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1'2 + [el(r, t)/r{ 1 + Q~: t) ([r/a] - l)H([r/a] - 1)] 

= ol(r, O)/s. (28) 

The charge contained within the surface of the 
sphere of radius r, at the time tis Q(r, t). It is related 
to the charge density q, through 

Q(r, t) = { q(z, t)4rrl dz. (29) 

In order to construct the function q(r, t), we 
calculate the charge in the volume element 4'1rr2dr. 
Suppose only two shells with s numbers SI and S2 

intersect at the time t. Then the charge in the said 
volume element is 

4'IrT2 dr q(r, t) = 4'1rs~ ds1 q(sl) 

+ 4'lrs~ dS2 q(S2) - 4rrr2a2 dr Qo 5(r - a) (30) 

or equivalently, 

r2q(r, t) = [S2 as/ar qo(s)]., 

+ [S2 as/ar qo(s)] •• - Qoa2 5(r - a). (31) 

The initial charge distribution is qo. The values 
81 and 82 are the roots of the equation 

r - res, t) = O. (32) 
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More generally, if this equation has, say, N roots 
then Eq. (31) appears as 

.. 
q(r, t) = 1: (sz/r)2(as/ar)szq(sl) - Qo(a/r)2 5(r - a). 

I-I (33) 

Equations (28), (29), (32), and (33) are the desired 
equations of motion. 
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The most general Clebsch-Gordan coefficients to reduce the physically most important n-fold 
product representations of the groups P + T and P (Universal covering groups of the restricted and 
full inhomogemeous Lorentz groups) are derived. They are used to answer the question: What can be 
said about the S-matrix if only Lorentz invariance is postulated? 

1. INTRODUCTION 

'SEVERAL authorsl
-

5 have constructed relativistic 
angular momentum states to achieve a general 
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"partial-wave decomposition" of the S-matrix. In 
this work, we intend to approach this problem from 
a quite general point of view. Namely, we want to 
determine the most general Clebsch-Gordan coef­
ficients for an n-fold product of irreducible rep­
resentations of P! and P (i.e., of the universal cover­
ing groups of the restricted and the full inhomoge­
neous Lorentz group), if only representations of P! 
are considered with character (m, E = +1, s)(m = 
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mass, E = sign of the energy, m 2:: 0), and if we con­
fine ourselves to representations of P with the same 
character, and for which, in addition, the square of 
the time-inversion and the square of the space-time 
inversion are represented by 

For the explicit construction of these representations 
see Refs. 6-10. 

We start from states which are represented by 
square-integrable functions of the four-momentum 
p on the mass-hyperboloid p2 = m2, and which at 
the same time are eigenfunctions of the spin operator 

[For its definition see (2.18).] It is well known that 
the spin operator of a particle in a coordinate system 
in which the four-momentum p is measured is de­
fined only up to a transformation induced by an 
element of the little group of p. 

However, we want to start from states for which 
the spin of the lth particle is defined quite generally. 
The only assumption we make is that the spin 
operators corresponding to physically indistinguish­
able particles are equally defined. For the conven­
ience of the reader, we rederive many results which 
can already be found in literature at different places, 
e.g., the decomposition rules of the product rep­
resentation of P! can be found in Refs. 3, 5, and 10. 
The corresponding rules for P which are also given in 
our paper, as far as the author knows, cannot be 
found elsewhere. The works of Jacob and Wick2 and 
Wehrle4 served as a guide for the author. The 
present work may be looked upon as a generalization 
of their work, in which the helicity formalism is 
exclusively used. 

We apply our methods also to the S-matrix which 
we first represent as a sum of covariants of P! mul­
tiplied by invariant amplitudes. These may then be 
decomposed into partial-wave amplitudes. Finally, 
the connection between this approach and the M­
functions of Stappll,12 is given (see also Ref. 12). 

6 E. Wigner, Ann. Math. 40, No.1 (1939). 
7 V. Bargmann, Gruppentheoretische Analyse der Loren­

tzinvarianz, lecture given at the Federal Technical Institute, 
Zurich, 1963. 

8 V. Bargmann and E. Wigner, Proc. Natl. Acad. Sci. U.S. 
34, (1948) 211. 

9 Fierz, Einfiihrung in die Quantenfeldtheorie, lecture 
given at the Federal Technical Institute, Zurich 1963. 

10 A. S. Wightman in Relation de disper8ion et particule8 
elementaire8 (Hl60), p. 161. 

11 H. P. Stapp, Phys. Rev. 125,2139 (1962). 
11 K. Hepp, Helv. Phys. Acta 37,55 (1964). 

2. SOME FACTS ABOUT SL(2,C) 

It is well known that there exists a one-to-one 
correspondence between the Hermitian two-by-two 
matrices and the vectors of Minkowski space p, 

(
0 1 2 3) _ I' P = p, p , p ,p ~ p- - upI" 

where 

Uo = (~ ~), = n, u
l = (~ ~), 

u2 = (~-~), and u3 = (~ _~) 

are the Pauli-matrices. It follows that 

det p_ = (P0)2 _ ~2 = ma. 

(2.1) 

(2.2) 

(2.3) 

We shall only consider the case where p lies in the 
future cone. 
By 

(2.4) 

a two-one homomorphism between SL(2, C) (Group 
of complex unimodular two-by-two matrices) and 
the restricted homogeneous Lorentz group is estab­
lished. If we introduce the caret operation for any 
two-by-two matrix by the definition 

(2.5) 

(the bar indicates the complex conjugate), it follows 
for A E SL(2, C) 

(2.6) 

The caret operation is an outer automorphism of 
SL(2, C), which, at the same time, is an involution. 
Because 

'fi- = [IIp]_, 

its application to (4) yields 

A[IIp]_A t = [IIA(A)p]_, 

i.e., 

IIA(A)II = A(A) , 

(2.7) 

(2.8) 

where II denotes the space inversion. Note that the 
caret operation leaves the elements of SU(2, C) 
(Group of the unitary unimodular matrices) in­
variant. Let V+(m) be the mass hyperboloid belong­
ing to the mass m in the future cone. The relation 
(4) then shows that to each p E V+(m) there exists 
a transformation a(p) E SL(2, C) with the property 

ma(p)at (P) = p_ (m > 0); 

ia(p)(uo + Ua)a
t 
(P) = p_ (m = 0). 

(2.9) 

The sets Q(p) of the transformations a(p), which 
possess these properties form left cosets of the little 
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or isotropy groups of the matrices 1 (m > 0) and 
Huo + ua) (m = 0), respectively, which corresponds 
to the momentum (m,O) and (t, 0, 0, t) in Minkow­
ski space. The isotropy groups are 

L(m) = {8U(2, C) C 8L(2, C), 

L(O) C 8L(2, C), 

m> 0, (2.10) 

m = 0, 

where L(O) means the group of transformations 

1'(a)p(q» , 

rea) = (~ ~), 
(2.11) 

(2.12) 

From (19) and (20) we conclude that 

afp] = pfp] hfp] == a{p} pfp]. (2.21) 

3. SURVEY ABOUT THE PHYSICALLY MOST 
IMPORTANT REPRESENTATIONS OF THE 
INHOMOGENEOUS LORENTZ GROupl-4 

Let A = (;~) be a matrix of 8L(2, C). It is well 
known that, by 

(ax + 'Yy)a+~(fJx + ay)'->' 
[(s + ),,)1 (s - ),,)1]1 

a+~' .-x' 

= f.: [(s + ~/)! (s - A') !]l ~.>.(A)+, (3.1) 

(2.13) where A is one of the numbers of the set 

Specially important choices of the transformations 
a(p) are [we reserve parentheses for a general element 
in Q(p), applying brackets and braces to the special 
elements quoted in the following] 

m>O 

1+(s) = {-s, -8 + 1, ···0,1 ... 8 - 1,8} 

and the summation over A' is to be carried out over 
the same set, the representation (8, 0) 

A -+ :!)'(A)+ 

and the representation (0, 8) 
a{ I - ('E.:::.)i _ m + p~ 

P - m - [2m(m + w(~»]i (2.14) A -+ :!)'(A)+ 

with 

w(~) = +(m2 + .p2)!, 

and, for m ~ 0, 

a[p] = p[p] h[P]. 

