing (1.1), (1.8), (1.5b) and (1.5c), equation

(1.9) may be written in the following form:

.

013‘""

“[‘Liu (UG + My o5y + Tk
)

o eliyoprllyo, ¥ tiu)]
-é:(bikﬂx +ijG'1K). (1.10)

The equations governing the first moments (means) in-
volve second moments, while the second moment equations
(1.10) require knowledge of third moments. This is an
infinite sequence which results whenever the basic deter-
ministic equations are nonlinear as regards statistical
gquantities. For the sake of argument, let us presume that
the means and covariances are given, and, in addition, the

T. o

ijk are zero at tgy. They will not, in general, remain

zero. To establish this fact, one need simply derive an
equation for %ijk' but this of course will introduce
fourth moments. Clearly, in order to obtain a solution,
certain assumptions about the nature of higher moments
must be made--in effect, a closure approximation.

Epstein (1969b) argued the case for dropping third
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moments, and with a simple barotropic model showed that
indeed this does give valid results for integrations over
a few days. Fleming (197la) has studied various closure
schemes. His results indicate that third moment equations
must be retained for long-term integrations (V10 days) in
order that the integrity of the mean be maintained. 1In
the present study we shall be primarily interested in
short-range predictions, and, based in part on the work

of the previous studies, shall adopt the closure scheme
proposed by Epstein. Calculations supporting this approx-

imation will be presented in Chapter II.

1.2.2 Moment Solutions via a Lagrangian Technique

Previous considerations have led to a sequence of
prediction equations for the moments of ¢. We have seen
that, in principle, a solution is possible only after in-
voking some closure approximation. In this subsection we
propose an alternate method of solution which is concep-
tually simple, but yet does not require such a closure as-
sumption. Even though computational requirements limit
the method to fairly simple systems, one obvious advantage
is that it allows a critical evaluation of various clo-
sures.

Working with the continuity equation for probability
in the form given by (1.3) is not satisfactory because of
the vast computational requirement. The first step is to

derive an alternate, but equivalent, form for the Liouville
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equation. Consider a volume VO in phase space at time ts-
At a later time this entity will be transformed into a new
volume V. Because each point of Vo evolves according to
the dynamical equations (1.1), the total number of phase
points in V is invariant with time. Equivalently,the prob-

ability measure associated with V is constant, i.e.,

gv Qootﬁo : Sv ¢ dx . (1.11)

By a fundamental theorem on differentials,

- . 1.12
or, in general, dX = JdX, where J is the determinant of

the Jacobian matrix of the transformation, i.e,

o as[xre].

With this substitution we have

gv(t?,,- TP Ax,=0. (1.14)

As (1.14) must be satisfied for an arbitrary VO, we have

as a conservation requirement,

q, = TQ . (1.15)

This is the Lagrangian form of the Liouville equation, and
gives the value of ¢ along a given trajectory in phase
space in terms of its value at to‘

With the previous result it is now possible to express

(1.4) in the equivalent form:
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EU-Q()] = S“M?_&Mt)) 9, (Xo,ts) d X, . (1.16)

The significance of the foregoing is that the integration,
to be performed over X at time t, is transformed into an
integratibn over X, at ty. This of itself is an important
result because it obviates the necessity for obtaining a
solution for ¢ over a dense grid encompassing a large por-
tion of phase space. Equation (1.16) may be solved by a
numerical quadrature without ever computing ¢ explicitly
for t>t,. Note, however, that E[f(X)] may be computed for
an arbitrary time because of the presence of the time de-
pendence in f(X). We intend to make use of (1.16) in the
case where analytic solutions for X exist. By making a
suitable choice for ¢, (e.g., multivariate normal), one
can utilize a particular quadrature formula ( to be dis-
cussed later), and evaluate (1.16) to any desired accuracy.
It is not being advocated that the procedure just
outlined is a viable alternative to the solution of the
stochastic dynamic equations for moderately large systems.
Rather, it provides a means for obtaining accurate solu-
tions to systems with a few degrees of freedom, without
having to face the closure problem. The next chapter il-
lustrates the application of both procedures on such a

simple system.



CHAPTER II

APPLICATION TO A SIMPLE SYSTEM

2.1 THE MINIMUM EQUATIONS

In subsection 1.2.2 we presented a procedure whereby,
in principle, one may compute the evolution of all the
statistical quantities of interest for an ensemble whose
individual members are governed by some dynamical equation.
Therein, a cautionary remark was made that such a calcula-
tion has been found to be feasible only when the number of
degrees of freedom is not too large. 1In the case of a
model required to make weather forecasts, such a calcula-
tion is computationally uﬁwieldy and recourse must be made
to a simpler algorithm such as the stochastic dynamic
equations. (Even the latter in their present form, applied
to a moderately sophisticated forecast model, present a
very severe challenge to existing computers.) Neverthe-
less, with a sufficiently simple model, ideally one for
which analytic solutions are readily available, the mo-
ments of an evolving ensemble may be computed with relative
ease via the probability integral (1.16). These are then
the correct solutions against which various approximate
solutions, such as the stochastic dynamic with the neglect
of third moment quantities, may be compared.

One convenient simple system which represents the non-
linear energy exchange between a wave and zonal flow is the

"minimum hydrodynamic equations" of Lorenz (1960). These

16
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equations govern the evolution of a two-dimensional homo-
geneous incompressible inviscid fluid for which the vor-
ticity field is constrained to take on the following func-

tional representation:
S=9'v = R Co':l\é t R, td R + 2R3A«'m£\3 MRz , (2.1)

where r is the vorticity and y the stream function of the
flow. A,;, Az, and A; are time dependent coefficients. 1If
Ly and Ly are the disturbance wavelength in the x and y
direction respectively, then k = 21/Ly, and & = 2w/Ly. The
type of flow considered is governed by the barotropic vor-

ticity equation,

-
%VZV'=‘/&' VY X 9(VAY). (2.2)

Substituting (2.1) into (2.2) and utilizing the orthogon-
ality properties of the trigonometric functions, we may
isolate the time dependence of each spectral coefficient.

The following are the "minimum equations":

.A‘:‘ cl Az ﬂg

.

AR,2¢, R Ry (2 (2.3)

AS.: c3 Q. ﬂz

where ¢ = -[a(a®+1)]17}, c,= a’(a?+1)~!, c,= -(a?-1)/20

and a = k/%. The dots denote differentiation with respect
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to time. The above equations conserve the mean kinetic

energy E and the mean squared vorticity V:

| 2 2ut
E:[m(*zg' + g:. + .(’q.' H; ) ’ (2.4)
2 2
V".li(ﬂ:+nl+lﬂz). (2.5)

The solutions of the above set of equations may be
conveniently expressed analytically with the use of ellip-
tic integrals or the associated elliptic functions. The
latter will be used for notational convenience. The
particular choice of elliptic functions depends on the
initial conditions and a. Before displaying the solutions
we need to establish expressions for the maximum values
taken on by A;, Az, and A3. In order to do this we make
use of (2.3)-(2.5). It should be noted that (2.4) and
(2.5) hold for any arbitrary time. In the sequel A1o'
A,y, and Ajzg denote the initial conditions.

In the following, the absolute values of extrema will
be denoted by AT, A:, and Ag.When A1 reaches an extremum,

for example, then A1= 0 and A% = A*?. From (2.3) we have

two possibilities (the steady state solution A=A =0
emerges as a special case):

. 2
1) A,= 0 =»A,= 0 and A,= A} , thus

4
L 1 1 2% 3 { 2 2 *1
Ezm(*zgtoi-g&o"-.&“ ngo) :"qkz (‘( Arl‘f‘ O | A3 ),

V=4 (AL + Aot 2 A3 )= T (A* £ 2 A%%),
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from which

2
T | L 2
Y= A, ¢ F 7 2A
" ) (2.6)
AS g3o 1,(‘1 Azo %21
2) A,= 0 =P A,= 0 and A2= A*?, thus
P S SRS 1 Sy R
Eeig (<Al +Ry + 3057 A3 ) = g (CRT 4 A%,
L1 Al 2 2
V'Z(A'o"'azo*’ lnxo)ﬁ%(ATz‘kR:l))
from which
2 2 2 o(‘V
AT"‘Axo".'FT Bso “<l, ¢ <A
v . too(2.7)
Alo o= |A'30 % >, _f <2A

The restrictions on « in the above and succeeding expres-
sions ensure that the maximum value of the squared ampli-
tude is computed and not the minimum. The above expres-
sions were derived by seeking out extrema and not neces-
sarily points of maximum. As an illustration, consider
the two relations given for Afz, and assume for the mo-
ment that o>l. The one given in (2.6) is obviously a max-
imum, whereas the one appearing in (2.7) would, in this
instance, be a minimum. However, if a<l, then it is pos-
sible that the latter would be the maximum value taken on

by Af. The apparent conflict is resolved through examina-
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tion of the ratio aZV/E or V/E as is necessary in some
cases.
For the case of A, reaching an extremum, then A2= 0

and we have the two possibilities (again, A=A=0 is a

special case):

hd 2 * 2
) A1=O =#A3= 0 and A= A3 , thus

l F

2
B (¢ A + A5, + o= A3°)~ (A + 11':,‘ AT,

V= "!{(nw'l'ﬂzo"’lggo (Q +2A§1),

from which

*2_ A2 }al !L b %
AY" = Ay, o Ay, E72AR
>
1 M_y a2 (2.8)
H§2=Azo“%Jﬂlo %<

2) A,=0 =p» A =0 and A§= A*?, thus

1
(< A o +A;,+

o(+l AZo) &" LAY+ ATY),

W
%(H,O+A10+293°) 'L(gu A*z)

from which

2 ™\
<V 2
Atli gz) dﬁ ) AJO °(<‘, Ei <“141
?. (2.9)
q
¥1_ A2 24 2 V. %
Az "Azo*mnh '*)1: E <2& )
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A similar procedure may be followed for the case of
A, reaching an extremum at which time A3= 0. The same

line of argument as above leads to the following:

¥l A2 PR ! vV
Az =fo t = Ay, ‘E-‘>2.A\l

. wM-t1 2
AY =R - T A, «<]

2 v (2.10)

ATI= A:o t °<.u Afto GLE-! ?1&1
¥ _ a2 M1 a2
Ry = Ap + i Aao A7

The special case o = 1 implies from (2.3) that A,= A,
for all time, and from (2.4) and (2.5) that V/E > 2k?

according as |A,, | > 0. If |A, | > 0, then
¥2,_ A¥2 ] 2
R;" = &, ‘-‘A\,'l‘ﬂu )

and the solutions for A, and A, are given by trigonometric
functions. For the case o = 1 and A,= 0, then A= A,
and A,= A,, for all time.

The significance of the magnitude of o becomes appar-
ent if we investigate the behavior of a small disturbance
on a time independent zonal flow, the latter being a steady

state solution of (2.3) characterized by A = A and A,=

10

A = 0. If we perturb the flow slightly so that

l\,= ““> ’
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where a, and a, are small in relation to Alo, then ne-

glecting products of perturbation quantities we have from
(2.3):
&1=?mwt+q‘&‘nwt x>,

t

—t -
a, = f,gfu + SW¥ o] < l’

where p, q, r, s are arbitrary constants of integration,

and
ot
wg*m°2hﬂﬂ’
w=u A, -'—’-'-315—2- .
<2+ 1)
A similar set of solutions holds for a,. It is obvious

that for o>1 this linear analysis would indicate that
small perturbations would remain bounded whereas a<l pre-
dicts unbounded growth. The former implies a stable zonal
flow while the latter an unstable one. Recall that a =
k/% = Ly/LX, so that stability exists if the disturbance
is elongated transverse to the basic flow.

Let us now briefly note the significance of the ratio

V/E for a>l. If V/E < 2k?, then from (2.4) and (2.5)
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2 2 2 2,2 2 2«2
A/ +R,+ 2Ry < A+ R, + 77 Ay

or
VA
Ay <=7~ A, . (2.11)
In order that the above inequality hold in general, &,
must never change sign, for in doing so, it would become
zero--violating the above condition. On the other hand,

if V/E > 2k? then

"o
A; >.$}__- A, , (2.12)
and it is possible for A1 to go through zero resulting
physically in a reversal of the zonal flow. This is a non-
linear phenomenon in the sense that a large disturbance as
determined by (2.i2) can bring about the reversal of a
zonal flow, otherwise stable to small perturbations. (It
turns out that V/E = 2k? is a discontinuity with respect
to the total fluctuation of A1' If (2.11) holds, then the
total fluctuation of A, is less than At, whereas (2.12)
permits twice A:.)

Similar inequalities may be deduced from the relation
02V/E 2 2k?. 1In this situation the relevant inequalities
relate Ag and Ag. These serve as an aid in obtaining the
analytic solutions and this will become apparent later.

Before proceeding further let us summarize the values
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taken on by A}?, AZZ and A:Z subject to the restrictions
on a as well as V/E or a®’V/E. Table 2.1 contains such a

summary.

2.2 ELEMENTARY PROPERTIES OF ELLIPTIC FUNCTIONS

The following is a brief outline of the defining
equations for the elliptic functions of Jacobi as well as
a listing of some of the simple properties with which we
shall be concerned. For further details the reader should
consult Davis (1962).

If we let

q
o\i-Aisint®

where ko is referred to as the modulus*, then we define the

elliptic functions of Jacobi as follows:

j
i, R Sin @

em (u, R,) = ton P > (2.13)
dn (u, k,) qlt-—/k’; nit @

J

*Formally ké need not be restricted to the closed interval
[0,1]. However in the present application u will be found
to play the role of time, and the reality of time imposes
the constraint that kg not be greater than 1. Negative
values of ké are similarly ruled out on the physical

grounds that each of AY, A: and A: is real.
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From the above definitions it is clear that sn(O,kO) =0
and cn(0,k,) = dn(O,kO) = 1. We also note that sn(u,k,)
and cn(u,k ) may change sign, while dn(u,k,) > 0 for all
admissible u and ko‘ This property will be useful in
writing the solutions of (2.3). Using the above defini-
tions the following additional relations may be deduced:
sn(u,0) = sin u, cn(u,0) = cos u, dn(u,0)= 1; and sn(u,l) =
tanh u, cn(u,l) = sech u, dn(u,l) = sech u. The deriva-
tives of the elliptic functions with respect to u are
easily evaluated:

& Il N
n&nm,)a.)s s q I%

= qul-/ﬁ: st

= o, k) don (a1, &,

*(2.14)

LS en LA, Ro)® = S (an, &) dom (11, R,)
A AL

ﬁ dm (A,&.h-}zt ontit, ko) ontu, k,)

From the above we observe that the derivative of sn(u,k,),
cn(u,ko) or dn(u,ko) involves the product of the remaining

two functions, a property common to (2.3).

2.3 SOLUTIONS OF THE MINIMUM EQUATIONS
We have seen that the solutions of (2.3) will fall

into three basic classes according to whether o is greater
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than, less than, or equal to 1. For a > 1, then V/E < 2k?
implies as we have already noted that A, cannot change
sign. We would thus expect its time behavior to be de-
scribed by the dn function. We have also shown in section
2.1 that, for a > 1, A, reaches its maximum when A= 0.
If we let t* be this time, then from the properties of the

elliptic functions the appropriate set of solutions is:

A=, A% do (hit- %), h0)

A= B smlhit-¢), A,)

Az Ay enChit-+M,A4,)
>

V
.