Here 

where \) is the Euclidian length of .p, 
and 

(2.15) 

{

e-''P/21f'e-iQ/21f. for (0 < {J < 11'; ° ~ q> < 2'11), 

pfp] = 1 for {J = 0, (2.17) 

iu1 for {J = 11". 

q>, {J are defined by 

V = \l(sin {J cos q>, sin {J sin q>, cos {J). (2.18) 

In the case m > 0 one has 

h[P) = a{p(3)} (2.19) 

with p(3) = (w(V), 0, 0, \l). In addition one derives 
from (14) for v E 8U(2, C) 

va{p}vt = a{A(v)p}. (2.20) 

of 8L(2, C) is defined. If A E 8U(2, C) the two 
representations coincide and become unitary. 

Let K be that subgroup of 8L(2, C), the elements 
of which are either of the form 

or of the form 

Equation (1) then gives an irreducible representa­
tion of K if we restrict ).., )..' to the set of the two 
numbers 

10(s) = {-s, s}. 

We denote the matrix: which represents the element 
A E K in this representation by 

:!)'(A)o. 

a~20) for A = (~ 

( -~) -2,) for A = (~ 

We notice that the subgroup Ku = K (\ 8U(2, C) 
«(\means intersection) is thus represented unitarily. 
:!)·(A).(1' = 0, + 1)[A E 8L(2, C) for l' = + 1, 
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A E K for T = 0] defined in (1), and (2) is a matrix 
operating in a N,(s)-dimensional vector space, where 

N,(8) = {28 + 1, 
2, 

T = +1, 
T = O. 

(3.3) 

Let ~(m, s) be the Hilbert space of the matrices 
with one column and N,(s) rows, the elements of 
which are square-integrable functions defined on 
the mass-hyberboloid V+(m). We define the scalar 
product in ~(m, 8) by 

1 .!!:£.... t (I, g) = V+(m)2w(4') I (P)g(P) f, g E ~(m, s), (3.4) 

where the integration extends over V+ (m) and the 
symbol t indicates the change to the adjoint (trans­
posed and complex-conjugate) matrix. 

The unitary irreducible representations of the 
orthochronous quantum mechanical Poincare group 
pt, the universal covering group of the ortho­
chronous inhomogeneous Lorentz-group P t is de­
fined in ~(m, 8) by 

(U(a)f)(p) = e'lIG f(P) , (3.5a) 

(U(A)f)(P) = 'Il(p(P, A».f(A-1(A)p), (3.5b) 

(U(ll)f)(P) = 11n 'J)' (Pn(P»,f(llp). (3.5c) 

The unimodular factor l1n is the parity. 'J)'( )r is 
defined in (1) and (2). [In future we drop the index 
T, keeping in mind that, in the case m > 0 (m = 0), 
we have to take the matrix 'J)'( )+, 'J)~( ), respec­
tively.] 

The matrices p are defined as follows 

p(p, A) = a-I (p)Aa(A- I (A)p) , 

Pu(P) = at(p)a(llp), 

(3.6) 

(3.7) 

with arbitrary a(p) E Q(p). [The physical signifi­
cance of our choice of a(p) is seen below.] Pu(p) has 
the properties 

~-lpU(P) E L(m), pu(P)pu(np) = 1. (3.8) 

Note that, for m = 0, pu(p) EE L(O). 
From (5c) one derives 

U 2(ll) = 11~. (3.9) 

These formulas are valid for cases m > 0 and 
m = 0, if one determines any matrix belonging to 
the group L(O) modulus the invariant subgroup of 
"the translations" T(a) as element of the group 
DU(2, CJ which is defined as the group of the 
matrices p(lP) given in (2.13). [It is well known that 
only those representations of L(O) have physical 

significance, in which the invariant subgroup of the 
"translations" is represented by the unity.] 

By doing this, pep, A) as well as pn(P) in the case 
m = 0 become elements of K u, so that :D'( )0 is 
defined for both of them. For a(p) ~ alP], we get 

-I _ '/.0" or 0 <: f} < 'II" an f} = 0, 

{ 

'3f {O<lP<'II"} d 

" pu(P) - (3.10) 
,sf {'II"<lP<2'11"} d 

-'/.0" or ° <: f} < 'II" an f} = '11". 

For a(p) ~ alp}, we get 

Pulp} = L (3.11) 

If we confine ourselves to the restricted group P!, 
the space ~(m, 8) remains irreducible in the case 
m > 0, decomposing into two subspaces with the 
elements 

respectively, in the case m = O. 
Finally, we define the time-inversion antiunitary 

by 

with 

Note that 

(V(T)f)(P) = 'J)'(e)(U(n)f)(P)'11 

= 'J)'(pu(p)e) J(llp) . TJT 

'J)~"(E) = (_1)'-A 0., .-A 

so that it follows 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Defining VeT) by (12), it is not necessary to enlarge 
the space to represent the time inversion. We do 
. not consider representations with different values 
of U 2

(n) and V2(T). These are found, for example, 
in Ref. 7. 

If we define V(IIT) by 

V(IIT) = U(n)V(T) = :11 V(T)U(II), (3.16) 
TJI1 

we get 

V 2(IIT) = (_1)2 •. ~n • (3.17) 
TJn 

The freedom in the choice of £l(p) E Q(p) is the 
mathematical expression of the fact that the spin 
vector of a particle in a coordinate system, in which 
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the momentum p is measured is only determined 
up to a transformation with an element out of the 
isotropy group of p. If ~ is the vector of the total 
angular momentum in our representation (vector of 
the Hermitian represented infinitesimal rotations), 
we get for the spin operator in a coordinate system 
in which the particle has the momentum p, 

Here 

Sk(P) = U(a(p»Wk(P(m»U-I(a(p» 

= W.(p)A~(a-1 (p». 

p(m) = (m, 0) for m > 0, 

p(O) = (!, 0, 0, !), 
W.(p) = [p°(m)r(~.~, pO~ + ~ )(9l), 

(3.18) 

(3.19) 

a.nd 9l is the vector of the Hermitian Operators 
representing the infinitesimal special Lorentz trans­
formations in the three directions of our coordinate­
system. 

For a(p) ~ a[pJ we get 

Ss[P] = U(a[p])JaU-1(a[p]) 
(3.20) 

= U-I(p[P])JaU-I(p[pJ) = ~'~/\), 

i.e., the projection of the total angular momentum 
on the direction of the momentum, the so-called 
helicity. 

For a(p) ~ alp} it follows 

Sa(pl = ~ [ -(3'~) m +aCJJ(~) 

+ PoJs + P1N 2 - P2NIJ 

_ J _.1 (N _ P2J a - PaJ 2\ 
- a m I m + CJJ(~) fP2 

+ .1 (N _ paJI - PIJa) 
m 2 m + CJJ(~) PI 

= J 3 - (J )(~)a, (3.21) 

where 

9l ~)(3 \ 
J = m - m(m + CJJ(~» + ~f(9l, ~J (3.22) 

with suitable chosen f(9l,~) turns out to be the 
(Newton-Wigner) position operator. 

Therefore, this choice of the transformation a(p) 
is equivalent to the definition of the spin (in a 
coordinate system in which the particle has momen­
tum p) as difference between the total and the 
a.ngular momentum. 

Concluding this section, we mention that, in the case 
m > 0, the transformation 

f'(P) = 5)8(a(p»f(p) (3.23) 

represents an isomorphism of the Hilbert space 
S)(m, s) and a Hilbert space equipped with the scalar 
product 

(1' g') = J d3

p f'\p) 5)8(P~)g'(p) = (f g) (324) , 2CJJ(41) m ' . . 

In this Hilbert space the unitary representation of 
P! takes the well-known H (s, O)-Spinorfield-form" 

(U(a)f'}(p) = e'1>4f'(p), 

(U(A)f') (P) = D8(A)f'(A -1(A)p), 

(U(II)f')(P) = 5)'(~)f'(IIP) ·1/n, 

(V(T)f')(P) = 5)8(e)J'(IIp) ·1/T. 

(3.25) 

Equations (23)-(25) remain valid, of course, if a 
caret is put over each matrix occuring in 5)'( ) 
leading to the "(0, s)-Spinorfield form" of the unitary 
representation of Pl. The space inversion maps the 
so-defined representation spaces of P! onto each 
other. 

4. PREPARATIONS FOR THE DECOMPOSITION 
OF THE GENERAL PRODUCT REPRESENTATION 

OF~+t 

Let us first consider the set <P,,(m)(m = (ml' ... m .. ) 
Iml = L:~-1 m, > 0) of the oriented closed polygons 
in three-dimensional space, which have n edges 
labeled with H weights" ml ... m ... Strictly given the 
set of H weights " ml ... mIl such a polygon is still 
characterized by n vectors fl ... f.. which satisfy 
the subsidiary condition 

(4.1) 

We define the total weight of a polygon by 

" 
M = E (f~ + m,)'. (4.2) 

i-I 

Instead of characterizing the polygon by m and 
(fl ••• f..), we may also characterize it by n four­
vectors 

(4.3) 

which fulfill the subsidiary condition 

" L: k, = (M,O) (4.4) 
i-I 
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or applying the mapping (2.1) by n Hermitian ma.­
trices 

(4.5) 

satisfying the subsidiary condition 
.. 

:E k_. = M·ll. (4.6) 
i-I 

Consequently, the weights of the edges are then given 
by the roots of the determinants of these matrices. 

We call equivalent two of the elements of <P .. (m) 
if and only if there exists a rotation R<p"x(tp, tJ, X = 
Euler angles) which transforms one of the elements 
into the other. Hence <P .. (m) decomposes into equiv­
alence classes. Let us imagine that a system of rep­
resentatives of these classes is chosen. Assume that 
it is given by polygons characterized by the vectors 

polygons, we denote by C .. , and the submanifold 
of Cft defined by (4.8) we denote by C .. (M). 

In the case n = 2, en is the positive real axis. One 
has 

lJ1 = -lJ2 = lJ 

and one may choose as inner parameter b or M. The 
two quantities are connected by 

M = W + mD' + (b2 + m;)f, (4.12) 

i.e., 

where 

A(ml' m2, M) = (1/4~)(m~ + m~ + M' 

- 2m~M2 - 2m~M2 - 2m~m;). 

(4.13) 

(4.14) 

lJ. = lJ.(x) (i = 1 ... n), 
It is no loss of generality to assume that b1 points 

(4.7) in the direction of the 3-axis in three-dimensional 
space, so that 

where x = (1(1 ••• 1(3n-6) are (3n - 6) inner (i.e., 
rotation-invariant) parameters which parametrize 
the system of representatives. We may choose as 
1(1 (the square of) the total weight M. In general, M 
is a function of x: 

M = M(x). (4.8) 

A possible choice of the parameters is 

(4.9) 

where tpk, tJk are the polar angles of lJk relative to 
61 (tp is measured starting from the plane put up by 
lJ1 and b2 ; fl. denotes the length of b.). 

It is possible to choose the Lorentz-invariant 
parametrization 

(b, b1) ••• (b, b"-l)' (b1 , b2) ••• (b 1 , b .. - 1) , 

[b1 , b21 ba, b,] •.. [b .. - a, b .. - lh b"_1! b"J , 

where 

(4.10) 

(b1, b2) is the Minkowski scalar product of the 
vectors b1 and bll, and 

(4.11) 

stands for the volume in Minkowski space defined 
by the vectors b1 ••• b,. 

In future, we use a general parametrization if we 
do not explicitly refer to a special one. The domain 
in x-space, the points of which correspond to real 

(4.15) 

We now want to parametrize one of the equivalence­
classes in <P,,(m). It is evident that, in the case n ~ 3, 
the three-dimensional rotation group (and in the case 
n = 2, the two-dimensional sphere) yields a param­
etrization. However, the parametrization adapted 
to our purposes is the following. We consider the 
isotropy-group G" C SL(2, C) of the n-vector of 
Hermitian two-by-two matrices 

We find 

G - (4.16) 
{

DU(2, C), n = 2, 

.. - cyclic group of the 
two elements (ll, - ll), n ~ 3. 

Here we have assumed that b~h b~2 (in the case 
n = 2) have the form (4.15) so that DU(2, C) is, 
as above, the group of the matrices p(tp) defined 
in (2.13). We denote by 

SU(2, C)/G .. (4.17) 

the manifold of the left cosets of the group G fI with 
respect to the group SU(2, C). In the case n ~ 3, G

ft 

is an invariant subgroup; hence (4.17) is a group (iso­
morphic to the three-dimensional rotation group). 

A parametrization of the manifold (4.17) is now 
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seen to be equivalent to one of an equivalence 
class of <pn(m), i.e., if {pI is a system of rep­
resentatives of the left cosets, {p} yields a parametri­
zation of an equivalence class of <PnCm). Let p 
(PI, ... Pn) be an element of the product set 

V:(m) = V+(m1) ® V+(m2) ® .,. ® V+(mn), 

(4.18) 

and let q denote 

(4.19) 

Then we have 

Further we assume 

a(q) E Q(q). 

By the relation 

a-l(q)p_(a\q»-l = k_, 

we attach to each p E V+ (m) a polygon and therefore 
a representative p E {pI and a point x E C .. C[l]i). 
On the other hand, if x E C .. ([q2]t) and p E 
8U(2, C)/G", q2 ~ Im12, and b(x) is a representative 
of a class in <Pn(m), we get a vector p E V+(m) by 
the relation 

In other words, there exists a parametrization of the 
manifold V+ (m) by the one-to-one correspondence 

p +-+ q, p,X, (4.21) 

where q2 ~ Iml2 > 0, p E 8U(2, C)/G", x E C .. ([q2]1). 
By x E C,,([q2]t), a equivalence class of polygons in 
<p,,(m) with total weight [q2]f is fixed. We call it 
the equivalence-class x. We consider now equiva­
lence-classes, which are related to the given one: 

(1) The equivalence class of the mirror polygons, 
which we denote by Ilx. (Note that in the cases 
n = 2, 3: Ilx = x.) 