(2.15)

where h, t* and kO are to be determined. The constant

s,= + 1 according as A s the initial condition for A , is
positive or negative respectively. Because the dn function
is always positive, the introduction of s, is equivalent

to the use of -dn to describe the time dependence of A,

if A10< 0. This is just a mathematical convenience so

that At, A} and At are always taken to be positive.

Differentiation of (2.15) with respect to time yields:

Aes, AV hA, Ay Ay oo A s hALA, R,

A: A; A: A: (2.16)
. » .
R,= A:A_A_j_ Ry - A,z_. A A A,

AP AT RTA S



Comparison of (2.16) with (2.3) implies:
(RY AT RS s, A AL = [<(aten]”
(A:/S‘RTH';) A o= o’ [o('ﬂ]-‘ ' (2.17)
(AJ/s, A AY) b = (-1)/2

From the above it is obvious that the sign of h is dictated

by s,, and that k2 must be positive. Solving for h and k2

Mzs,fL (1) AY
W2

a
LR ? 3 (2.18)

we get:

)

2_ 2 o L PN
Aoy Bl
) -

To determine t* we note that at t = 0,

Ao S AT dn LAY k) s, A¥Y1- &2 i,
A= AY SmGAt*, k) = R sing,,

A= Ay emCGAE, k) = AT eng,,

where by definition,
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%

L d©
t? e &oﬁ-—*: wtp (2.19)

and

»
th&'ﬂl&.&_e = tom’ g‘:‘:“ﬁ-’:& {2.20)
A; Az, 2" gy

If we consider A, A, and A, as the components of a
position vector in three-dimensional phase space, we can
now compute analytically for a > 1 and V/E < 2k? the paths
traced out by the endpoint of that vector for various
initial conditions?®

The special case V/E = 2k? does not need a special
analysis, but the nature of the solution is worth some
comment. In this case, A and A, are related for all t

by the expression:

X N 2
A, = v‘,_z'_' A, . (2.21)

With the above constraint the solution of (2.3) will ap-
proach a steady state asymptotically, irrespective of the
initial value of A,. One can show directly from (2.3) that
the time dependence of A, (and of course A;) is given by

the hyperbolic secant, and that of A, by the hyperbolic

*This particular set of solutions was obtained by Lorenz
(1960). The results of that paper, however, were based
on a numerical solution of (2.3). Note that the expres-

sions given therein for k% and ¢, contain misprints.
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tangent. This solution emerges as a special case of (2.15)
because the condition V/E = 2k? implies kg = 1. It was
pointed out in the previous section that for this particu-
lar value of the modulus the elliptic functions reduce to
the hyperbolic functions of the type just mentioned.

For V/E > 2k? the character of the solutions changes
because from (2.12) we note that A, is not permitted to
vanish. Consequently, its time behavior must be described
by the dn function. Moreover, it can also be shown (anal-
ysis leading to (2.10)) that for a > 1, A, reaches its
maximum when A, = 0. If we let t* be this time, then the

appropriate set of solutions is:

A= A* enlh(t-t*) k) |

A, A:‘Sm(}\(f-t*),&,) ?,
Ry =5, A% dmlhlt- ) k)

(2.22)

where new relations are to be determined for h, t* and kg.
The factor s, = £ 1 again according as A, , is positive or
negative. The expressions for the relevant parameters are
given in Table 2.2. The method 6f computation for each
case listed in that table proceeds along the same lines
leading to (2.18)-(2.20).

Just as the class of solutions considered in the fore-

going has two subdivisions, so does the class of solutions



31

uo S3ITWIT

02
A4 4 2P P+ I
A Rt 1 o = M4 S Eg- AT < F/AD
v S,
>
€
v (z© + T) ;P -
T m [-uel ey ° ° Z ATs- T 5 A/AO
¥ + T ¥ P -1 T
°ly sV 0T I +.0
o}, _uea cx c £ *e
0Ty ° 1 gty T 5 tg AT < d/A
¥ ¥
<
v 0z ¥ 0) , 0 T +2©
" __ues zx (T -,°), 1y c Z . 2T > T/A
02y T =4® iy (4 ¥UT =P 0 1 S
SUOT3 TPUOC)
%% o3 y TeT3Tur

suoT3nTos uotrjloung OTIdITTH UT butaeaddy sjuelzsuo) jueasTay

Z° 7 d'149Y.L



32

for o < 1. It is easy to show that the condition a?V/E <
2k? implies that A, cannot change sign and so is described

by the dn function. The solutions for this subdivision are

A= AY smlh(t-t*), k)
R,=s, ﬁf don (A (£-£), k) ’ (2.23)
A3= § W‘l(}l(t‘t*), *o)

where we have used the fact that if A, has reached its
maximum at t* then A, must be zero. The role of s, is
similar to that of s, in (2.22). Again a new set of re-
lations expressing the constants h, t* and kg in terms of
the initial conditions has to be determined.

The second subdivision, namely, o?V/E > 2k?2, results

in the following permutation of elliptic functions:

A= AT smlhit-+"),k,)
R,= R: en(h(t-19), &) (2.24)
Ry =SgRy InCh (E-2%), &,)

Two subdivisions can be identified for a third class

of solutions, those for which a = 1. It is easy to show

directly for this class that A, =0 implies A, and A,
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suffer no change with time. On the other hand, if Aio > 0,
then A, and A, have time behavior which is governed by
trigonometric functions. This turns out to be a special
case of (2.24) if k{ = 0, or equivalently when o = 1. This
third class of solutions then can be combined with the
second, subject to the provision that a = 1 and A, = 0
imply no time change for A, and A,.

Table 2.2 provides a summary of the expressions ob-
tained for h, ké and ¢5. It is now possible to compute

analytically the solutions of the minimum equations for

any value of o and arbitrary set of initial conditions.

2.4 THE STOCHASTIC EQUATIONS

Calculation of the statistical moments of an evolving
ensemble via (1.16) poses no unusual difficulties. We
shall be interested in the case where the initial values
are uncorrelated and distributed according to a multivari-

ate normal density, i.e.,

= ) L |'Ml Y A o™ 19,'
(Po (21)"15700»"!0 "“f 1{(A5?; °) +( ted

o C-I-O

+(Azo‘:‘l o)"} (2.25)
030

are the respective means and standard

where Uig and 9o

deviations of the A;, . With the following change of
variables,

§.= Aio-Mio , (2.26)
\rl- to
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(1.16) may be written as

E[‘“ﬁ’]"'")-%g“"(B(Bo,mwﬂ'(ﬁrﬂi:f§:)}&§,l§z&§3}2-27>
where ) ;

A,
a,| -
| As

Equation (2.27) is now in a convenient form for the

>

use of an Hermite quadrature. It can be shown (see, for

example, Salzer et al., 1952) that

ol 2 n
g 2 foodx = & w;-@(x,-,) + Ry, (2.28)
10 ®

where the weights and remainder term are given by

W;a l“.‘“!ﬁ
“}[Hnﬂ‘xiﬂz

’

Ra: VT $V(m) (o2 <y < 22),
2t(2m))

and x; is the ith zero of the Hermite polynomial Hp (x).
(Note that R, = 0 and (2.28) is exact if f(x) is a poly-
nomial of degree less than or equal to 2n - 1.) The
evaluation of (2.27) is accomplished by a three-fold appli-
cation of (2.28). All of the integrations to be reported
here use a value of n = 17. The accuracy of the results
is typically greater than five significant figures.

Of interest will be the comparison of the results

obtained using the procedure outlined above and those
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obtained by solving the respective set of stochastic
dynamic equations. Using (1.8) and (1.10) we may write

the stochastic equations corresponding to (2.3) as follows:

/'4.=°~‘M1M3* G24) (2.29)
My ¢ (M, st 613) (2.30)
l:lg’ ¢ (M My * 6p) (2.31)
&;l';“uma‘n"'ﬁg 6a) + 26T, (2.32)
G0 16, H, 03 ¥ My 610) ¥ 26,T 5 (2.33)
6357 26304, 03 +4, Gg) + 264 T, 4 (2.34)

c,lsc.(A,c;,m,c,,_)+cl(M,c;,mzq,)n,tmﬂzq,, (2.35)
°73'¢.(R;“'33**‘;5’u“ CJ(R.f.g*‘l;a’u)”ufu;"cg"m. (2.36)
623 C( 1, 8557 Ay 612) + €3(H, 65, A, 6, ) 408 10yt ,, (2.37)

The third moment terms have been included in the above set
for the sake of completeness. However, all integrations
to be reported in the next section will be made by simply

neglecting these terms.

2.5 RESULTS

This section describes the results obtained for the
evolution of an ensemble of initial states where each mem-
ber of the ensemble evolves according to (2.3). 1In par-

ticular we shall compare the moment solutions as computed
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from the stochastic dynamic equations, in which third mo-
ments have been neglected, with the solutions via the
probability integral (2.27). The latter will occasionally
be referred to as the Liouville solution.

We shall choose a = 2 and the following initial condi-
tions: w,,= .12(3 hr)™'; u, = .24(3 hr)™'; yu, = 0.(3 hr)-!;
0j5 = 0.(3 hr)7%, i # j; 035 = 107*(3 hr)~%. Notice that
we have taken the components to be completely uncorrelated
initially, with standard deviations of 10-2(3 hr)~!. With
a scaling of k = (2w/5000)km~!, the above values give a
maximum expected value (ensemble mean) of the zonal (west-
east) wind of about 64 km/hr with a standard deviation of
5 km/hr.

Making use of an earlier result, we note the choice
for o implies that the zonal flow is stable to small per-
turbations. The above set of initial conditions indicates
that the initial disturbance is rather large in relation
to the zonal flow. 1In fact, the energy associated ini-
tially with the ensemble means is partitioned equally
between the zonal flow and the single wave. Nevertheless,
this stability characteristic is reflected in the complete
nonlinear solution in which the fluctuation of the zonal
flow is slight. Discussion will, therefore, be centered
on the time variation of u, and u,.

Figs. 2.1 to 2.3 present the Liouville solutions for

the ensemble means and standard deviations, as well as the
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results from the stochastic dynamic equations. The solu-
tions of the latter were obtained by using a fourth order
Runge-Kutta scheme with a time step of 1% hr. The agree-
ment between the two calculations for the means is quite
good through about 12 days. The reader will recall that
the basic deterministic model (oii = 0) is periodic. The
solutions for u, and My however, show a reduction in the
magnitude of successive extrema. Mathematically this
makes sense because the initial ensemble is in that region
of phase space where the evolution of deterministic tra-
jectories implies that A, and A, oscillate about zero.
Adjacent trajectories, however, have differing periods of
motion resulting in a phase decoupling among them. It is
easy to see that this will lead to a reduction in the max-
imum variability of the ensemble means about zero.

Physically one can think of Fig. 2.1 as displaying the
overall reduction in certain energy (see, for example,
Fleming, 1971la) associated with the means. This energy is
still present in the system but its specification is uncer-
tain. This is reflected in Figs. 2.2 and 2.3 where we
observe a general increase in the standard deviation of
each component from its initial value.

For this simple model we gain further insight into
the optimal nature of stochastic forecasts. As the aver-
aging time is increased, the time average of A, and A,
remains near zero. This is the climatological value for

these components. Note the behavior of the stochastic



38

) ‘sjusuwow paTyl burjzosibsu otweulp
OT3Iseyools y3ztm 1 pue °d HOmcoﬁusﬁomwHHﬂ>SOquocomHHmmEOU.H.N.mﬁm

SAVG
02 8l 9l b 2l ol 8 9 v 2 o
| | | i H | I | | | 0e0—
—ozo-
| oro-
) )
AN T
- Y =
dc'\ ,
—oio
NNY mw\
—oz0
ousSDYI0}g — —
3|11Ano1
0£0



39

dyanmic, or better, the Liouville solutions, whose
fluctuations about the climate mean are diminished for
large time. Even this simple model displays a predicta-
bility limit characteristic of models used to make weather
forecasts. This result is in agreement wiﬁh our experience
that for large times a deterministic forecast differs ran-
domly from the observed state, and that the best forecast,
in a least mean square error sense, is simply climatology.

Because ensemble members may alternately converge or
diverge, we do not expect that the spread of the probabil-
ity distribution, as measured by the standard deviations,
should increase monotonically. This accounts for the
oscillatory nature of the curves in Figs. 2.2 and 2.3.

It is quite apparent from the latter two figures that
the stochastic dynamic equations with the neglect of third
and higher moments do not give acceptable solutions beyond
five days for second moments. This is less than one half
the time for which there is congruency (agreement with the
true solution) in the means. In order to obtain forecast
variance information for longer times by way of moment
equations, it is clear that there must be some treatment
of the third moments. This has been discussed by Fleming
(1971a) wherein a quasi-normal eddy damped closure was
found to give best results. In that study a Monte Carlo
calculation was taken as the reference solution. It should

be pointed out that the calculations presented in this
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section were also carried out by Epstein (1969b), but for
just the first six days. Therein a Monte Carlo solution,
which itself is subject to sampling error, was taken as
the standard. For example, the errors in the means are
inversely proportional to the square root of the sample
size.

Because the integral solution permits a ready evalu-
ation of any order moment, it would be of interest to
examine the behavior of representative third moment quanti-
ties. The only term neglected in each of the stochastic
equations for the variances is the triple moment 1, ,.
With an appropriate normalization Fig. 2.4 gives the time
behavior of this quantity. Initially zero by assumption,
T,,,; remains relatively small for about 24 days for this
particular set of initial conditions. The most striking
feature is the rather intense oscillations beyond the third
day. As the ensemble becomes more diffuse the importance

of 1 in the moment equations would be diminished, but

123
by this time the fidelity of the stochastic dynamic solu-
tions has been lost.

Let us now consider a model possessing more degrees
of freedom. What are the implications that might be in-
ferred ffom the foregoing simple system? The answer to

this question must necessarily be qualitative, but I

believe something can be said. It is safe to say that the
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discard of third moments will be detrimental to stochastic
forecasts for "large" times. Also, in models containing
many degrees of freedom, the temporal limit beyond which
the first and second moments lose congruency probably will
vary with each space and/or time scale. Fig. 2.1 shows
that the stochastic solutions preserve the congruency of
the means of one interacting wave triad for about two sys-
tem oscillations. Second moment information becomes un-
reliable within one half that time period. 1In the author's
opinion there is some reason to suspect that one might
expect some improvement in second moment statistics in a
multidimensional model.

Consider the following two situations: 1) an inter-
acting wave triad taken by itself as in the case of the
three-component model, and 2) the same triad embedded in
the space of many interacting triads of a multidimensional
model. 1In the first situation the certain-uncertain
energy exchanges for the simple system are severely limit-
ed. After the energy flow has become established, and
before the ensemble has substantially diffused throughout
phase space, one would expect rather large triple correla-
tions to develop, reflecting the interdependence of the
triad members. In the second situation, a given triad
member is also a member of many other interacting triads.
Qualitatively it is reasonable to expect that in this

setting, triple correlations would not gain the same
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prominence as in a simple three-component model. This
being the case, one would expect congruency in the fore-
casts of second moments for a longer time interval.