(2) Let 'Y~ be the subgroup of the symmetric 
group "I" of n elements which contains all the ele­
ments permutating those edges of a polygon in 
<p,,(m) which have the same "weights", so that <P .. (m) 
is mapped onto itself by each'll" E 'Y~. The permuted 
equivalence-class x we denote by 'll"x. 

Because the polygon characterized by Ilb(x) must 
lie in the equivalence class Ilx, and, similarly, the 
polygon characterized by 'll"b(x) in the equivalence 
,class'll"x, there exists transformations vn(x), v .. (x) E 

8U(2, C) with the property 

b_(IIx) = Vn(x) [IIb(x)]_ v~(x) (4.22) 

and 

(4.23) 

respectively. They are only determined up to an 
element in G n. Furthermore, because of 

(4.24) 

we have 

(4.25) 

i.e., 

o ::; Xn < 4'11" for n = 2, 
(4.26) 

Xn = 0, 2'11" for n ~ 3, 

and 
(4.27) 

where 
(4.28) 

Before continuing the general discussion, we give 
the most convenient choice of b(x), V .. (x) and vnCx). 
For n = 2, 3, we have b(Ilx) = b(x) j hence we may 
choose b to be real and 

V .. (x) = E for all x E Cn • (4.29) 

For n ~ 4, we could in principle choose vn(X) = 1 by 
choosing IIb(x) as representative of the class Ilx. 
However, we shall see that the choice (29) is the 
most convenient one for all n*. It corresponds to 
the choice Yb(x) for the class Ilx, where Y denotes 
the reflection about the xz-plane. 

For n = 2, one has 

(4.30) 

where b(x) is given by (15), so that we may set 

v .. (x) = E. (4.31) 

If n ~ 3, and if we disregard all cases where either 

Ilx = x (4.32) or 

by recognizing that the set of the points x E C" with 
one of the properties (32) has zero (Lebesgue) meas­
ure in x-space (we shall see the reason why we 
may neglect sets of zero measure in x-space later 
on), we may choose 

(4.33) 

* At least if one considers space and time inversion 
simultaneously. 
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We now claim that, simultaneously with the cor­
respondence (4.21), one has 

rl(A)p ~ A-I(A)q, p-l(q, A)p,K, (4.34a) 

(4.34b) 

7rp ~ q, pV;I(K), "ll"K. (4.34c) 

We show the validity of these correspondences in 
the case of the space-inversion and leave the proof 
of the other ones to the reader. 

Application of the caret operation to Eq. (4.20) 
yields 

jL = &(q)pb_(K)/&t(q), 

i.e., 

[Ilp]_ = &(q) pV~(K)b_(IlK)vn(K)&\q) 

= a(Ilq) piil( q) pViil( K)b_(Ilq)vn( K) Pn( q)a t (Ilq) . 

The last equation shows the statement (4.34b). 
We now define the transformation 

where 

Furthermore, one easily derives 

where 

r,(rl(A)p) = r,(p)p,(p" A), 

r,(IIp) = w~(K)r,(p)p~(p,), 

r,(7rp) = w~(K)r",(p), "II" E 'Y~, 

(4.40) 

(4.41a) 

(4.41b) 

(4.41 c) 

W~(K) = [a~(b~)rIVn(K)&~(b,), b? == b,(IlK) , (4.42) 

W~(K) = [a~(b~)rlv .. (K)a~(b .. ,), b; == b,("II"K). 

We give the proofs of (41b,c). 

r,(Ilp) = [a~(b?)rIVn(K)a-l(p)a,(Ilpl) 

= [a~(b~)rIVn(K)&~(b,)f,(Ilp)p~(P,); 

r,("II"p) = [a7(b~)rlv .. (K)a-l(p)a,(p .. ,) 

= [a~(b~)rIV .. (K)a~(b .. ,)r .. ,(p) 

a(p) = a(q)p if p ~ q, p, K. (4.35) if and only if 

With the help of (34), one easily derives 

a(A -1(A)p) = A -la(p), 

a(Ilp) = a(p)vi/(K), (4.36) 

a(7rp) = a(p)v-;I(K). 

Now, let u(b,) be an element of L(m,) which may 
depend on b, [L(m) was defined in (2.10)], and let 

a,(p,) E Q(P,) 

[Q(p) is defined after Eq. (2.9)]. Then we define 

a~(b,) = a,(b,)u(b,) E Q(b,) (4.37) 

and 

T,(p) = u-l(b,) PI (a-\p) , A-I [a(p) ]PI)[ --7(3.6)] 

= [a~(bl)rla-l(p)a,(p,) E L(m,), (4.38) 

[As always, we have to determine the transforma­
tions of L(O) as diagonal matrices belonging to 
DU(2, C), calculating modulus lithe translations."] 

By a change of the representative P of the left 
coset of Gn , 

ex) {
o < X < 4"11", 

p --7 pp X = 2"11", 

one is led to the substitutions 

n = 2, 
n ~ 3, 

n = 2, 
n ~ 3, 

(4.39) 

a,(P) = a .. ,(P) for "II" E 'Y~. (4.43) 

The validity of Eq. (4.41c) is founded on the 
assumption (4.43). Note that, in the case m, = 0, 
W~(K) EE L(O), but wJ(K)e E L(O) because of Eq. 
(3.8), so that w~(K)e is to be determined as an 
element of DU(2, C). 

We now remark that, for arbitrary fixed a, (P,) E 
Q(p,), we may choose u(b,) E L(m), always in such 
a way that, for alll, 

a7(b,) = a[b,J, (4.44) 

where alp] is the transformation defined in Eq. 
(2.15). With this choice of u(b,) and the choices 
of Vn, V .. as quoted in Eqs. (4.29), (4.31), and (4.33), 
we get 

W~(K) = a[Yblrle&[b,] = ±a[b,rle&[b,] 

{

-sign, if hi points in the direction of the 
= ± e negative 3-axis, 

+sign otherwise. 

With the restrictions, we have already put on the 
choice of b, in the case n ~ 3, it is always possible 
to choose these vectors in such a way that no one 
points into the direction of the negative 3-axis. How­
ever, this is not possible in the case n = 2 in which 
we have chosen hI pointing in the direction of the 
positive 3-axis and h2 = - hI' That is why we get 

I [-e Wn(K) = 
+e 

n = 2, l = 2, (4.45) 
otherwise. 
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Furthermore, we get in the case n = 2 

w~('K) = a[bd-1Ea[nbd = a[b1r 1e&[bl ]PII[b l ] 

= a -l[bda[b l ]epII[bd. 

According to Eqs. (2.16), (2.17), and (3.10), it follows 
that 

W~('K) = -iCTa, 

and (4.40) yields 

l = 1,2, 

y(b1 , x) = a-1 [b 1]p( -x)a[b1] = p( -x)' 

y(b2, x) = (iCTlf1 p( -x) iCTl = p(x). 

(4.46) 

(4.47) 

Finally, we get in the case n ~ 3 with the choice (33), 

w~('K) = 11. (4.48) 

This choice given by (4.29), (4.31), (4.33), and (4.44) 
corresponds to the construction of angular momen­
tum states by Wick, Jacob, and Wehrle. We refer 
to it as the WJW choice. 