It should be stressed that the foregoing argument is
speculative and a definitive answer would require the
solutions of models with increased degrees of freedom.

This will not be done here because the forecast model to

be described in the next chapter will be used to make 24 hr
forecasts. Evidence presented in the preceding discussion
and in earlier studies (cf. Fleming, 197la) would suggest
that the third moment discard approximation is quite satis-
factory for short-range forecasting.

A system with four degrees of freedom has been used
by Fleming (1973) to study the adjustment problem in a
divergent barotropic model. This particular set of equa-
tions gave rise to solutions which were highly non-Gaussian
in nature, and the retention of third moments was necessary
to obtain satisfactory results for the means beyond even
a few days. One particular case studied showed how one of
the coefficients defining the height field could become
highly positively skewed (Fig. 6 in that paper). In that
case, third moments were important from the outset. On the
other hand, Fleming pointed out the rather pathological
nature of the initial conditions chosen for the previous
example, and speculated that the encounter of such an

extreme case in a model with many more degrees of freedom
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would be unlikely.

Finally, we present the evolution of a third moment
quantity which measures the skewness of the distribution.
Fig. 2.5 is a plot of t,,, appropriately normalized. Its
behavior is also typical of the fluctuations exhibited by
T and 17,,,. Unlike the rather rapid fluctuations which
are present in Tios (cf. Fig. 2.4), the oscillations in
T,,, are approximately one half as frequent. The results

from this model would indicate that the distribution does

not become systematically skewed.



CHAPTER III

FORMULATION OF STOCHASTIC FORECAST MODEL

3.1 MOTIVATION FOR STOCHASTIC DYNAMIC FORECASTING

As pointed out in Chapter I, the goal of this study
is to predict the evolution in time of flow patterns
derived from observations of the 500 mb height field.
Traditionally this has proceeded in the following way.
Observations made at meteorological stations are inter-
polated to some ordered grid system. The analysis proce-
dures vary at present from one weather service to the next.
Some examples would be: 1) polynomial interpolation
(Cressman, 1959), 2) the method of optimum interpolation
in which the climatological statistics of the observations
are used (Gandin, 1963), or 3) a variation of the previous
method in which rational use is also made of the climato-
logical statistics of the fields of apparent forecast
error (Eddy, 1964, 1967; Kruger, 1969; Rutherford,1972).
Each method of "objective" analysis will generally lead
to a different initialization and it is not possible to
say which analysis is best on a given day.

After the analysis has been made, a set of meteoro-
logical equations is used to make a forecast. Obviously,
differing initial conditions will subsequently lead to
differences among the forecasts for any given prediction
model. The variability of the forecasts computable from

these different initial states will first of all depend

48
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upon how much spread there is in the initial states.
Secondly, the spread associeted with the forecasts will be
related in some way to the sensitivity of the model to
changes in the initial conditions. This sensitivity can
be quite significant in those regions of rapid development
or breakdown of a large-scale circulation pattern for
example, whereas in other areas it could be relatively
innocuous.

This study recognizes that observational and analysis
errors not only do exist but that a framework can be con-
structed whereby the analysis and forecast problem can be
dealt with in a probabilistic or stochastic setting.

In order to utilize a prediction model of the atmo-
sphere, we must first obtain the initial conditions in a
suitable form. Let the vector 8, constitute such a con-
venient set of N quantities. The latter may be values of
various meteorological parameters specified either at grid
points or in terms of the coefficients of some function
set. Because we are always limited to an approximate
description of the atmosphere, N must be finite but can
be quite large. It will be convenient in the sequel to
regard these N quantities as the coordinates of a point
in a corresponding N-dimensional phase space. The notion
of phase space has proved quite useful in statistical
mechanics for some time (Gibbs, 1902), and has also been
used by a few authors in meteorological contexts (e.g.

Lorenz, 1963, 1965; Epstein, 1969b; Gleeson, 1970). A
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weather forecast then is the prediction of the trajectory
through phase space of the end point of the vector B, whose
value at some instant t = t_ is B,.

Observational errors and lack of detail in the observ-
ing network, giving rise to analysis errors, lead us to
conclude that an exact determination of B, 1s impossible
at present. Thus, it would seem appropriate from a con-
ceptual viewpoint to think of the various single time
atmospheric states as comprising an ensemble of phase

points. As used here the term ensemble may be defined as

an infinite number of states, or ensemble members, with
the density of these states in phase space given by some
assigned probability distribution. In practical terms
each ensemble member could be thought of as an analysis
produced by a different meteorologist. There are many
such analyses (ensemble members) which are possible and
still consistent with the available data.

We are thus led perforce to the consideration of an
initial ensemble because of the uncertain nature of the
initial conditions. The forecast problem could then be
envisioned as the study of the evolution of this ensemble
through phase space, or more specifically, the prediction
of the probability distribution characterizing the ensemble.
For models possessing atmospheric realism this appears to
be a much too ambitious undertaking with present day

computers. Even if this task were possible, it would
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probably be wasteful as the entire probability distribution
is usually not of interest. 1Instead, a description of the
lowest order moments will generally suffice.

With the initial conditions more appropriately viewed
as an ensemble of equally likely states*, we shall define
the "best" state as the ensemble mean EO. This should not
be confused with the true state which of course is unknown.
The question that arises is whether the "best" forecast is
obtained by using the conventional deterministic equations
with EE as initial conditions. Epstein (1969%a, 1969b) has
shown that this is clearly not the case whenever a govern-
ing equation contains nonlinearities as regards statistical
quantities. This has already been demonstrated in the
previous chapter for a very simple model.

The method of forecasting then must be modified if
we are to achieve the best forecast in the sense described
above. The simplicity of the model considered in Chapter II
allowed us to obtain analytic solutions describing the
time dependence of each ensemble member. The moment solu-
tions sought could then be expressed in integral form and
the results evaluated to any desired accuracy. From the
standpoint of computing economy, this type of calculation
is not feasible for a physical model which would be required

to produce realistic forecasts of the medium to large-scale

*Each member of the ensemble is equally likely, but the
density of states in a particular region of phase space

is given by the probability distribution function.
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atmospheric motions. However, we have already seen (cf.
section 1.2) that it is not possible to derive, in closed
form, a set of equations governing just those moments of
interest. A differential equation describing the time
dependence of a moment of order m involves moments of
order m + 1.

For m = 1 then, we have the ensemble average of the
deterministic equation, the latter assumed to govern the
evolution of each ensemble member. This averaged equation
gives the instantaneous velocity, E , of the ensemble mean
in phase space; E is found to depend upon the current
position of the center of the ensemble, E , as well as
the size and shape of the ensemble as measured by the
covariance matrix. (For the purposes of argument we can
consider that these two moments are known* at some instant
to). Clearly, as the ensemble evolves it will undergo
deformations, and we must derive a set of equations for
the time behavior of the covariance matrix, in the manner
outlined in Chapter I. This is surely a plausible way in
which to proceed. Having already afgued for the interpre-
tation of the initial conditions in terms of an ensemble
in phase space, we are now suggesting, as a logical

extension, that a forecast of the covariance matrix is of

vital importance to the whole forecast procedure. We have

*A procedure for estimating these quantities from observa-

tions is outlined later in this section.
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made mention above that part of the information contained
in the covariance matrix, namely the variances, is a
measure of the size of the ensemble. This,of course,
becomes a prognosis of the degree of confidence that we
can place in the forecast of the ensemble mean, the best
estimate of the true state. It turns out that the predic-
tion of the uncertainty associated with B is the most
significant contribution of stochastic dynamic theory to
the forecast problem.

In order to close the system, a statement must be
made about the third moment statistics which have appeared
in the differential equations for second moments. Results
of the previous chapter and the work of Fleming (1971la) on
a barotropic model indicate that the neglect of third
moments will yield a satisfactory practical solution for
the forecast problem on the order of a few days. Indeed,
as pointed out by Epstein (loc. cit.), the success of the
predictions of E by the deterministic equations, which
implicitly neglect second moment quantities, would tend to
indicate that an improved prediction for E is possible with
a stochastic set of higher order approximation. By this
it should not be inferred that the same measure of success
is possible for second moment statistics. We have seen in
section 2.5 that this is not always the case. However,
recent investigations, referred to in the foregoing, would
indicate that the neglect of third moments is a justifiable
closure, and gives valid resuits for integrations over a

few days.
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In short, then, our observational and analysis capa-
bility force a probabilistic interpretation of the initial
conditions. This fact leads to a probabilistic method for
prediction. In a nutshell, this is the motivation and

justification for utilizing stochastic dynamic procedures.

3.1.1 Determination of an Atmospheric State from
Observations

In the foregoing we saw that it is more appropriate
to treat the initial conditions as an ensemble. The
exploitation of the stochastic method depends upon the
estimation of the first and second moments of the prob-
ability density function characterizing the ensemble. We
shall describe a procedure for accomplishing this.

As before, let B, be a true, but unknown, description
of the atmosphere at t = to. Because we shall be working
with a forecast model in spectral form, the components of
B, will be the coefficients of a set of functions, spher-
ical harmonics in this study. Let Q be the true value of
the meteorological field at P points.

Then,

aQ= _)S_Q'*. §-T (3.1)
A typical element xij of the P X N matrix X is the value
of the jth function at the ith point. The matrix product
is simply the sum of the products of each function value
and corresponding coefficient--the calculation repeated

for each of the P points. Although B, has been defined
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as the true value of the N coefficients, the dimensionality
of this vector is finite, and consequently X B, differs
from the true value of the meteorological field at the
given points. The difference Ep is termed the error due
to spectral truncation in estimating the field.

We shall consider the case where observations Y are
made at each of the P points. The expected value of each
is equal to its true value, but every observation is

subject to an error, i.e.,

Y
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The elements of €,, or observational errors, are
assumed to be independent random variables with identical
normal density functions. The absence of correlations
in the observational errors would appear to be quite a
reasonable assumption, as these are essentially observer
and/or inétrument errors. The implication of identical
normal densities is that the mean and variance of each
member of €, are invariant from one observing point to
the next. 1In principle it is possible to assign different
values to these statistics for each point. Choosing
E(e,) = 0 suggests that systematic errors may be ne-

glected. Moreover, we shall consider the case where each
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observation has the same uncertainty, as measured by its
standard deviation. In general, if it is known that the
reliability of some observations is greater than others,
then it is possible to reflect this in the standard errors
assigned to the respective observations. This would be
especially useful if different types of data were made
available, each having its own degree of precision: radio-
sonde, satellite, constant-level balloons, etc. In this
study we shall make use of one data source,namely radio-
sonde observations, and shall assign to each observation
the same uncertainty.

The statistical nature of the error g,

T
the neglect of small scales is not so straightforward.

arising from

For convenience we assume that e, may be described by a
multivariate normal density. The neglected scales will

be on the order of 10%km, which is certainly greater than
the average separation between data points (cf. Fig.4.1),
and consequently we would expect these errors to possess
correlations. The computation of the appropriate covar-
iance statistics is in itself a rather large problem. Once
these quantities are available in a suitable form, their
effects may be incorporated without any mathematical
difficulty, but the numerical difficulties, notably the
inversion of a complex P x P matrix with P * 450, would

be substantial. Undoubtedly certain simplifications would
be possible which would reduce this matrix to a diagonally

dominant form. This however would still necessitate



57

certain assumptions of a somewhat arbitrary nature. It was
felt the rather extensive computations involved would not
alter the major thrust of this study, which is to demon-
strate how stochastic forecasts may be made from real data
and to examine some of the striking features. Therefore,
it was decided to consider the elements of Ep to be uncor-
related. This problem is worth reexamination in further
work and the qualitative effect would be to "reduce" the
effective number of independent observations.

For the purposes of this study then, we shall consider
the elements of ¢ to be uncorrelated and normally distri-
buted, with E(e) = 0, and covariance matrix E(e €) = o2I.
The estimation of o is discussed later in this subsection.

If B is an unbiased estimate of B,, then E() = B,
where E denotes the expected value. We shall obtain such
an estimate by the well known "least squares" procedure.

If B is an estimate of B, and s the sum of the squares of

the residuals, then

s= (Y- xBY(Y-XB),
. (3.3)
=Y'Yy-28'X'Y+8'X' %8B,

where the primes denote transposes of a vector or matrix.
Differentiation of the scalar s with respect to B gives

the following vector equation:

ds =-2x'Y +2% % B.
B
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Setting the above equal to zero for a minimum defines the

A
least squares estimate* B , i.e.,

) A '
XXE=xY. o
The above are referred to as the normal equations and have

the unique solution,

8efv )y (3.5)
E"(.Y} &) _X__Y_,
if X'X is of full rank (P>N). Even if é is not unique,
X'Y certainly is, and the significance of this quantity
will become apparent in the next subsection.

It is very easy to show that é is unbiased because

x' X E(B)= KE(Y)
= %% Bo ,
X' x(E®)-8=0 ,
o E(f)=

-

B. .

-

When (3.5) exists, then the covariability among the

estimates is given by,

e[(§- gk 8]
02(5'5)-'. (3.6)

S

~

*Note that the least squares estimate B is irrespective of
the distribution properties of ¢. Under the assumption of
normality, E is also the maximum likelihood estimate,and
this in part is a justification for the least squares

approach (see, for example, Draper and Smith, 1966),
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To make use of (3.6) we need to know o2. An unbiased

estimate of ¢? is given by,

el _S (3.7)
P- N

where s 1is computed by using @, and P>N. Note that this
estimate for o? embodies observational errors and errors
due to the omission of smaller scales.

With the restriction that P>N, we now have a method
for estimating the first and second moments of the proba-

bility density function defining the ensemble of initial

states.

3.1.2 Stochastic Analysis

In the meteorological context, analysis is the process
by which use is made of all available information to gen-
erate the best possible description of the atmosphere at
some instant. Output from an analysis procedure becomes
the initial conditions for a prediction model.

Previous considerations have led us to construct a
probabilistic framework, in which the observations infer
an ensemble of phase points, and the stochastic forecast
becomes the prediction of the evolution of this ensemble.
In actual practice, of course, we do not deal directly
with the ensemble, or even its probability function, but
only the means and covariances of that density function.
Consistent with the foregoing, stochastic analysis reflects
our best judgment of these lowest order moments at some

instant.
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The analysis procedures to be used are those given
in Epstein and Pitcher (1972) and the development outlined
here parallels theirs.

Before a new set of observations is available the
best estimate of the true state of the atmosphere is given
by the forecast of the ensemble mean of B, while the covar-

iance matrix measures its uncertainty. By definition,

b= E(f)
§-€[(8-b)8- 1]

- —-—

. (3.8)

These are referred to as the prior mean and covariance
matrix for B. Our goal is to make a revised judgment

about B by utilizing the information contained in the

~

observations. This revision yields a posterior mean b
and covariance matrix g.

We shall make use of a result in probability theory
called Bayes' theorem (see, for example, Winkler, 1972;
Raiffa and Schlaifer, 1972; Epstein, 1962) that will allow
us to make use of the vast amount of information in a
stochastic forecast. Before we can do this, however, some
assumptions must be made about the probability density of
the forecast, referred to simply as the prior.

In the present application, all of the moments of the
prior are required to define just the first two moments
of the posterior distribution. (In the following, the

probability distribution for the observations is presumed
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known since we have assumed the random vector € is normally
distributed.) We are at liberty to choose any prior having
the first two moments defined by (3.8), but the following
three reasons justify the choice of the multivariate

normal:

1) The multivariate normal distribution is "conjugate" to
the likelihood (probability density) function of the data
(observations), and this facilitates the mathematics
involved.

2) Ericson (1969) has shown that the results for the first
two moments of the posterior distribution are invariant
for a rather broad class of prior distributions, indicating
that the results are not too sensitive with respect to

the prior chosen.

3) The multivariate normal is the proper prior to choose
if only the first two moments are available (Tribus,1969).

This avoids the introduction of a bias in the results.

For further elaboration on these points, the reader
is referred to the previously cited paper. Tests of the
formulas obtained on the basis of the foregoing have been
made by Epstein and Pitcher (loc.cit.) in a simulation
study,and the analyses were found to give valid results*.

Taking the prior to be multivariate normal leads to

*This is a further justification for the closure scheme

adopted, in that it works reasonably well in some tests.
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the following for the posterior mean and covariance matrix:

b=5(s"b+ro?xY)

. (3.9)
'

>
"
-~
N
.
o+
Q

S+ o7t x'x)

For an outline of the proof of (3.9) see Appendix A. The
prior covariance matrix S is positive definite by defini-
tion, and thus S™' exists. The above formulas permit an
analysis even though there may not be a sufficient number
of observations to define E_uniquely (i.e., P<N). The
implication for asynoptic analysis is obvious. However,

A

if P>N then B exists and we have

(3.10)

=St b st h)
The inverses of the covariance matrices in (3.10) are
direct measures of the precision associated with b and
E, In stochastic analysis, these matrices become the
weighting factors which are determined by the forecast
and observing network.
If no stochastic forecast is available, then the

prior can be considered vague, or non-informative, and
§f1 taken as the zero matrix. In that case we must have

P>N, and from (3.9), é and é reduce to the ordinary least

squares solution.

3.2 EXTERNAL MODEL UNCERTAINTY
So far, we have presented the need for stochastic

dynamic theory by emphasizing the stochastic aspects of
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the initialization. Quite apart from forecast error
arising as a result of uncertainty in the initial state,
there will be prediction error resulting from the inadequa-
cies of any particular dynamic model used. The concept
that there is a finite range of predictability for all
finite models implies that errors will be encountered in
all deterministic predictions. The model is simply in-
capable of describing certain physical processes or fore-
casting atmospheric motions smaller than some limited scale.

The foregoing is simply a statement of the fact that
our prediction models are not perfect. In other words,
the trajectory of each ensemble member through phase space
cannot be calculated with certainty. Disregarding this
external model error, the forecast of internal error growth,
as implied by the initial uncertainty, is necessarily an
understatement of the actual uncertainty.

To emphasize this point, consider a simple analogy.
Suppose we have a particle moving in a force field accord-
ing to some known dynamical law--for example, a projectile
in a gravitational field. Given the appropriate initial
conditions we can calculate the trajectory exactly*.
Imagine that we wish to perform a similar calculation,
but this time would also like to consider the buffeting
action of air motions on the projectile. Although the

primary force might be that of gravity, without a law

*Fundamental uncertainty on the order of atomic dimensions

is of no consequence here.
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describing the effects of extraneous influences in detail,
our model has lost its determinism and has acquired the
character of a stochastic process. Even though the detailed
dynamics are different, we may liken the projectile to a
phase point travelling in phase space. In the latter case
the extraneous influences are all those atmospheric pro-
cesses which are not included in the dynamic model.

This question has been considered previously by
Epstein and Pitcher (loc.cit.) in which stochastic analysis
was tested on a 28 component two-level quasi-geostrophic
model. 1In one of the experiments discussed therein, a
deterministic calculation was made and taken to be the
"true" atmosphere. This, by definition, defines a perfect
model. "Observations" were made by the addition of random
errors to the true state, and forecasts carried out
stochastically. The method of stochastic analysis as
outlined in the previous section was performed every 24
hours on these imperfect observations and forecasts. After
six days the expected values of even the smallest scales
in the model had converged toward the true atmosphere, the
actual differences being negligible as compared to a
typical observational error. This result was possible
because the basic model was completely deterministic and
the stochastic analysis permitted the information content
of the cbservations to be additive from day to day.

The situation in the real atmosphere differs from

the above simulation experiment in that there is a lack of



65

large-scale determinacy in the atmosphere. This, in effect,
implies a decay rate for the information content of the
observations.

These model deficiencies give rise to forecasts which
may have some systematic error* (see, for example, Rinne,
1970) in addition to a sensibly random component. We must
concern ourselves with this aspect of uncertainty when
making forecasts for at least two reasons.

If for the moment we visualize the prediction problem
as the extrapolation in time of the cloud of points defin-
ing the ensemble in phase space, then we would expect the
size of this cloud, as measured by its covariance matrix,
to increase. At the verification time the forecast en-
semble and the ensemble defining the new set of observations
should display a certain degree of "overlap." 1In other
words, the forecast ensemble should be consistent with
the new data, in the sense that their occurrence is admitted
by the forecast with a reasonable likelihood. Because our
forecast models are only approximations to the real atmo-
sphere, this consistency between forecast and observation
is only possible if we admit a mechanism to allow for this
extra growth of uncertainty. Otherwise, the stochastic
forecast will tend to underestimate the variances (equiva-

lently the amount of spread in the ensemble).

*For the purposes of this study, we shall assume systematic

errors to be negligible.
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This leads us to the more significant reason for
consideration of dynamic model error. Stochastic analysis,
which makes unprejudiced use of both the forecast and
observed fields, requries that the error measure associated
with each field be a realistic one. If the forecast uncer-
tainty is unrealistically too small for each model parameter,
then the new observations will not be accorded their due
in the data assimilation or analysis procedure.

There must be a balance between the losses due to
decay of the information content of older observations,
and the gains due to new ones. We shall return to this
problem later and consider ways of parameterizing this

effect.

3.3 EQUIVALENT BAROTROPIC MODEL

Previous considerations in this chapter have focused
primarily on the stochastic aspects of the forecast problem.
0f equal importance, of course, is the physical model that
is used as an atmospheric simulator. The efficacy of a
forecast model in detailing atmospheric events is obviously
central to any prediction scheme, but especially so in the
stochastic method, where the uncertainty in the best
estimate of the true state is a prognostic quantity.

However, we have to pay the price of increased com-
puter time for this additional information. If a deter-
ministic model is N-dimensional, in the sense referred to

in section 3.1, then the corresponding stochastic model



67

predicts N(N + 3)/2 quantities. For large values of N, it
is not yet feasible to make stochastic integrations opera-
tionally, but this need not prevent us from investigating
some of the aspects of the stochastic dynamic method using
simpler models. It would be reasonable to assume that
many of the effects present in a simple model would also

exist, in varying degrees, in a more sophisticated model.

It was anticipated that much useful information could
be obtained about the techniques by experimentation with
a model which traditionally has a reasonable degree of
success, but at the same time is manageable. One of the
results could conceivably be the feasibility of an extension
to more realistic models. In the light of the foregoing
argument, it was decided to test the method of stochastic
dynamic prediction, on atmospheric data, using as a basic
physical model the equivalent barotropic.

This model may be derived in different ways but the
net result is the incorporation of a divergence effect
on the vorticity tendency. The derivations are quite
straightforward, and one such procedure is outlined here
for completeness. We start with the well known quasi-

geostrophic vorticity equation:

a8 2
T ¢ Vet eve v 58 3.1

where ¢ is the local vertical component of the relative

vorticity, W the non-divergent wind, f = 2Qficos6 the
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Coriolis parameter with 6 the colatitude, w = %% and p
the pressure. W may be expressed in terms of a stream
function y which is evaluated geostrophically.

The basic assumption to be made is that the stream-
lines and isotherms remain parallel in each pressure
surface. The implication here, of course, is that all
baroclinic effects are severely reduced. The thermal wind
equation reveals that, with this constraint, the wind
direction does not change with height; thereby we may

write the dependent variables as follows:

{= Auf)'f

_ ) (3.12)
V/=RAlp V/
where (¢ ) = L LBD( )dp with P, the surface pressure.

p
0
Substitution of (3.12) into (3.11) and averaging over

pressure yields
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noting that A(p)=1 and w(0)=0. Expand w, the vertical

velocity, on a constant pressure surface:

]
w=§§=:—§+w-vz+w,—?f :

Assuming that W 1is geostrophic, and using the hydrostatic

condition, we obtain at Py
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wip.) = C%:t ~ Qg W

where 5 is the surface density . and g the acceleration due
to gravity. For an inviscid atmosphere moving over flat
terrain w_ = 0. Frictional effects will be neglected

here as they have very little bearing on forecasts of the
order of a day, but the influence of terrain height on

the surface vertical velocity will be considered. Letting
h be the smoothed elevation, then wo=\ﬂo-Vh and the lower

boundary condition becomes

YV
N({’.”Q.:. 3t Q.% V[.‘ V\\ R
where Y, = %1-20 is the geostrophic stream function. The
0

above may be substituted into (3.13) giving

Yty ¥ £ A.9 :
T +AVI-0L £ Vi-vd = ‘i‘i":ae maVivh, 00

where Ao= A(po), To the surface temperature and R the gas
constant for air. Choose a level p, (the equivalent baro-
tropic level*) such that A(p,) = aZ, Denoting the values

at this level by a star subscript, we obtain from (3.14)

'-

3%y o Ao V3
)t "'Vl* VK, 'I'VI.. V'F ;RT ;t ;QRAT. V/, Vk >)

*In earlier papers (e.g., Charney and Eliassen, 1949), the
equivalent barotropic level Pe Was defined as the level at
which A(pe)=l, whereas A(p,)~ 1.25. In general, this
implies a greater altitude for p, than Pg-
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The equivalent barotropic level is near 500 mb (Thompson,
1961), and limitations on data lead us to apply (3.15) at
that level. Dropping subscripts, we have at the equivalent

barotropic level:

%&“"'b'\l’)"'V/'V(;i-%i-c\\), (3.16)
where

b= % Ao c=faRi 3

— 9

T, RT,

Because of the various assumptions which have been made in
arriving at this equation, investigators, notably Cressman
(1958), have found an improvement in forecasts if the
parameter b is determined empirically. We shall do like-
wise and the following numerical values will be used:

b=7.8x10"m?%, c=2.4x%x10 "n "sec”’

Despite its physical simplicity (3.16) has been used
for several years with remarkable success in forecasting
the 500 mb height contours for 24 hours, and with moderate
skill, out to about three days. We shall work with the
spectral form of (3.16) and this transformation is given in

the next section.

3.4 SPECTRAL FORMULATION
In terms of y, V= K x VY and the velocity components

may be written,
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_ LY Y, 4
M= 28’ V2 aen® 3N

where u and v are the eastward and northward wind speeds,
and A the longitude. (Recall that 6 is célatitude.) The
stream function and terrain height may be expanded in
terms of a convenient set of basis functions. Choosing

spherical harmonics as such a set we may write:

Vo, )'ﬂgéé 1":(&) Y:(G,’A) , (3.17a)

hie, 7«)=§“H: Y:(e‘)) . (3.17b)

where the set of wg(t) is time dependent and the Hﬁ are
constants. Here a 1is the radius of the earth, n the
set of all non-negative integers, while the Yﬁ(k,e) are
non-zero for -n < m < n, wherein the m take on integral

values. By definition,
™ ™ ‘M) . F
Yoz Pal)et™ ", i={-1,

where the normalized associated Legendre functions,

Pg(u), are given by Rodrigues' formula,

/] Yg (MM
" | (znﬂ (n-vn)\.) (_Hz)'itl (q‘—l)“-

Pal)* P72 fewrt A
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In the above py = cos 6. From (3.17a) the local vertical

component of the relative vorticity is easily obtained:
N P wm ™
where c, = n(n+l). The condition of reality implies
- ™ WEE
Yo=Y (v ),

where the star denotes complex conjugation. As defined,

the Yg satisfy the following orthogonality condition:

A7 x - o .
g ( Y“(YI) Sune&eixz).ugm.? Sm‘, (3.18)

o

The procedure of transformation of the equations of
motion into spectral form is widely known and only the
result will be given here. Several accounts are available
(Silberman, 1954; Platzman, 1960; Baer, 1964; Merilees,
1968; Eliasen et al., 1970). 1In short, the transformation
is carried out by substituting (3.17a) and (3.17b) into
(3.16) and multiplying the resulting equation by the in-

tegral operator,

l gl‘ﬂ N “*
Y, Qo( 1Y) sime deda,
for a fixed m and n. The latter operation isolates the

following differential equation for wg:

™ Y pmy
%\-{l‘ =D, rgmvi(csv';fcl{,mw+.uz.er:' y 3

1.5
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where

- 2y~
D =i(c, +ba) ",
'n r P
Pme ™ ¢ 4P yiP
MUCR T SN AP
In (3.19) the summation extends over all g, s, p and r
subject to the restriction noted. The procedure for the

calculation of the interaction matrix ngz is given in

Appendix B.

3.5 THE QUESTION OF MODEL UNCERTAINTY

External model error, hereafter referred to as model
uncertainty, has been discussed in general terms in section
3.2. 1In stochastic dynamic forecasting this problem is
a perplexing one, but one which the investigator must face
if the error information is to be useable. 1In terms of
short-range forecasting, the situation for the future is
not without prospect however. Improvement in the basic
dynamic model would lead to a better forecast for the
ensemble means, and the forecast uncertainty would then
be due in an increasing measure to uncertainty in the
initial conditions. Growth of error as a result of model
uncertainty would play an increasingly minor role. How-
ever, as noted in section 3.2, this problem will always
be present if the predictability is finite. For the
present study, however, we must explicitly consider the

effect of model error, and the remainder of this section
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outlines a procedure whereby this effect may be incorporated.

3.5.1 Parameterization of Model Uncertainty

The problem is how to parameterize the model uncer-
tainty. Undoubtedly there are several ways in which one
can prescribe this "generation" or "growth" of uncertainty.
On the other hand, if the forecasts of the ensemble means
are sensitive to the kind of parameterization adopted,
then the method is suspect.

The explicit procedure used here is to make correc-
tions to the right-hand side of (3.19). At any given time
the appropriate correction is unknown to us. As a result
we adopt an approach often used in the treatment of simi-
lar stochastic problems (Srinivasan and Vasudevan, 1971;
Soong, 1973). We simply make corrections which are random.
Alternatively, it is akin to parameterizing, in one term,
all those processes and scales not included in the deter-
ministic terms. This additional term is random because
it is not deterministic. We do not know a priori what
this random forcing term should look like, and some pos-

sibilities are listed below:

(y)
Ly Vo Lo () Ve
T _((:L (+) ’ (3.20)

- <D Y\(‘T\z-l' VRV
o
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where oV, o2,

ald, ag% and agz are random functions of
time. It is not possible to support a particular choice
of random forcing simply because the purpose is not to
model a specific physical process, but rather provide a
mechanism whereby the growth of model uncertainty may be
incorporated in a rational way. This point is very impor-
tant and the reader should view this purely mathematical
device as an attempt to incorporate error growth which
is external to the basic model.