We have not yet finished the necessary prepara­
tions for the decomposition of the direct product 

.\),,(m, s) = ~(ml' 81) 

(8) ~(m2' 82) (8) ... (8) ~(m", 8,,), (4.49) 

m = (ml' ... m,,)s = (81 .•. 8,,). We have to study 
the change of the relativistic invariant volume 
element on V+ (m) if we introduce the parameters 
standing on the right side of (4.21). We start from 
the invariant element of volume in p-space and write 

where k = A -l(a(p»p. From 

pO dpo = m dm, 

it follows 

where 

or, because of 

" 
M = L [m~ + li~]t, 

i-I 

The invariant volume element of the unitary group 
SU(2, C) is 

We have normed it in such a way that the volume of 
SU(2, C) is one. It coincides (up to a factor) with 
the invariant volume element of the three-dimen­
sional rotation group. We therefore get (n ~ 3) 

1 dS"p A ( ) d d
3
q dS"-6 

2"·Wl(\Jl) .•• w,,(\J .. ) = .. 'K P 2w(q) K, (4.51) 

where w(q) = [q2 + M2('K)]t also depends on 'K and 
A,,('K) stands for the expression 

1 oS< .. -llk M('K) 
A,,('K) = 2,,-1 . (li) (li) (4.52) op O'K WI 1 ••• w" .. 

Note that A .. ('K) is not dependent on p because 
dS<,,-llk is rotation-invariant, Le., it is constant on a 
equivalence class of <P .. (m). If we now choose that 
parametrization of the equivalence classes of<P,,(m) 
which is given in (9) and which we denote by 'Ko, we 
find 

,,-I 

dS<,,-llk = 16'11"2 II 0/ d cos t'J2 dQ(es) 
i-I 

x ... dQ(e,,-l) dp dOl· .. dO"-l (4.53) 

(Compare also Ref. 4), where dQ(e) = d cos t'Jdl{J 
is the element of volume of the sphere in three­
dimensional space. Hence, the result is 

'11"2 ,,-I b~ 1 
A,,('Ko) = 2,,-5 II ~('C..) M('Ko) .-('C. ) , (4.54) 

s-1 "', U'l Wn U", 

where we have to set 

.. -1 " 
II" = - L II,; M('Ko) = L w,(li,). (4.55) 

i-I i-I 

We notice that, by choosing this parametrization, 
A,,('K) has the same value on the equivalence class 
of the mirror polygons as on the original one 

and, on the permuted class, it has the value 

A .. ('Ir'Ko) = bn
2 b .. _,,,-2 A,,('Ko). 

In the case n = 2, we get 

(4.57) 

(4.58) 
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(4.59) 

The last equation is a consequence of 

In the case n = 2, the mirror and the permuted 
equivalence class of polygons coincide with the ori­
ginal one, on which A is a constant. 

5. DECOMPOSITION OF AN N-FOLD 
PRODUCT OF SPACES 

We now consider the space (4.49), where the as­
sumption Iml = L~-l m. > 0 is made. The elements 
of ~ .. (m, s) are column matrices I, y, with NT, (SI)' 
N •• (S2)· •.. N •• (s .. )(rk = sgn mk) rows, which de­
pend on p : 1(P), yep), and the scalar product is 
defined by 

1 d3np 1 t 

(I. g) = V+(m)Wl(~l)'" w .. (~ .. >'2 .. 1 (P)g(P). (5.1) 

By this equation the matrix C is defined. The sub­
space of ~ .. (m. s), which carries the physically cor­
rect representation of the group 'Y~, we denote by 
~~(m, s). The elements belonging to this subspace 
satisfy the relation 

(U(11' -l)f)(P) = 1(P), '1/(11'), (5.6) 

where '1/(11') is the signature of the fermion permuta­
tion under 11'. We now define 

:l)S(p) ~ :n"(r1(P» 0 ... 0 :n·"Cr .. (p)}, (5.7) 

where r!(p) was defined in (4.38). 
Moreover we define 

F(P) = :I)"(p}f(P). 

Hence, we find according to (4.41) 

(U(A)F)(P) = :l)s(P)(UCA)f)(P) = F(A-l(A)p), 

(U(II)F)(P) = :l)8(p)(U(II)f)(P} 

= :I)"(wii1(x»F(IIp)'nn, 

(5.8) 

(U(11'- 1)F)(P) = :l)s(p)C(11'-1)f(rp), (5.9) 

or, because of 

The representation of P in ~,,(m, s) is, according [where 
to (3.5) and (3.12), given by :I)~(P) = :n""'(r",(p» 0 ... 0 1)u·(r ... (p»] 

(U(a)f)(p) = ei.af(p), and (4.41c), we have 

(U(A)f)(P) = :l)S(p(p, A»f(A-1(A)p), 

(U(II)f) (P) = .:I)S(Pn(p»f(IIp) . nn, 

(V(T)f)(P) = :l)S(E)(U(II)f)(p)'n, 

where :l)S(Pn(P» is defined by 

(5.2) 

:l)8(Pn(P» = :n"(Pm(Pl» 0 ... 0 :n'#(P"n(P .. » (5.3) 

and :I)"(p(P, A» in a corresponding way. (0 means 
Kronecker product.) Moreover, 

nn = 11m .•. 'l/nn, n = '1/1 •.. 11 ... (5.4) 

Now we define a representation of 'Y~ in ~ .. (m, s), 
where 'Y~ is that subgroup of the symmetric group 
of n elements, which permutes equal particles among 
themselves by 

(5.10) 

Besides the space ~ .. (m, s), we now consider the 
space of the column matrices (p with N .. (SI)' ... 
N •• (s .. ) rows, which are square-integrable functions 
on the set 

{g, p, xl q2 ~ Im12; 
(5.11) 

p E SU(2, O)/G .. ; x E C,,([q2]i), 

and which, in addition, have the following properties 
[in the case n = 2, we may drop the dependence of 
(p on x because x = Kl is determined by M = (q2)t]: 

n = 2 : p(x) E DU(2, 0), 

(p(g, pp(x» = :l)8(y(b, x)(p(g, p), 

with y(b l , x) defined in (4.40); 

(5.12) 

(5.5) for n ~ 3 

or, more explicitly, 

(U(11' -1)f)p, "'j1.(p) = C:~ :::::(11' -1)f., ..... (rp) 

= f "1',' ""p.(rp)· 

(p(g, - p, x) = (_1)2 1.1(p(g, p, x), (5.13) 

where Is! = L~-l s. and 

:I)"(y(b, x) = 1)"(y(bt , x» 0 1)'"(y(b21 x). (5.14) 
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We denote the space of these functions by ~,,(m, s). 
The scalar product in it is defined by 

{.p, {f) = J dp J dS
.-

6K 

where 

rAt ) -( ) X J
V

+
MCC

• 2w(q).p (q, p, k if; q, p, k 

= l.<:lml' d4
q J dp J d3

'-
S
KO(q) O(q2 - M2(k» 

X .pt(q, p, k){f(q, p, k), (5.15) 

O(q) = {I qo;::: 0, 
o qo < O. 