The last three choices given above are scale dependent.
Of these, the last two symbolically display random forcing
functions which would take on, for a fixed time, different
values for each spectral coefficient. We have every
reason to believe that this would be the bést way to pro-
ceed. However, as will become evident later (cf. section
3.6), this would require an increase in the dimensionality
of the system equal to the total number of model para-
meters. Perhaps a compromise could be reached in which
certain scales would be grouped together to form a number
of classes. Within each class the random variables Ji;
would still be time dependent but not scale dependent.
It might be useful to pursue this course of action in
subsequent investigations. This appears to be an unneces-

sary complication at the initial stages of experimentation,

and so the last two alternatives will not be considered.
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The third choice, reminiscent of diffusive dissipation

for a positive o is approximately equivalent to the
addition of a!®v2z to (3.16). The wave number truncation
in this study (0 <m<10, 1<n-m<9: odd harmonics) raises
serious doubts about the presence of such a mechanism.

This procedure would seem less objectionable and perhaps
more appropriate on the grounds of two-dimensional turbu-
lence theory if the model encompassed a much wider spectrum
of space scales.

In this study we shall confine our attention to the
first two choices listed. Computations will be performed
using separately both parameterizations and their relative
merits will be assessed. The range of values taken on by

a1 and of?) will be given later.

3.5.2 Time Dependence of a'Yand of?

In a later development it will be necessary to make
a statement about the time dependence of o, or more signi-
ficantly, concerning the time behavior of its ensemble
mean and variance. (The superscript on o has been dropped
for notational convenience as the subsequent discussion is
applicable to both o!Yand of?).) Anticipating for the
moment a subsequent result, consider that we have an
estimate of the ensemble mean and variance for o at some
specific instant of time. Since a is a random process,
it is certainly reasonable to expect that these will not

be the best values to use for the entirety of the succeeding
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forecast period. Some time later the information about
the a-ensemble will be obsolete, and our best estimate
of o can be no better than its long term temporal mean,
denoted by a, where
.(arr'gbagé;t (3.21)
and T is on the order of a seasonal length.

We shall postulate the following rather well known#*

first order stochastic process for a:

I, 5 s
td.t r(t-) = B(¥), (3.22)

where 1 is a time constant and Z(t) a realization of white
noise with mean zero and autocovariance function Yzz(u) =
céé(u), Here u is the lag and & (u) the Dirac delta
function (Jenkins and Watts, 1968). Yzz(u) is formally
defined as follows:
. ! T
Yzz(uhlvm‘-'r‘g 2(e)2(£+) 4t (3.23)
T-peo L
(White noise, by definition, possesses a constant power
spectrum, which leads mathematically to infinite variance
for Z(t). The reader will note that the power spectrum
of 2(t), given by the Fourier transform of Yzz(u), is

constant. For a non-zero T the output o remains bounded.)

*For an arbitrary random function Z(t), (3.22) is often
referred to as the Langevin equation. Uhlenbeck and Ornstein
(1930) review the application of this equation to the ex-

planation of Brownian motion.
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The assumed process above implies that, whatever its
initial value, o will tend toward its long term mean &
in a time interval of order T, and subsequently fluctuate
about that value, but will do so in an unpredictable
fashion.

The formal solution to (3.22) can readily be written

as

t
(L) So;.mutm) du + {:L ok o= &) ,,,ar(.t]t)} y  (3.24)

where the impulse response or weighting function h(£{) which

appears in the particular integral has the simple form:

ME) = enp-S[T) §20,
T
AlS)= o £ <o,

Also, by definition, o= a(0).

It remains to deduce from (3.24) the time behavior of
o, the ensemble mean of o, as well as the associated
variance. Define E as the expectation or averaging opera-

tor over the ensemble. Applying E to (3.24) we get
- ~ -
-\'-"-E[o(\‘-'-k-!-(-t.‘z)h"f('tlt), (3.25)

where by definition E[Z(t)] = 0 and &O= E Elo] . To be
explicit, &o is the ensemble mean of o at t=0.

The calculation of the variance of a is likewise
fairly straightforward. By the definition of variance

we have,
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VoA L = EI[-(-';i]z

Making use of (3.24) and assuming ergodicity* for 2Z(t)

we get the following:

t t
vor =€ [‘ S.l(u))n(t-u) du)( X.&(\r)x\(t-v)clv) # ("%, lnur(-zt/tﬂ )

t,t
{6 St Ae-sd Alt-viieda + c2smpcat ),

= 67 K: [L(i-u)]‘e\u + G'.‘M»\‘J('H/f) ’

=-';-,[!—u?( ze/t)] + ol ulf(-ztlt) (3.26)

where og is the variance of a at t=0. Note that in arriv-
ing at (3.26) we have made use of the fact that a, and 2(t)
are independent.

Equation (3.26) indicates that for t >0 02/27 is an

asymptote. We may interpret this asymptotic value as the

long-term variance of a, i.e.,

2

. T
; -'Fg (=) At .

Q

l

P )

*The ensemble average and time average as defined by (3.23)
are equivalent.
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Relations (3.25) and (3.26) provide us with analytic
expressions for the time behavior of the ensemble mean
and variance of a. These will be used in the subsequent
development of the stochastic dynamic equations. The
assignment of appropriate values for the statistical

quantities appearing in the foregoing will be discussed in

sections 4.2 and 4.3.

3.6 STOCHASTIC DYNAMIC SYSTEM

In this section we shall derive the stochastic dynamic
equations corresponding to the deterministic system given
by (3.19). The latter must now be modified owing to the
considerations of section 3.5. The following is the modi-

fied form of (3.19) for the random forcing of the first

kind:
: P v ¥, fm¥ m .
V=D r§.,*\(‘sVS*°Hs)L‘.\s"FmT\ y 3027
where 1.8

Fan= 2-0m + D' o,

and the dot denotes differentiation with respect to time.
The superscript on o has been dropped for convenience.
Before setting down the moment equations, a summary
of the notation to be used is in order. From the stochas-
tic viewpoint, the wﬁ and of course o are interpreted as
random functions of time. This totality of time dependent

random variables forms a multidimensional phase space on
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which is defined a probability density function, the latter
also being time dependent. At a given time, atmospheric
data enable us to define, at least conceptually, an infin-
ity of phase points, the density of which is given by this
probability function. All of the information that we would
require is contained in the probability function; but we
have already indicated that its prediction, via the Liouville
equation, although a relatively straightforward computation
in principle, is prohibitive with present day computers.
Having noted that the moments of a distribution which
are of ultimate interest are usually the first two, we
shall derive from (3.27) the appropriate equations govern-
ing the time behavior of the ensemble means and covariances.
Recall that E was defined as the expectation operator over

the whole ensemble. We shall denote the ensemble average

m

of wn

m .
by Hpr 1e€ey

,q‘:EE("P:) (3.28)

The covariance of w? with ws, centered about the ensemble

averages, is defined:
ot 2 E[Cv TS -]

=g(Y7 1,';) _}{': H': (3.29)
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Note that O:E is a complex quantity in the present formu-
lation. Care must be exercised in computing the standard
deviations of the real and imaginary parts ofxpg for exam-
ple. Appendix C presents some of the relationships between
real and complex quantities. Although we shall not compute
any third moment statistics, they will of course appear in
the development of the stochastic equations. Consistent
with (3.29) we shall define the centered third moment as

follows:

muP
tha el - D]
or by expansion,

'm\?

. ¥ W e o P (3.30)
nv‘ EH’,"? *) "in v; )1\: v\:'/ﬂ\ ny HquM" ¢ 0

The following definitions and identities will also be
useful:

1) The ensemble average of an

FhmaE(Fm“).: 2-0m ‘I‘D;: ;, (3.31)

. u
2) The covariance between an and wv.

cov ( Fm“ ,‘\r:) = E,[( F““- Emn)(?:‘,“uv,]

- n~! u 3.32
= D, w(%,'}'v), ( )
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3) The covariance between o and an:

covia, F,,.) = D;: cor(o, &)

D-\
n Vored (3.33)

4) The triple moment quantity:

- (3.34)
covy( Foum, ‘c,vt‘)zo“' wg(-(,?:,*i)

By taking the ensemble average of (3.27) we may write

immediately, using (3.29) and (3.32),the equation governing

the time evolution of ug, i.e.:

pmr =

PAGLN % ics("i‘}is*“p)”/f\ L Lins ¥ Focn A

D':“ W("'?‘:) » (3.35)

As expected, the nonlinearity of the prediction equa-
tion gives rise to the second moment statistics cp: and
cov(cx,wrr[:). Time differentiation of (3.29) yields a set of
equations for the behavior of the covariances between each
pair of spectral coefficients in terms of known quantities.
Performing the indicated operation and utilizing (3.27)

and (3.35), the following sequence emerges:
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NS o 8 MRS SNty

=Dn[,,,,2,m{cs£w'{*: Y:mHZE(«r{v‘:\}L"Z‘I+Ew:+:l=...)}
9.8

po

D, P%.i‘sE“’{ SIS Lyt LY, FMJ
L %

-
- P v u P u v Pmy =T
D, ‘%“i‘ m{"s(ﬁhﬂls ,q': mvc;:h»c;q‘ Hy H‘} Ll:5 t P M'f,

+0, M. w(x,ﬂr:‘)]

ﬁv:\k

=D, [2 LA A oAl o+ e WL+ P
L 8

+ D;‘ }4: vov (o, v‘:ﬂ ,

from which we obtain after some cancellation?

* wmu _ 3 X'N R 4 pru ¥ Pul pmr
Cay ™ Du[é;mics(}l“"w M Cyv +‘t“v) +C Hs““z‘-\“s
L

t P O #05 Ao o, V) 4 D, tovyla, *:,\?'Cﬂ

P v fm  Ptm v pm| Pu¥r
+D, [&,ﬁ%ﬂﬁkt AL Com + Tgen 1+ CHs o"l“]"t,v s
.9
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+F., c'::,+ D, ,q; Cov (o, 'Yf:) tD, w,(-()*{":y:ﬂ . (3.36)

Following exactly the same line of argument leading
to (3.36), we may derive an equation governing the time
dependence  of cov(a,wg). Starting with the time derivative
of the definition of cov(oc,tplg), utilizing (3.22) in addi-

tion to (3.27) and (3.35), we may write:

[eorte ¥ = QT £ o) - T AT

i ™y ™
=D, z;,m{cs E(< \"{ V)+e H: Elst Y{)}L‘;M + E(= Fm‘{r‘ﬂ

- \J

p-

- P - Pr - Py Pwme
-D,, ;l;m{‘s("ﬂtl{:*"“\s)““H‘Hsz L‘“s

'y

F X Fopy Mo #0 & tov (e, \b':ﬂ

et el Dyl e eyl Hz-aa),
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and upon simplification,

| adnd]

[orte v <2, [ 2 oo P31 A o ) e

Pm

te H: cc\r(o\,v{)}l.‘“: + F‘,m w(«,ﬁ' ) fb;‘ ”‘: v

-\ L
D, tovyla, o, W)~ T v, ¥, ). (3-37)

To accomplish a formal integration of (3.35) to (3.37)
a statement must be made about third moment quantities, in
effect a closure approximation as referred to in section
3.1. At that point it was indicated that barotropic inte-
grations would suggest a discard of third moments as a good
approximation for short-term forecasts. This approximation
is reaffirmed here, and all integrations to be reported
have been made subject to this closure scheme.

In order to carry out an actual integration of the
aforementioned set of equations, calculation of the first
and second moment statistics of the initial ensemble is
necessary. The algorithms for accomplishing this have
already been given in section 3.1. The details of the

time integration are outlined in Appendix D.



CHAPTER IV

RESULTS OF FORECAST MODEL

Several integrations of the stochastic dynamic equa-
tions have been made, and the purpose of this chapter is to
summarize the essential features of some of these numerical
experiments. Whereas a stochastic dynamic forecast con-
tains a vast amount of information, in addition to a pre-
diction of the expected state of the atmosphere, the
experimenter must necessarily describe those aspects of the
results which appear to be the most relevant to the partic-
ular problem considered. The reporting of stochastic
dynamic calculations becomes especially troublesome, mainly
because of the large number of covariance statistics which
are present and collectively influence each analysis and
forecast. A detailed discussion of these quantities would
provide for a cumbersome and rather dreary account. For
this reason, we shall focus our attention on the expected
state of the atmosphere and its associated uncertainty
field, bearing in mind that these are dependent upon all
the statistical parameters in the model.

The data used in this study are the heights of the
500 mb surface as obtained by approximately 450 radiosonde
stations in the Northern Hemisphere for the period December
1 to 6, 1969, and herein referred to as Day 0 through Day
5. A typical distribution of stations is plotted on a ster-

eographic projection in Fig. 4.1. This is representative

87
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Fig. 4.1. Typical distribution of station locations
whose latitudes exceed 20°N.
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of the irregular distribution of stations north of the 20°N
latitude circle, and is presented simply to emphasize that
we are dealing with actual station data, notwithstanding
those eliminations for obvious transmissions errors.

Computation of the 105 spectral coefficients and
variance-covariance statistics every 24 hours is relatively
straightforward in the manner given by (3.5) and (3.6). In
the sequel, reference will not be made to the observations
themselves, but to their least squares estimates. These
are the best estimates of the true state based on the data
available.

Less than 10% of the data is located below 20°N. 1In
order to stabilize the least squares fit in these equator-
ial regions, it was found necessary to insert artificial
data there. Approximately 20 points were added and assigned
climatological values appropriate for the month of December.
For our purposes this imposes no real limitation because
the model is ineffectual in low latitudes in any case. In
addition, our primary interest in this study concerns mid-
latitude forecasting on a time scale less than the time
required for spurious influences to be felt from the bound-
ary . (It should also be added that these climatological
data were assigned the same uncertainty as all the other
observations. This uncertainty was greater than a typical
day to day variation in the tropical height field, and thus
the uncertainty in the estimation of the tropical height

field was not made artifically optimistic by the intro-
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duction of climatological values.)

Equations (3.35) to (3.37) were derived under the
assumption that the external model error could be parame-
terized through a stochastic forcing term, the latter given
by the first possibility listed in (3.20). The need for
this process is presented in section 4.1, in which the
results were obtained without the incorporation of this
effect. The influence of the random forcing of the first
kind is described in section 4.2. 1Its limitations are
noted, and section 4.3 is a summary of the calculations

made with random forcing of the second kind.

4,1 NEGLECT OF EXTERNAL ERROR GROWTH

A useful feature of the least squares procedure is
that knowledge of the covariance matrix S, enables one
to construct a corresponding field of standard deviation.
This is a graphic illustration of the relative confidence
that can be placed in the field recovered from ﬁ. Figs.
4.2 to 4.5 give the standard errors of estimate of the
observed height fields on Day 0 through Day 3, respectively.

It is clear that the general patterns are similar from
day to day. Largest uncertainties appear over oceanic
regions reflecting the paucity of observations there. The
details, however, do change from day to day. The structure
of the uncertainty field depends upon the number and dis-
tribution of stations in the observing network, and also

upon the value of each function at the individual stations.



Fig. 4.3. Same as Fig. 4.2 but for Day 1.

Fig. 4.2. Standard deviation of least

squares estimation of 500 mb height

Units are in meters.

field, Day O.
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Fig. 4.5. Same as Fig. 4.2 but for Day 3.

Fig. 4.4. Same as Fig. 4.2 but for Day 2.
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Missing observations and the addition of ones not present
24 hr previous give rise to a restructuring of the
uncertainty field, as is quite evident in the Pacific on
Days 1 and 3.

The procedure for the calculation of these fields of
standard deviation is quite straightforward. If x; is the
vector of ordered function values at an ith arbitrary point,
then the best estimate of the height field at that point
is given by,

qi’=.!g2.§. (4.1)
The variance of this estimate is easily obtained in matrix

notation, i.e.,

E" S (4.2)

w

where §§==02(§f§)'1 from (3.6). Computation of an estimate
for o via (3.7), for each of the six days, revealed that

a value of 40 meters was representative. Recall that o
includes observational errors as well as errors resulting
from the neglect of smaller scales. 1Its value depends upon
the number of functions chosen and the density of stations

available. We have already discussed in subsection 3.1.1

possible refinements, in which different locations may be
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assigned different values of o, and correlations between
points may be included. The square root of the values ob-
tained by repeated application of (4.2) is the contoured
gquantity in Figs. 4.2 to 4.5.

Fig. 4.6 is the least squares estimation at Day 0 of
the height field whose uncertainty field has been given in
Fig. 4.2. The expected values of the 105 model parameters
at Day 0 along with the variance-covariance information,
for a total of 5670 numbers, form the initial conditions
for a stochastic prediction. Fig. 4.7 is the expected
state from the 24 hr stochastic forecast valid at Day 1.
(All forecasts to be reported here are made for a 24 hr
period.) However, this forecast was made without incorpor-
ating the parameterization of model uncertainty. What
this means is that all terms involving the statistics of
o in (3.35) and (3.36) have been ignored, and this auto-
matically excludes (3.37) from the set of equations inte-
grated. We intend to confirm that the absence of these
terms is mute testimony to the need for a treatment of
error growth attributable to the deficiencies of the
spectrally truncated equivalent barotropic model.

Comparison of Figs. 4.7 and 4.8 shows that there is
reasonable agreement between the forecast expected state
and that as derived from the observations on Day 1. Notice
that the intensification of the pressure ridge over British
Columbia and Alaska is predicted with some skill, and the

southward push of the cut-off low over eastern Canada is



Fig. 4.7. Forecast expected state of height

field, Day 1. No random forcing included.

Fig. 4.6. Least squares estimation, Day 0.

Units are in meters.
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Fig. 4.9. Stochastic analysis of expected

values, Day 1.

least squares estimation, Day 1.

Fig. 4.8.
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detected.

We are now in a position to carry out a stochastic
analysis according to the procedure outlined in subsection
3.1.2. In this case we wish to meld the spectral coeffi-
cients characterizing the forecast field given in Fig. 4.7,
with the corresponding coefficients derived from a least
squares fit of the data and used to plot Fig. 4.8. The
posterior (analyzed) values of the ensemble means are used
to construct a height field which becomes an updated or
revised best estimate of the expected state of the atmos-
phere. This analyzed field is given in Fig. 4.9. Under
the present circumstances it is expected that Fig. 4.9 will
bear a fairly close resemblance to both Figs. 4.7 and 4.8.
This is indeed the case although the analysis does differ
in detail from the forecast and "observed" fields.

Further examination of Fig. 4.9 reveals that on this
particular day the analysis tends to "favour" the least
squares estimation. Examples of this are the analyzed
positions of the trough in the neighborhood of the Aleutian
Islands, and the one in the coastal regions of northern
Europe. In these, as well as other areas, there is greater
similarity between Figs. 4.8 and 4.9 than between Figs. 4.7
and 4.9. This of course does not necessarily mean that Fig.
4.8 is the correct picture, but only that this estimate has
a smaller uncertainty than the expected state as given by
the forecast.

There are many factors, such as correlations between
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model parameters, which bear on an individual analysis,
but which cannot be presented conveniently in one diagram.
One important input to the analysis algorithm, however, is
the quantitative degree of confidence placed in both the
forecast expected state, and that as derived solely from
the observations. We have already seen that fields of
standard deviation are easily displayed and readily inter-
preted, and it should be obvious, intuitively at least,
what the role of these relative measures of uncertainty
would be in stochastic analysis. This is given further
consideration below. The reader should be aware, however,
that the fields of standard deviation do not give the total
picture as regards the uncertainty information. For ex-
ample, large standard deviations in a particular region do
not necessarily mean that the shape of the contours (e.g.,
a ridge versus a trough) is of no certainty. There may be
high spacial correlations that would indicate the presence
of a particular pattern. The actual point values may be
rather uncertain however.

Figs. 4.10 to 4.13 are the uncertainty fields corre-
sponding to the meteorological fields given by Figs. 4.6
to 4.9 respectively. Fig. 4.10 is the standard deviation
of the least squares estimation at Day 0 and has been
presented earlier as Fig. 4.2. (Figures will be repeated
occasionally to facilitate comparisons.) The uncertainty
field of the forecast expected state is given by Fig. 4.11.

For the most part, the latter shows an increase over the
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former in the level of uncertainty. We would anticipate
this result, and it is simply a reflection of the internal
error growth as determined by the model dynamics. It is
interesting to note that an appropriate flow regime, such
as the southwesterly current impinging on the British
Columbia coast, can cause a further increase in the stand-
ard deviations locally. This could be thdught of as
"advection" of uncertainty.

As the center of maximum uncertainty moves eastward
across the central Pacific, the stochastic forecast pre-
dicts a reduction in the highest value, from 85.6 m to
75.4 m. This result is in part a manifestation of the
detailed influence of the correlations between the spec-
tral amplitudes in the model. We have already seen in
section 2.5, albeit in the case of a very simple model,
that the uncertainty of each model parameter is not nec-
essarily a monotonically increasing function of time
throughout the forecast period.

Given in Fig. 4.12 is the standard deviation field
of the least squares estimation, valid for Day 1. With
the exception of a considerable portion of the Pacific, in
which fewer observations were available on Day 1 than Day
0, the standard error of the forecast (Fig. 4.1l) is every-
where greater than the corresponding uncertainty associated
with the observed expected state. Qualitatively, this
would indicate that the forecast expected state would be

given less weight than the least squares estimation in
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arriving at an analyzed expected state. This is indeed
the case and corroborates the remarks made earlier con-
cerning Fig. 4.9.

Fig. 4.13 is the analyzed standard deviation field.
The question that naturally arises is whether Fig. 4.13 is
a realistic measure of the confidence that one may place
in the analyzed expected state as given in Fig. 4.9. Be-
cause the true state is never known to us, a test of the
realism of Fig. 4.13 by making a direct comparison of
Fig. 4.9 with the true state is not possible. Clearly,
however, the validity of Fig. 4.13 depends upon the ex-
tent to which the uncertainty in the observed and forecast
expected states is faithfully represented.

In the case of the uncertainty associated with the
least squares estimates, we shall take this as being a
realistic estimate of the actual uncertainty. As pointed
out in subsection 3.1.1, correlations in the "observational"
errors have been neglected, and their inclusion will un-
doubtedly have some effect. Although the latter should be
considered in further work, it is not anticipated that this
effect would alter substantially the following line of
argument.

The forecast uncertainty is subject to scrutiny how-
ever. During the discussion of external model uncertainty
in section 3.2, the suggestion was advanced that, at the
very least, there should exist a consistency relationship

between the stochastic forecast and corresponding least
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squares estimation. There, it was indicated that the
respective ensembles should display some overlap. This
can be tested from knowledge of the position of the ex-
pected state in phase space together with the covariance
matrix. We shall return to this later.

In an earlier investigation by Epstein and Pitcher
(1972), it was demonstrated that, whenever the evolution
of a fluid system cannot be described by a purely deter-
ministic model, it is necessary to account for this lack
of determinacy when making stochastic analyses and fore-
casts. In the present context the fluid system under
consideration is one half the global atmosphere, and the
deterministic model the equivalent barotropic. The inten-
tion here is to confirm and validate the above conclusion.

The subsequent three figures are presented to show
the relevant standard deviation fields 24 hr later at Day
2. From the analysis at Day 1 a stochastic forecast is
made, again without the parameterization of external model
error, and the uncertainty field plotted in Fig. 4.14. By
contrast, the corresponding standard deviation of the least
squares estimation is given in Fig. 4.15. It would now ap-
pear that the forecast expected state possesses less uncer-
tainty than that as derived from the observations. As one
might have expected, it turned out that in this circum-
stance greater credence was placed in the forecast expected
state in arriving at the subsequent analysis. Fig. 4.16

is the standard deviation of the analyzed expected state.
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The reader will note an even further reduction in the level
of uncertainty from that as given by the analysis on Day 1
(cf. Fig. 4.13). It should be clear that realistic values
for the predicted uncertainty are crucial to the determin-
ation of meaningful uncertainty in the analysis.

This is perhaps best illustrated through an examina-
tion of the time behavior of some of the spectral coeffi-
cients. Recall that “E was defined as the instantaneous
mean of wﬂ. The real and imaginary parts of uﬁ are defined

as follows:

de = AnsiBy

The time sequence of forecasts, least squares estimates
and analyses of Ag is given in Fig. 4.17. At Day 0 the
analysis is identical with the least squares estimate be-
cause the latter is the only information available. Al-
though the forecast and observed values of Ag do not agree
at Day 1, they are nevertheless consistent in that they
are not widely separated as indicated by their respective
standard deviations. This consistency is evident at Day 2
as well.

All spectral coefficients do not display the agree-
ment exemplified by the foregoing. Fig. 4.18 gives the
time evolution of A;. By Day 2 the consistency between
the forecast expected value and that as deduced from

observations is not obvious.
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Fig. 4.17. Time sequence of Ag. The dashed vertical
lines represent the least squares estimates (expected
value plus and minus one standard deviation) from ob-
servations on the day in question. The solid vertical
lines represent the 24 hr stochastic forecasts, imme-
diately to the left, and stochastic analyses, immedi-
ately to the right of the least squares estimates.

3OFTTTT
| I T
! ) I
- X X X X ' - {
‘s 2.0 X’ T
qg) i i+4 l ! x T T = I
|Sz 1 ; X T 4
=, 1o 1 Hxl”ﬂ
e L3 J‘.l. X x x x
LI
00wy AMy AWY
O O | | 2 2
TIME (DAYS)
Fig. 4.18. Time evolution of A’ Notation is the

same as that in Fig. 4.17. t2
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Even though the true values of the spectral coeffi-
cients are unknown, a satisfactory check on the validity
of the forecast standard deviations is still possible. If
D denotes the vector difference between a forecast and
corresponding observed state, then the ensemble average,
denoted by D, is simply

Bab_g_ (4.3)

The associated covariance statistics QD of the random

vector D are easily shown to be:

= §_+Sl\ (4.4)

Recall that b was defined as the forecast expected state,
while S and §@ are the covariance matrices of the fore-
cast and observed states respectively. Hence the variance
of an element of D is simply the sum of the corresponding
forecast variance o%, and c;, the variance of the least
squares estimate. Moreover, gD is a measure of the total
size of the combined forecast and observed ensembles. We
shall consider this to be the gross uncertainty of the
true state as inferred from knowledge of the forecast and
observed uncertainties. Of interest will be the actual

difference between the forecast and observed means--this

is given by (4.3)--versus this inferred uncertainty.
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Because of the correlations between the various
elements of D, the calculations required to establish the
foregoing statistical comparison in detail would be
massive. Suffice it to say that it would be necessary to
extend the concept of the credible ellipse (Epstein and
Fleming,1971) to a credible hyper-ellipsoid in 105-
dimensional phase space. For our purposes this calcula-
tion is not really necessary, and we shall settle for a
less precise but more direct solution.

The results of this calculation are summarized in
Fig. 4.19. This is a scatter diagram of apparent fore-
cast error--defined as the absolute value of the difference
between the means of the stochastic forecast and least
squares estimates--versus the standard deviations inferred
from forecast and observational uncertainty. Taking the
normal distribution as the standard, one would expect
about half of the points to lie below 0.6750, provided the
elements of D were uncorrelated. The latter of course is
not true in general, so that Fig. 4.19 cannot be consid-
ered as definitive. The figure does indicate the begin-
ning of a trend however. The compatability between the
forecast and new observations is poorer on Day 2. One
can arrive at this conclusion by noting that the points
for Day 2 are shifted to the left, in relation to those
for Day 1, without a discernible reduction in the apparent
errors. The overall reduction in the values of ¢ is

entirely accounted for by the reduction in forecast
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Fig. 4.19. Scatter diagram of apparent forecast error e

vs o0, the standard error as inferred from observational

and forecast uncertainty; ¢ = (0% + 02)Y2, The apparent
error is defined as the magnitude of the difference be-

tween the least squares estimate and forecast value.
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uncertainty. The consequence of this has already been
indicated in the discussion of Fig. 4.14: the ensuing
analyzed expected height field bears a closer resemblance
to the forecast than to the observed expected state.

If the results of forecasts for subsequent periods
were plotted in a form similar to Fig. 4.19, then the trend
to smaller uncertainties in the forecasts would persist.
Because the new observations effectively would be ignored,
the subsequent forecast would tend to "drift" away from
reality. This is a manifestation of the physical simpli-
city and deterministic nature of the basic model, and has
been discussed in section 3.2.

At this stage we have indicated, consistent with an
earlier investigation (Epstein and Pitcher, loc. cit.),
that external error growth must be considered when apply-
ing stochastic dynamics to the real atmosphere. The rest
of this chapter will focus on this problem and present
the main results for the two parameterizations of external

error growth considered in this study.

4.2 RANDOM FORCING OF THE FIRST KIND

Extension of the previous calculations to allow for
an extra error growth, which is attributable to the defi-
ciencies of the physical model, is relatively straight-
forward. 1In principle, what we are attempting to do is
permit a greater spread among the evolving ensemble

members. The net result is a further smearing out of
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the ensemble as it moves through phase space. Although
the selection of a mechanism which generates additional
uncertainty is somewhat arbitrary, the subsequent redis-
tribution of this uncertainty among the model parameters
is not. This of course takes place according to the
specific internal model dynamics.

In section 3.5 we presented examples of various
stochastic processes which can serve as appropriate para-
meterizations. The first one listed there involved the
addition of a term of the form a‘”(t)wg to each deter-
ministic equation governing the evolution of the individual
ensemble members. By assuming a particular process for

an)

, we have seen that this effect may be incorporated
into the stochastic dynamic equations, with the behavior
of the a''-ensemble given analytically by (3.25) and (3.26).
The covariance matrix must now be expanded to accom-
modate the covariances between a'!! and wﬂ. These are
taken to be zero initially, and develop according to (3.37)*
as a result of a non-zero variance assigned to alt),
This brings us to the assignment of appropriate values
for the statistics of a!!'! which appear in equations (3.25)
and (3.26). In the absence of any evidence to the contrary,

we shall take the long-term mean a1 =0. This simply says

that the physical model does not have systematic errors

*Recall that the superscript on all! was dropped in (3.35)

to (3.37) for notational convenience.
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which can be accounted for through the addition of a
forcing term of the form &'! wg. At the start of the
integration period, our knowledge concerning the ensemble
mean &é” is vague. We can do no better than use the long-
term mean. Hence we shall take Eé1)= G'=0. Thus, for
the first 24 hr forecast o ‘"=0. Parenthetically it can
be pointed out that the presence of the covariance statis-

tics, cov (al?