It is invariant under the substitution 

.p -7 !i)S(y(b, x).p 

because y(b l , x) is unitary. 
According to (4.39), the definitions (5.8), and (3.1), 

the properties (5.12) and (5.13) are exactly the ones 
possessed by the functions F (p), if they are com­
prehended as functions of q, p, and k. Hence, there 
exists a one-to-one correspondence between the ele­
ments of .p .. (m, s) and that of ~,,(m, s). To make 
it an isomorphism between the Hilbert spaces, 

.p .. (m, s) ::: ~ .. (m, s), 

we have to set 

.p(q, p, k) = Ai(k)F(p). (5.16) 

with A .. (k) defined in (4.52) and (4.59). Indeed, we 
now get 

(.p, {f) = (F, g) = (f, g). 

According to (4.34), Eq. (5.16) induces the following 
representation of P and 'Y~ in ~,,(m, s): 

(U(a).p)(q, p, k) = e;qa .p(q, P, k), 

(U(A).p)(q, p, k) = .p(A-1(A)q, p-l(q, A)p, k), 

(U(Il).p)(q, p, k) = RuBu(k) 

X !i)S(Wii\k».p(IIq, pii1(q)PVr/(k), Ilk), 

(U(1T-1).p)(q, p, k) = B,,(k)C(1T-1) 

X !i)S(W;l(k».p(q, pV;l(k) , 1Tk) I (5.17) 

where 

[ 
A .. (k) Ji 

Bn(k) = A .. (IIk) ; 

If we nOw make the WJW choice of the adjustable 
quantities given i:B. (4.29), (4.31), (4.33), (4.44) and 
assume a parametrization of the equivalence classes 
of cP .. (m) for which 

BU(k) = 1 

[this condition is for example satisfied for the parame­
trization, given in (4.9)], we get 

(U(a).p)(q, p, k) = eiqa.p(q, p, k), 

(U(A).p)(q, p, k) = .p(A-1(A)q, p-l(q, A)p, tc), 

(U(Il).p}.(q, p, k) 

= (_1)1.1-11I1.p_4(Ilq, piil(q)pe-t, Iltc)'Rn, 

where 

(5.18) 

n;::: 3, 

n = 2; 

and, for n = 2, 

(U(1T- 1).ph.".(q, p) = (_1)1I1+A'~.1I,(q, pE- 1
), (5.19) 

for n ;::: 3, 

(U(1T- 1).p)(q, p,tc) = B,,(k)C(1T-1 ).p(q, p,1Tk); 1T E 'Y~. 

This means that the states belonging to the physi­
cally correct representation of the group have the 
property 

n ;::: 3 B,,(k)C(1T -l).p(q, p, 1Tk) = 1](1T).p(q, P, tc) . 

(5.20) 

In the case n = 2, if the two particles are equal, 

.pA,A,(q, p) = .pA,lI,(q, pe-1)(-1)A,+A"1](1T). (5.21) 

Because of (4.47), the property (5.12) of I{J takes the 
form 

- ( Cx» -/(11,-).,)x- ( \ I{JA,lI. q, pp = e I{JA,>.. q, PI' (5.22) 

We now execute the transformation 

4>(q;JXu;k) = (2J + l)f J dp.p(q,p,k) ~(P)' (5.23) 

which possesses the inverse 

.p(q, p, k) = L: (2J + 1)1 4>(q; JXu; tc)~ ~~(p), (5.24) 
J .... >. 

and which defines an isomorphism between ~ .. (m, s) 
and a new Hilbert space, with a scalar product 
defined as 

(4), J) = L: J d3n
-

6
K r d

3

q 
J .. l\ Jv + Mca) 2w(q) 

X 4>\q; JXU;k) J(q; JXu;tc) 

~ L. as"-6K {<:Iml' ~q O(q) 8(q2 - M2(k» 

X 4>t(q; JXU;k) J(qj JXU;k). (5.25) 
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The transformed relations (5.13), (5.22), and (5.21) 
are 

n ;::: 3 : cP(q; JXu;K)[l - (_1)2(J-I.ll) = 0, (5.26) 

n = 2 : cPA,A.(q; JXu)(l - eiIH)',-),.)]X) = 0, (5.27) 

cP(q; JXu) = C(1r)cP(q; J, X, -u)(-1)J-2" 11 (71), (5.28) 

and the representation of P! gets the demanded 
form in which it decomposes into irreducible parts, 

(U(a)cP)(q; JXU;K) = e'··cP(q; JXU;K), 

(U(A)cP)(q; JXU;K) 

= ~~A'(P(q, A»cP(A-l(A)q; JX'U;K), 

(U(II)cP) .. (q; JXU;K) 

(V(T)cP)(q; JXU;K) 

(5.29b) 

(5.29c) 

= (2J + 1)1 J dp ~·(E)(U(II)<p)(q, p,K) :D~a(P)'n 

= :D~A'(Pu(q)E)~(IIq; JX'u; IIK)'nT' (5.29d) 

If we denote by the symbol J .. (x) the set of points 
in x-space on which the function 

cP").(q; JXU;K) 

may be arbitrarily defined [defining t.p on the fol­
lowing sets is, of course, equivalent with defining 
t..(p) on the sets: p E V+ (m); l E II~_l ® 1'1 (8k)]­
with the restriction that (cP, cP) is finite-we get 
according to (5.26) and (5.27) 

J .. (q) = {q; l ;::: Im1 2
), 

J .. (J) = {J;2J == 2181 mod 2J, (5.30) 

j
l+(J) ® IT ® 1 •• (8k); n ;::: 3, 

J,,(u, l) = k-l 

[u = Xl - X2 ; l E 1.,(81) 

®1 •• (82); IXI - X21 ~ J); n = 2 

0f.)_ 21 t1,.,K - C .. [(q) ). 

The set 1 .. (81) ® 1 •• (82) forms a rectangle (81 ¢ 811) 
or a square (81 = 82) in the AlAlI-plane. 

J 2 (l) consists of those points of this set simul­
taneously lying between or on the straight lines 
given by the equations 

[In the case n = 2, we may drop the dependence of 
cP on K and u because K is determined by M = 
(q2)1 and u by J...] 

The space of these functions cP equipped with the 
o 

scalar product (5.25) we denote by st .. (m, s). 
If two or more of the particles are equal, and if 

'Y~ is, as above, the group of those permutations 
which interchange equal particles among themselves, 
the functions cP, in addition, have the property 

for n ;::: 3, and 

(5.32) 

for n = 2. 
The space of these functions equipped with the 

o 
scalar product (5.25) we denote by st~(m, s) and the 
set on which the function comprehended as a func­
tion of x may be defined arbitrarily [up to the re­
striction (cP, cP) < 00] we call J~(x). 

Let T be a set of points in l-space. We introduce a 
measure on these sets by the definition 

P.(T) = number of points contained in T. 

We call a set Tl smaller than a set T2 if and only if 

We do the same in K-space except we take as measure 
the Lebesgue measure P.(K). J~(l) belongs to the 
set of the smallest subsets T of J. .. (l) which have 
the property 

U 7rT = J,,(l) 
rE,.,,' 

(the symbol U means "union"). An analogous state­
ment holds for J. .. (K). 

In the case n = 2, we only have to consider J.~(l) 
which may be chosen as that subset of the square 
formed by J 2(l) lying on the upper side of the diag­
onal given by the equation Xl = Xli' the diagonal 
included or not depending on whether the upper or 
lower sign holds in the equation 

(5.33) 

Comparing (5.29) with (3.5) and (3.12) we remark 
that the space ir .. (m, s), although reduced with 
respect to the group P!, is still not reduced with 
respect to P. But, because 

VlI(T) = (_1)2J, 

~(nT) = (_1)2J (if all the 11u'S are real), 
(5.34) 
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it should be possible to perform an additional trans­
formation in such a way that II and T are represented 
in agreement with (3.5c) and (3.12) (see Ref. 7). 