,wg), permits an analysis for Eé” at Day 1
and thereafter, even though we have no way of directly
observing this quantity. Should the analyses for Eé” show
a tendency toward one sign over a long period, then our
judgment about &!!! could be revised accordingly.

Turning to the consideration of the parameters appear-
ing in (3.26), we find that their specification is not so
straightforward. The long-term variance of all), identified
previously as 0;/2T, is in doubt for we do not know a
priori what an appropriate range of al!) would be. An
order of magnitude estimate is possible however, and it is
found a postiori that this will suffice. This can be done
in the following way. Under the assumption that the order
of magnitude of |¢§[ is computed correctly from (3.27)
with alV=0, then the value of a'!) required to make Ia(”w?|
one order of magnitude smaller than a typical derivative
I@gl is taken as a reasonable estimate of the long term
standard deviation of al!l, Although this procedure appears

somewhat ad hoc, it is not too restrictive because we are

not specifying what a!!’ should be — it, after all, is
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a random function—Dbut only what a likely range of values
might be. Alternatively, the foregoing could be thought

of as a specification of the width of the climatological
o!'-ensemble. In particular we shall take 02/21==8.87 X
107 %sec’®?. The same value will be assigned to o for the
first 24 hr period. On subsequent days an analysis for

the variance of ag” is possible, in accordance with earlier
remarks, and this becomes the new value for oé in the next
prediction.

The time constant of the random forcing must also
be specified. We shall consider the'meteorological noise
to be the order of synoptic and sub-synoptic scales and
consequently of still relatively low frequency. The value
chosen for 1 was 0.5 day or 4.32 x 10" sec.

A few experiments were performed to test the sensi-
tivity of the model to changes in these parameters. Hardly
any discernible difference between the various calculations
was noticeable in the plotted fields. Virtually no varia-
tion was observed in the spectral coefficients from one
run to the next. Second moments were likewise rather
insensitive to changes in the alV-statistics, with differ-
ences between runs of about 10% for a 100% alteration in
some of the random forcing parameters.

In reviewing the results, our prime interest will be
the manner in which these calculations differ from the
ones presented in the previous section. With this goal in

mind we shall examine the stochastic forecasts and .analyses
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starting from Day 0.

Fig. 4.20 presents the expected state of the stochastic
forecast, valid for Day 1. This is directiy comparable
with a similar calculation made previously, but without
the random forcing effect, and given in Fig. 4.7. There is
essentially no difference whatsoever between the two fields.
This simply says that for a time interval of at least 24
hr the course of the ensemble mean through phase space is
not materially affected, even though the individual en-
semble members are subject to random perturbations--an
encouraging result. Because of the nonlinearity in the
governing equations, we would not expect this situation
to persist indefinitely however.

On the other hand, comparison of the respective un-
certainty fields reveals that the stochastic forecast
which includes external error growth produces an overall
increase in the field of standard deviation, as compared
with the earlier forecast in which this effect was not
included. Fig. 4.21 provides evidence of this. The
greatest increase occurs in the vicinity of the cut-off
low centered over eastern Canada. Here the uncertainty
has risen about 20 m over its value in Fig. 4.11, the
latter being the uncertainty field from the stochastic
forecast computed with the neglect of external error
growth. This uncertainty maximum is approximately coin-
cident with the expected position of the trough. Fig. 4.22

is the standard deviation of the subsequent analyzed
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expected state and differs little from Fig. 4.13.

Figs. 4.23 to 4.25 give the forecast expected state,
its associated uncertainty, and the uncertainty of the
the analyzed expected state, all valid for Day 2. Again,
a maximum has developed in the forecast standard deviation
field (Fig. 4.24). This maximum is near the trough re-
ferred to above. Because the basic physical mechanism in
the present model is vorticity advection, it would seem
plausible that those regions in which advection is known
rather imprecisely would also be those areas in which the
predicted meteorological field becomes uncertain the most
rapidly. Under this assumption, it would appear that vor-
ticity advection is of some importance in determining the
motion of the quasi-stationary trough we have been con-
sidering. We could not account for the uncertainty maxi-
mum otherwise. In other words, it seems reasonable to
expect that the extra uncertainty imparted to the system
would be directed to those regions where the flow pattern
is the most sensitive to fluctuations in the amplitude
and/or phase of its constituent waves.

Fig. 4.26 provides a check on the degree of compata-
bility between the forecast expected values and least
squares estimates on Day 2. This figure is strikingly
similar to the one given in Fig. 4.19, also valid for Day
2, but for the case of no random forcing.

Although the present parameterization of model
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Fig. 4.26. Scatter diagram of apparent forecast error e
vs 0, the standard error as inferred from observational
and forecast uncertainty; o=(c% + ¢%)¥?, with symbols
defined in section 4.1. The apparent error is defined
as the magnitude of the difference between the least
squares estimate and forecast value at Day 2. Random
forcing of the first kind.
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uncertainty is behaved and does work in the right direc-
tion--enhancement of the uncertainty associated with the
forecast expected state--further integrations lead to
reduced standard deviations for nearly all the spectral
coefficients. The reason, of course, is that the decay
of the information content of the observations is not
being properly modeled. So, as with the case of no ex-
ternal error growth during the forecast stage, the new
observations are relegated to a secondary role in the
subsequent updating or analysis step.

Increasing the long-term variance of a“n in order
to "feed" more uncertainty into the system and consequent-
ly raise the uncertainty in the forecast expected state,
is a possible solution, but not a satisfactory one. The
reason for this relates to the rather peculiar and un-
physical nature of this particular parameterization. It
should be evident to the reader that allowing the same

range of values for o'l

in each spectral equation will, in
general, lead to the most rapid error growth in the largest
spectral coefficients. (The forcing term after all is
given by the product a“)wﬁ.) These, for the most part,
represent the largest scales of motion. The contribution
of the random forcing terms to the rates of change of the
smaller scales will be less pronounced, and this will

imply a smaller error growth in these scales. Therefore,

while the decay of the information content of the observa-
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tions may be correctly modeled on the largest scales, the
treatment of the smallest scales is clearly unsatisfactory.

A most striking example of the foregoing is illus-
trated in the next two figures. Fig. 4.27 gives the time
behavior of A]. Note the rather rapid growth of its
standard deviation during the forecast period. By con-
trast, Fig. 4.28 is a similar plot for AZz which is
approximately one order of magnitude smaller than the
former. 1In this case, the random forcing has produced no
significant error growth. These figures provide an ex-
treme example, but they are nevertheless indicative of
the selective nature of this particular parameterization.
This result, as well as additional evidence of the decreas-
ing impact of new data, necessitates a reexamination of
the forcing function.

In summary, it is possible to say that the first
choice for the parameterization of external error growth
has been partially successful. This has meant a balance
between the error growth in the model and the impact of
new observations, at least for the large scales. The
forecast uncertainty 'in the smaller scales has not been
substantially affected however. Previous studies suggest
that these scales would suffer a loss of predictability
before the larger ones. A further improvement in the
results is discussed in the next section wherein we adopt

a different parameterization for external error growth.
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Fig. 4.27. Time evolution of A}. Random forcing of the

first kind. Notation is the same as that in Fig. 4.17.
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Fig. 4.28. Time evolution of A7,. Random forcing of the

first kind.

Notation is the same as that in Fig. 4.17.
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4.3 RANDOM FORCING OF THE SECOND KIND

We turn now to a consideration of the second parameter-
ization of external error growth employed in this study,
and in particular investigate whether the short-comings
of the previous formulation may be averted.

The alternate forcing mechanism is listed as the
second choice in (3.20) and involves the addition of a
random function a(“(t) to each spectral equation (3.19).
Because the wz are complex quantities for m > 0, al?) is
likewise complex. Let its real and imaginary parts be
denoted by o, and a; respectively.

The change in the random forcing necessitates certain
modifications to the stochastic dynamic equations, and
these changes are outlined in Appendix E. The calcula-
tions to be discussed in this section are based on the
set of prognostic equations given therein.

Before we can carry out an integration of these
equations, a specification of the al?)-statistics is neces-
sary. In this regard the same guidelines were followed
as set out in section 4.2 in which similar parameters
were assigned to al!’,  Thus for the first 24 hr the
ensemble mean 3!¥'=0. Once this initial forecast has
been made, the covariability between a!?) and wg permits
an analysis for Eg”as well as the variances of a. and aj .

Numerical experimentation 1is necessary as an aid
in the selection of appropriate long-term variances for

oL, and a,. These statistics, along with the time constant
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7, completely define the nature of the forcing parameters.
Choosing 1 =0.5 day, as in the earlier formulation, leads
to an undesirable result; the spectral parameters in the
model become highly correlated and the covariance matrix
tends to lose dimensionality or become singular as a
consequence. This value of the time constant implies a
large autocorrelation in the a(“-process. Under this
constraint, of?) is essentially a red-noise (low frequency)
process. The results suggest that such a low-frequency
forcing of the system produces an organized statistical
dependence among the spectral components of the model.
Since we do not observe a similar outcome in the absence
of random forcing, we must conclude that this inter-
dependence between the model parameters is an artificial
one, which is attributable to the particular nature of
the parameterization chosen.

The preceding difficulty may be avoided by assigning
a smaller value to 1. The implication of course is that

(2) are now less correlated than

contiguous values of o
before,or in the present context the a!?)-process has been
"whitened." The value chosen for T was 10 min. Experi-
mentation led to a choice for the long-term variance of
both a_ and a; of 4 x 107 % "sec”".

Comparison of Fig. 4.28 with Fig. 4.29 typifies the
major difference between the present formulation and the
one upon which the results of the previous section were

based. The latter figure, which is again a plot of AZZ,
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TIME (DAYS)

Fig. 4.29. Time evolution of A],. Random forcing

of the second kind. Notation is the same as that
in Fig. 4.17.
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shows a more substantial increase in the standard deviation
of the expected value throughout the forecast period. To
the extent that all scales now suffer a reduced predicta-
bility limit, the second parameterization of external

error growth represents a decided improvement over the
first.

Further support for the superiority of this procedure
comes from examination of Fig. 4.30, a scatter diagram of
apparent error versus standard error as inferred from
forecast and observational uncertainty. The points are
shifted generally to the right from those as given in Fig.
4.26. Although this outcome is not definitive by itself,
the inference which may be drawn is that the forecast un-
certainty is somewhat more reflective of the actual uncer-
tainty. In equivalent terms, the ensemble of states as
described by the stochastic forecast enjoys a greater con-
sistency with the corresponding ensemble defined by the
new observations.

Several forecasts have been made and the effects of
this particular prescription of external error growth may
be conveniently summarized. As pointed out previously,
the present formulation does admit external error growth
in all the wave components retained in the model. More-
over, due to the nature of the random forcing, which pro-
vides for a uniform level of noise input on all scales,

the smaller scales become uncertain more rapidly than
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Fig. 4.30. Scatter diagram of apparent forecast error e
vs 0, the standard error as inferred from observational
and forecast uncertainty; o=(cf + ci)lﬁ, with symbols
defined in section 4.1. The appareiit error is defined
as the magnitude of the difference between the least
squares estimate and forecast value at Day 2. Random
forcing of the second kind.
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the larger ones. This is in general agreement with
experience, and is reassuring.

Random forcing of the second kind, while a definite
improvement over the previous method, cannot be considered
as the answer to the problem of parameterization of exter-
nal model error. Because of the inherent simplicity of
the approach, the forecast uncertainty of some model par-
ameters does not reflect the actual uncertainty. We have
noted on previous occasions that this state of affairs is
detrimental to a valid analysis. Subsequent forecasts
tend to drift away from reality. This is not a fault of
the stochastic dynamic method, but arises from the sim-
plicity of the basic physical model and the inability of
a random forcing function, of the rather simple form
exploited here, to account for the additional forecast
uncertainty.

An example of this is provided by the following four
figures. The analyzed expected state on Day 3 is given
in Fig. 4.31. Comparison of the subsequent forecast ex-
pected state (Fig. 4.32) with the least squares estimation
at Day 4 (Fig. 4.33) reveals certain discrepancies not
accounted for by the forecast uncertainty field (not shown
here). For example, the forecast expected position of the
trough-ridge system over the western portion of North
America lags behind the best estimate as deduced from ob-

servations. Because these discrepencies are not reflected
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in the forecast uncertainty, the new observations at Day 4
are effectively ignored in arriving at an analysis (Fig.
4.34).

It should be evident that a better parameterization
of external model error is necessary in order to take
optimum advantage of the stochastic dynamic method with
the present model. 1Indeed, one of the major drawbacks in
this particular study has been the rather simple physical
model used as a basis for prediction. Nevertheless, it
would seem that in these initial stages the use of a
simple model has permitted a wider range of experimenta-
tion and has led to a greater insight into the method

itself.



CHAPTER V

SUMMARY AND OUTLOOK

The goal of the present study has been the further-
ance of stochastic dynamic prediction, especially toward
the problem of weather forecasting. Recognizing that
atmospheric observations define the initial conditions in
a probabilistic sense leads to a probabilistic method for
prediction. Moreover, this method provides the best fore-
cast from the standpoint of least mean square error. In
fact, the most general formulation requires that we fore-
cast an ensemble of initial states, or more specifically,
the probability density function characterizing the
ensemble. This task is not feasible, nor, as it turns
out, really necessary. We simplify the problem by de-
riving a set of prediction equations for the lowest order
moments, the stochastic dynamic equations.

In order to obtain a solution of these equations, we
have seen that a closure approximation must be made with
respect to higher order statistical moments. Previous
investigations (Epstein, 1969b; Fleming, 197la) indicate
that, for short-range predictions on the order of a few
days, the neglect of third moment quantities yields valid
solutions. We have adopted this third moment discard
approximation and have presented calculations in Chapter
II supporting this assumption.

The next phase of the investigation deals with a test
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of the method on real atmospheric data. The physical
model employed is the equivalent barotropic, and the
initialization of the corresponding stochastic model re-
quires knowledge of the ensemble means of the spectral
coefficients as well as the variance-covariance statistics.
These moments are obtained by a least squares fit of the
105 spherical harmonics to the data. In this connection,
we have already mentioned a couple of refinements which
may prove profitable in future investigations. These
include more realistic statements of the variances and,
especially, the covariances between the observations
themselves.

Having given an appropriate specification of the
initial conditions, we are now able to carry out the
stochastic forecast. This yields an expected state and
covariance matrix, which provides a measure of the un-
certainty associated with that state. Because of the
various limitations in the physical model, we have seen
that during this phase of the calculations a parameteriza-
tion of the growth of uncertainty due to these inadequa-
cies must be incorporated. We have utilized two parameter-
izations. The second gives the more realistic results,
but is only partially successful. This is due, in part,
to the simplicity of the forcing functions adopted. The
limitations of the barotropic model itself combine to make

a solution of this problem a rather difficult one.
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In section 3.5 we hinted at the implications of exter-
nal model error with respect to forecast models in general.
The more sophisticated the physical model, the more accu-
rate will be the prediction of the ensemble mean. It
would also appear reasonable to speculate that the increased
number of error interactions would contribute to a further
spreading of the ensemble members. This would be reflected
in terms of increased forecast uncertainty. Both of these
effects--better prediction of the ensemble mean and en-
hanced error growth--would conjoin to make for a greater
consistency between the stochastic forecast and the new
observations. Nevertheless, the question of external model
uncertainty will always be important, although to varying
degrees, and further work is required in this area.

Althoﬁgh the computational requirement for the
stochastic dynamic method is significantly greater than
in the case of conventional procedures, there are some
indications that extensions to more sophisticated models
may be possible with the present computing capabilities.
For example, it is possible that time derivatives of
every covariance quantity might not have to be computed
every time step. This would mean a substantial saving.
Alternatively, the use of Monte Carlo methods may prove
to be the best approach in the long run, if the sample
size required is not too large. A recent theoretical

study, based on a two-dimensional homogeneous isotropic
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turbulence model (Leith, 1974), suggests that a sample
size of 8 will give acceptable results in the forecast of
the mean for that model. Whether this would be acceptable
in an atmospheric model awaits further investigation. More-
over, such a small sample size might not be suitable in
order to yield estimates of covariance statistics which
would be of sufficient accuracy for optimum data assimila-
tion.

We conclude by noting that several problems remain
to be solved before stochastic prediction can be consid-
ered as a viable alternative to existing methods, but

this study has established the feasibility of the approach.



APPENDIX A

PROOF OF STOCHASTIC ANALYSIS ALGORITHM

This appendix demonstrates how one may deduce the
analysis algorithm (3.9) by application of a result in
probability theory called Bayes' theorem. It is not our
purpose to give a complete treatment here since this may
be found elsewhere, notably Raiffa and Schlaifer (1972),
but instead to provide the major steps in the argument.

The reader desiring fuller detail is referred to the
rather exhaustive work cited above.

Consider a random vector B whose elements are dis-
tributed according to a multivariate density function
D, (8), herein referred to as the prior. Consider next a
set of observations Y which bear some statistical relation-
ship to 8. Then from Bayes' theorem we can deduce Dz(ﬁlz)r

the posterior density function for B, given the new obser-

vations:

D,(B1Y)=2(Y18)D,(B)R. (A1)

In the above, R is simply a normalization factor and is

determined by the condition,

SDAE!‘_/)A&=R§£(xl£)o,ag)°\g= | (A2)

where the integrations are performed over all B. We de-
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note by R(ZIE) the density function which expresses the

conditional probability of Y given B. It is at this point
that the relationship between Y and B should be specified.
As discussed in Chapter III, we have chosen the regression

model,

Y=xB+e, 23)

where in this application the elements of ¢ are taken to
be distributed according to a multivariate normal density
with mean zero and covariance matrix o0%I. The vectors Y
and ¢ have P elements corresponding to P observations.
Having postulated the statistical nature of g, we

may write its probability density as follows:

flay=um*e u,?(-% e'¢), (a4)

where the prime denotes transposition. But from (A3)

2(Y|B) is simply

Ayl E)'é(m)'f'E s’PuH-g,;’l(\i— x () (Y- x [’.)} . (as)

As suggested by the notation £(Y|g) is merely the likeli-
hood function for the data. Maximizing this function with

respect to B gives the least squares solution B.

To utilize (Al) we must now specify the nature of the
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prior D) (B). This point was discussed in subsection 3.1.2,
and on the basis of that argument D;(B) is chosen to be the
normal density. The moments required to define this func-
tion are supplied by the stochastic forecast. Let b and S
denote the prior mean and covariance respectively. If b

contains N parameters then the prior is given by

N :
(0= aw T1S " o [ 5L 5B ], )

where |§'1| is the determinant of §"1. Substitution of

(A5) and (A6) into (Al) yields the posterior density:

_P+N v,
D,(B1Y)=R24) 7 o 'U5]"

“T’H T, @

where

Tz 2(y-xP)(Y-xP)+(f-b) §'(f-b). (@8

Expansion of the above and rearranging yields
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+e2YY + b 57'b. (A9)

The next step is to factorize:
T=0(s" +62x'x) [ B- (s 've x'x) (s +c"‘§'z)]

-[tst e e xx ) (57 b+ o"’gg'y)]'( $'¢ e x'x)

This rather cumbersome expression may be written in the

following relatively simple form,

T=T,+T,,

where

o |
o
-~ 3

»n
1L
1<

+

107

I

s

1o
'

lv:?

fon>»

[ §
10>

w



135

and

b=S(s'b+etx'y)
R - - . (A10)
S = (5w 67t g 0"

Note that the random variable B appears only in T, ,» and

that the latter is in the standard canonical form for the

normal density. Thus D,(B|Y) is multivariate normal with

posterior means and covariances given by (Al0), which is

the required result.



APPENDIX B

EVALUATION OF INTERACTION COEFFICIENTS

In section 3.4 the elements of the interaction matrix
were defined as follows:

LIFS Pt
RS AT T A SFUNEC

in which p + r = m. Analytical expressions for the evalua-
tion of (Bl) have appeared in the literature (Silberman,
1954; Thiebaux, 1971). With a moderately large spectral
truncation, these formulas are often not the most conven-
ient to use.

We shall evaluate (Bl) by Gaussian quadrature. An ex-
act evaluation, apart from round-off errors, is possible if
a sufficiently high order quadrature is employed. This is
possible because the integrand in (Bl) can be written as a
polynomial in M , the cosine of colatitude. The deriva-
tives which appear in the above may be expressed in terms
of the associated Legendre functions via a recursion formula.
This is relatively straightforward by noting that the Pg
may be defined in terms of the ordinary Legendre polyno-

mials (normalized), i.e.

L ™
P ® (nem)l (‘-H ) ™
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Differentiation of the above with respect to 6 yields,

o
t:‘ "(:2*)71 P: - {(n-\m)(n +w\+!)}y" P‘:ﬂ . (B3

Making the appropriate substitutions in (Bl) and simpli-

fying gives,

Pmy _PwmY¥ tw P

L‘“S"E\ns- ES%\ >

(B4)

where

T P¥l wm v

E::: = ri(t- PX(q+pe n}V,_ S. Pl PP, de,

and similarly,

rwmP

W m
Es.. . = P{(s-v)(s+ r+|)1y" So P:ﬂ P. P' de .

A 32 point Gaussian quadrature was used to make a one-time
evaluation of (B4). The majority of the elements ng;
are zero with the necessary conditions for non-zero values

given by selection rules (Orszag, 1970).



APPENDIX C

RELATIONS BETWEEN REAL AND COMPLEX QUANTITIES

In the sequel we shall present expressions which re-
late real and complex covariances. Complex covariances have
been formally defined by (3.29) and are useful in the pres-
ent context from both a mathematical and numerical stand-
point. Of ultimate interest, however, will be the corres-
ponding covariance information for real numbers.

Let the following equation define the real and imagin-

ary parts of Wﬂ :
™ Y W
Y. .=a,.+ib, . (1)

Again, by definition, Exﬁ: =u$ = A§'+ iBg where as before
ug is the ensemble average of WE . In addition, the real-
ity of the streamfunction field implies that
- w o ¥
V“"(-) Y.“

2
W  wm¥ (€2)

-
Ha*=) M,

where the star denotes complex conjugation.

From (3.29) we have

™

EnyEEFRY) ) - AL A,
=t L eibnaal + b - (An L BRI, 4iBY)
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=E(m ) - A iy - LEGT BY) - 87 8
Fi{E(mbY)- AL FE(LBT) -AlEn] s

from which results the following identity:

Gy = tov(ay,ay) = w(b“,“,b’t)uim(aﬁ,b‘s)+w(£:,, b:)}' (c4)

Equation (C4) implies directly that

)
"‘" G:‘:= Cov (o":\)o'“v)- Lo (b‘\) b‘;) b ()
™ ™ 9 w
&"'G\::LH“(a“:E:)i-Lud(avbbn)‘ (ce)

Utilizing (C2) we may derive the following relation

analogous to (C4):

AL L S ™m u mouy . m oy u ™

§n 20 [W(a“,av)i- tov (b, b,)+i {‘ w(a,,,b,,)-l'(o\r(a,,k,)ﬂ
(C7)

where 62 _$== cov(wg ,w;u ). Likewise the foregoing yields

the two additional identities:
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Re g =

" ™
woy-®©) [W(O::,t:)i'w(bmb';)}, (C8)

boa 63, 3 0 - conrta, by) # o e, B ()

The relevant relations may be deduced from (C5),

(Ce),
(C8), and (C9)

for the two cases:

1) u even,

)
tor(an, 0y )= 3 Relohy + o0 o]

W(b:,h:)"!ipuic’:‘:-cm“.s ? > (c10)

w&a':\,h':)-f,; \.,,,{ wu_ e '“i

(g -
nv n vy )
2) u odd,

™M muy m-u
covlom, ot)= i ReleTy - on v.&

+6

ny n Vv

? ‘ (C11)
e (b, by): Y Ref o7 #677Y]

™ U ™m ~\
v (0, b)) % Smicny ¥ O v}



APPENDIX D

NUMERICAL METHOD FOR TIME INTEGRATION

Interchanging summation indices in (3.35) and noting

. rmp _ _.pmr .
the very simple property, Ilan = ans’ we obtain the

following symmetric form:

. 1 P or Pt Pr t £ pmr
™D, %?m z LG e 4 v 0300+ K -4l HOIT

+Fro Ao + 0, w(o(,"l':)]'“’l)

Utilizing the above makes for increased computing economy.

Each member of the system of equations to be integra-

ted may be written schematically as

X=R¢+ §$X (D2)

where R represents all inhomogeneous terms and fx the
linear ones. Following Baer and Simons (1970), we note
that a reduction in truncation error is possible if we

account for the linear terms exactly. We shall therefore

deal with the following equation:
S £4)) = (D3)
1t (Xamp(-16)) = Ramp (- £¢) .
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The total number of equations to be integrated is
quite large, and this dictates the use of a relatively
simple time differencing scheme. For this reason, the
Adams-Bashforth scheme was chosen to carry out the time
integrations. This scheme is also free of any computa-
tional mode (Young, 1968). With this approximation the

finite difference form of (D3) is

taat
X

aapl-ditea) - Xeapt ) - ﬁ[m*z»d‘:(-lt) - k*"’i.r(-m-mﬂ
Ot )

or equivalently
Xt*°t*[xt+ %:‘{za*- R"”«t(&bﬂ]]nt(tot) . (D4)

In the above, the time step At was chosen as 0.5 hr. This
assured that accumulated truncation errors were kept within
tolerable limits.

For the first time step an implicit forward difference

was used. The relevant difference equation is

L4, [.xt*_ %{Rt”\“u”t‘('“ﬂu w"(: b4) . (D5)

The preceding was solved by an iterative procedure employ-
ing an ordinary forward time step to start the iteration.

Rapid convergence was obtained after about three iterations.



APPENDIX E

FORMULATION FOR RANDOM FORCING OF THE SECOND KIND

Parameterization of model uncertainty by random forcing
of the second kind, as defined in subsection 3.5.1, yields

the following modified form of (3.19):

D, (2 Vf{(cs‘\lf:NH;)L:::i'Fm'V: ror, U

f+r-
where

Fnz2

and where it is understood that o stands for a2),  In this
developmento is a complex random function of time for m >0,
whereas the imaginary part of o is identically zero for
m = 0. This constraint is simply a consequence of the fact
that y> is real for all n.

The time evolution of the ensemble average up is ob-

tained as before by taking the ensemble average of (El):

" P v pe P ) pmy = ™
a2 feoir o A R

+ & . (E2)

In the above and succeeding expressions the notation is the
same as that employed in section 3.6. By contrast with (3.35)

no second moment statistics involving o appear in (E2). 'The
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reason for this of course is because the random forcing en-
ters in a statistically linear fashion, unlike the previous
parameterization which is nonlinear in a statistical sense.
In the manner leading to (3.36) we may derive another
set of equations, each describing the time behavior of the
covariance between a pair of spectral coefficients. The

following results:

3 pmy
& v O a.m{c,m‘o':: nqsc',', ”'L“) +cHs v IL“,
+F,, 6ny + Dy covld, -r';)]
r fm
D, %ﬂ{cs(q‘c’“ 1-;4s “ +ti,‘)+cH, tw IL‘“
+Fua':: + D;'w(-(,'r:) . (E3)

Obviously the only difference between (E3) and (3.36) re-
lates to those terms involving the statistics of a .
However, for the reason given in the previous paragraph, a
fundamental difference between these two equations is the
absence of third moment quantities involving o

Because a is real whenever it appears in an equation
governing a zonal coefficient, caution must be exercised in
programming (E3). The form of cov(a '¢3 ) or cov(a ,wﬁ )
may change according as m and/or uequal zero. Specifically,

if a = a.. +iai, where o is the real and o the imaginary
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part of a, then it follows that

Cw’(o(,'if:) = W(o(\.,?’:)i- ) cov(a,;ﬂ«:), (E4)

where individually cov(a,, wg) and cov(ay, wﬂ) may be
complex. The second term on the right-hand side of (E4)
is present in (E3) only when u > 0.

Similarly the derivation of the equations governing
the time dependence of cov (o, wg) and cov (o, wﬂ) is
quite straightforward. As in the foregoing, we quote the
results:

Leorto ¥ 0 & festf covtony Y504 4 cavta, )

ﬁr:m

‘,S

r A "
+ tovy (e, v':,y-:)) +CH w(«,,'{r:)h:: s t Fnovlie,¥,)
t D,f (v oy + 0 W(‘(h'(g)ﬂ - :!t‘ La\r(o(‘.,‘f‘:), (E5)
Leovta, 2] = 04 | 2. Lt cowts ¥ 4 vt ¥)

P"l;ts M

P\l P™T

¥ W:(“i;v';)*:» +C H: w(d;,?’t)ILt. s tFn W(-tc,’f:)
. L

+D;‘ (L vano; + W("\-,da»J Tt m(d;,?‘:).(m)

If m = 0, then /:icov(ar, 0j) does not appear in (E5), nor

does v-1lvar o; appear in (E6).
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Under the assumption that each of a, and aj obeys the

simple stochastic process given by (3.22), then, as in

subsection 3.5.2, we may obtain the following expressions:

5
"

v =kt (R - A ampl-tit)

x|

L= :‘L +(:;°—§L)MJ‘»('HT) ,

2 2 (E7)
WL E Oy (1= enp (-2H/T)) + 6, h)f(-lt/t) ,
T O (1= eapl-26/1)) + 6, supl-2t]t)

W(d‘-’c(g)" ‘;o .ld)f (-a2t/t) )

- 2 2 .
where B,= cov(a,, 03) |- In the above op (0} ) is the
: 2 _ 42
long term variance of a,(oj). We shall take oy = o3,-
The remaining symbols have been defined in subsection

3.5.2.
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