The transformation we are looking for is given 
by 

q;(q, J>.; u~,,~) = i{ CP ... (q; J>.u; K) + ~2CPl.(q; J>.u; II,,) 

+ ~lM-l)J-~-I'I+I~I[cp_ ... (q; JX, -0'; K) 

(5.35) 

Here ~ = (~l' ~2) are two new parameters both of 
which, in general, can take the values (+1, -1). 

q; has again the properties (5.26), (5.27), and, in 
addition, it satisfies the relations 

q;(q, J>.; u~, IIK, ~) = ~#(q, J>.; u~,,~), 

q;(q, J>.; -0', -~,,~) 

= ~lM-l)J-~-I'I+I~Iq;(q, J>.; u~,,~). (5.36) 

By Sl' .. (m, s), we denote the space of the functions q; 
with all these properties equipped with the scalar 
product 

X ip(q, J>.; U~K~)1/I(q, J>.; U~K~). (5.37) 

Here summation and integration extends over the 
domain 

We now see that 

(q;, 1/1) = (cp, "') 

holds. Hence, in sum ,we get the following sequence 
of isomorphisms: 

_ 0 

,p .. (m, s) '" Sl',,(m, s) '" Sl',,(m, s) '" Sl' .. (m, s). (5.38) 

We are therefore allowed to identify all these spaces. 
Because of (5.29c, d), we deduce from (5.36) 
(U(II)q;)(q, J>.; u~,,~) 

= nn~l :n[~'(Pu(q»q;(IIq, J>.'; u~,,~), 

(V(T)q;)(q, J>.; U~K~) 

= nT~2 :n[dpu(q)E)ip(IIq, J>.'; u~,,~), 

which indeed is in agreement with (3.5c) and (3.12), 
if we make the substitutions 

The subspace of Sl' .. (m, s) which carries the correct 
representation of the permutation group we denote 
by Sl'~(m, s). Because space inversion and a permuta­
tion of the edges of a (three-dimensional) polygon 
are interchangeable, we get 

and, therefore 

if we choose the parametrization " in such a way 
that A .. (II,,) = A .. (,,). Hence the space Sl'~(m, s) is, 
according to (5.31) and (5.32), characterized as a 
subspace of Sl' .. (m, s) by the following additional 
properties of q;: 

n = 2 : 'I](1r) ( _1/-2 'q;(q, J>.; >'2Xl~) 

= q;(q, JX; >'lX2~); 

n :2: 3 : BrCK)q;(q, J>.; 0', 1r~, 1r"~) 

= T/(1r)q;(q, J>.; u~,,~). 

(5.39) 

If we denote the set in x-space on which the function 
q; may be arbitrarily defined [up to the restriction 
(q;, q;) < ro 1 by t?-.. (x), we find 

t?-.. (q) = {q;q2:2: ImI2}, 
t?-.. (J) = {J; 2J == 2 lsi mod 2l, 

t?-.. (X) = I +(J). 

t?-.. (u, ~) belongs to the set of the smallest subsets 
T of J,,(Ul~) with the property 

TV IIT = J .. (u, ~). 

(Note that the effect of II on a "point in spin-space" 
is defined by II(u,~) = (-0', - ~).) 

t?-.. (K) belongs to the set of the smallest subsets T 

of J,,(K) with the property 
o 2 i TV IIT = t?-,,(,,) = C,,([q 1). 

Because of our definition of Sl' .. (m, s), two functions 
'P, which differ only on a set of zero measure in 
,,-space must be considered as the same element of 
Sl',,(m, s). That's why t?-.. (K) is only determined up 
to a set of zero measure, and, consequently in the 
case n :2: 4, we may assume that 'P is zero on all 
points with the property 

(5.40) 

so that t?-,,(,,)contains no such points. In the case 
n = 3, all points" have the property (5.40), or, 
expressed differently, 



1010 MARTIN KUMMER 

holds. In addition, we have 

"'..(~2) = {~2; ~2 = ±1 for n ~ 4; 

~2 = 1 for n = 2, 3} i 

for (u, J-.) ¢ 0; 

~1=M-1)J-I'1 for (u,J-.)=O}. 

(5.41) 

"'2(J-.) may be chosen as the set of points of U2(J-.) 
lying on the upper side of the diagonal (AI = - A2) 
of the rectangle which is formed by the points of 

[T,(Sl) ® [ .. (S2) 

and on one half of the diagonal itself [the point (0,0) 
included, if it belongs to U2 (J-.), which is exactly the 
case if Sl and S2 are integers]. 

In analogy to the sets U:(x) we introduce the sets 
"':(x). "'~(J-.) may be chosen as iJz(J-.) n U;(J-.). (n 
means intersection), where the last two domains 
are chosen as indicated above. From (5.36a) and 
(5.36b) we deduce 

1](7I")cp(q, J)..; )..2A1~) = ~lCP(q, JA; -AI, -A2~)' 

and consequently 

"'~(~1) = {~1; ~1 = ±1 for Al ¢ -A2; 

~1 = 1](71") for Al = -A2}' (5.42) 

"';'(u, J-.) for n ~ 3 belongs to the set of the smallest 
subsets T of t1n (u, J-.) with the property 

V gT = Un(u, J-.), 
gE'Y.' (ll) 

where 'Y~(II) stands for the group 'Y~ supplied by the 
element II which commutes with the elements 71" of 
'Y~. Note that the effect of 71" on "a point in spin-

1](71")( _1)J-2. = +1 

1](71")( _1)J-2. = -1 

space" is defined by 

7I"(u, J-.) = (u,7I"J-.). 

J ~ 2s 

(28 + 1)(8 + 1) 

(28 + 1)8 

Analogous to tY-:(u, J-.), tY-:(K) is defined. By the 
same reason as in the case of tY-.. (K), tY-:(K) is only 
determined up to a set of zero measure. That is 
why we may assume that no point of the submani­
folds in x-space defined by 

71" E 'Y~, n = 3, 

g E 'Y~(II), n~3 

occur in "':(K). 
It is now easy to derive the decomposition rules 

of the space with respect to the groups PI, P, re­
spectively. 

Case n = 2: The number n('Y)(M, J) of repre­
sentations (M, J) of the group PI equals the num­
ber of points contained in U2(J-.) and U~(J-.), respec­
tively, depending on whether the particles are of 
different kind or not. In formulas, 

n('Y)(M,J) = t(U2(J-.» if the particles are different, 

(U~(J-.» if the particles are equal. 

If the particle are different and both have masses 
different from zero, this number is (Sl ~ S2): 

(2s1 + 1)(282 + 1), J ~ 81 + 82, 

(281 + 1)(282 + 1) 

n(M, J) = 

(2J + 1)(282 + 1), 

(Compare this with Refs. 3, 5, and 10.) 
If it is even (which is always the case unless both 

of the particles have integral spin) half of it belongs 
to ~1 = + 1 and half of it belongs to ~1 = -1. In 
the exceptional case, one of the representations 
(M, J) belongs to 

~1 = (_I)J-·,-·· (corresponding to l = 0), 

and !(n(M, J) - 1) to ~1 = + 1, ~1 = -1, re­
spectively. If both particles are equal with mass 
different from zero, the numbers n'Y (M, J) are 

J :::; 28 

(J + 1)(28 + 1) - ![J(J + 1)] (5.44) 

2J8 - ![J(J - 1)]. 

If we denote by d(J) the number of points in tY-~(J-.) 
simultaneously lying on the straight line given by 
the equation Al = - A2 we see that 

!(n'Y(M, J) - d(J» 

of the representations (M, J) belongs to ~1 = + 1 
and the same amount belongs to ~1 = -1. The rest, 
namely d(J), belongs to 
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~l = '11(11"). 

The numbers d(J) are given in the following table. 

and we have to complete it by the following state­
ments: 

n = 3, n ~ 4 {I belongs to 
28 J J > 28 J ::; 28 1 belongs to 

even even 
even odd 
odd even 
odd odd 

!(28 + 1 ± 1) 
!(28 + 1 ± 1) 
!(28 + 1) 
!(28 + 1) 

!(J + 1 ± 1) 
!(J ± 1) (5.45) 
!J 
!(J + 1) 

The plus and minus sign in the first two lines simul­
taneously holds with the corresponding sign in the 
Eq. (5.33). 

If we assume the correct connection between spin 
and statistics, i.e., 

(5.46) 

then tae numbers of representations (M, J) be­
longing to ~l = + 1, ~l = -1, respectively, are 

28 even even 

J even odd 

J ::;28 (J+l)(8+1)-~ (~+1) 
~1=+1 

Note especially that 

p.(Jn(u, :A.)) = (2J + 1) IT (2sk + 1). (5.47) 
k-l 

Now let us consider the space ~(Jn) of the functions 

feu, :A., 1C) 

defined on the domain 

JnCU,:A.,1C), (5.48) 

and assume that ~(Jn) is equipped with the scalar 
product 

L: J d3.-6K a(q2 - M 2(1C)](U,:A., 1C)g(U,:A., 1C), 
. ~.G' 

odd 

even 

odd 

odd 

J>28 (8+1)2 

J ::;28 
p 

(J+l)8--
~1=-1 

4 

8(8+1) 

J2-1 
J8--

4
-

i(28+ 1)2 

J2 
!(28+1)(J+l)-4" 

J2-1 
J(8+!)--4-

J>28 8(8+1) 

For n ~ 3, to each point 1C E t?-~OY)(1C) there exists 
(oy) 

p." , n = 3, 
2 (oy) 

p." , n~4 

representations (M, J) of P 1, where 

p.~oy) = p.(J~OY)(u, :A.)). 

If not all of the numbers 8k are integral, 
1 (oy) belongs to (~ (1,1)} "2Jl.n 

!~"!') belongs to ~ = (-1,1) 
n~4 

!~"!') belongs to ~ = (1, -1), 

!~OY) belongs to ~ = (-1,1). 

n = 3, 

If all the numbers 8k are integers, p.~OY) in the table 
above has to be replaced by 

i-(28+ 1) (28+3) (8+!)2 

where the summation and integration are extended 
over the domain (5.48). We also consider that sub­
space ~(J~) of ~(Jn) whose elements satisfy the 
relation 

B7(1C)f(u, 1I":A., 1I"1C) = 'I1(1I")f(u, :A., 1C), 

'11(11")( -1)J-28 f(1I":A.) = f(A) , 

n ~ 3, 

u = 2. 

Let us denote by 
(vi H("!')(m, s, JM) lu,:A., 1C) (5.49) 

a complete orthonormal system of functions of the 
space ~(J~"!'» which may depend also on the vari­
ables m, s, M, J. In the future we shall suppress 
this dependence to make the formulas look less 
cumbersome. Completeness and orthogonality are 
expressed by the relations 

L: J d3.-6K a(q2 - M2(1C)(vl H("!') lu,:A., 1C) .. ., 
x (v'I H("!') lu,:A., 1C) = a •• " (5.50a) 
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:E 8(q2 - M2(~»(vl H(Y) lIT, lo, ~) 
y 

(5.50b) 

In (5.49) the parameters v "counting the members of 
the system" may partially be discreet, partially con­
tinuous. Accordingly we have to replace the sum in 
(5.50b) partially by an integral and the Kronecker­
symbol on the right-hand side of (5.50a) by 8-func­
tions. If we start from k.(m, s) and perform the 
transformation 

,p(q; JX; v) = .L: J d3
.-

6
K 8(q2 - M2(~» 

"a 
x (ILl HIlT, lo, ~)~,,(qj JXlTj ~), (5.51) 

where summation and integration again extend 
over the domain (5.48), then the space ~ .. (m, s) of 
the functions ,p equipped with the scalar product 

(,p, -J;) = .L: .L: J d!q ~(q; JX; v)-J;(q; JX; v) (5.52) 
J.X • 

is operator-isomorphic to the original one with re­
spect to the group Pi and therefore splits into 
irreducible spaces with character (M, J) in the same 

o 
way as ~ .. (m, s). 

It is easily seen that (5.51) is the most general 
transformation with this property. The most gen­
eral C-G coefficient of the group Pi is therefore 
defined by 

,p(q; JX; v) 

= .L: J.l d
3 

.. p (v MJ I ms) /J.{p) 
" 2" ClJl(Pl) ... ClJn(p,,) qX pl. (Y) 

(5.53) 

and is consequently given by the expression 

(vi H(")W 11T1o~) 

= l{[(vl H(") lIT, lo, ~) + Mvl H(") lIT, lo, II~)] 

+ ~lM-1)1'I-IXI-J+a[(vl H(Y) I-IT, -lo,~) 

+ ~2(vl H(") I-IT, -lo, II~)]}. (5.55) 

If we make the identification of all the spaces 
isomorphic to each other [see (5.38)1, the transforma­
tions which reduce the space -p .. (m, s) are seen to 
be orthogonal. That's why we know without direct 
calculation that the C-G coefficients satisfy the 
relations 

.. 
= 2" II CIJ(pill) 83(4'!1l - 4'i2 » , 

k-l 

The analogous relations are satisfied by the C-G 
coefficients of P. 

6. THE PHYSICAL MEANING OF THE 
QUANTITIES ON WHICH THE FUNCTIONS 

;. DEPEND. 

In this section, we want to find the physical mean­
ing of the quantities lo and IT on which the functions 
J-,,(q; JXIT; ~) depend. For this purpose we consider in 
-p,,(m, s) the representation of Pi which is iso­
morphic to that one taking place in -p(m" 8,), 
namely 

(U,(a)f)(p) = eiP'Gf(P), 
(6.1) 

( v ~: I ~) = 8
4
(q - q')[(2J + l)A;;-l(~)]t 

X .L: :D~,,,(P) ~ia(p)(vl H(") llo', IT, ~). 

(U,(A)f)(P) = ~"(p,(P" A»f(rl(A),p), 

(5.54) where A -l(A),p is defined by 
1'ltT 

Here q', p, and ~ have the values determined by P 
through the relation (4.21). In an analogous way 
we determine the C-G coefficients of P considering 
only representations for which 

V2(T) = (_1)2. and y2(IIT) = ( _1)2. (if 110 is real). 

We only have to replace the functions 

(vi H("!) llo', IT, ~) 

in (5.54) by the following linear combinations of 
these functions: 

A-l(A),p = (PI .,. P'-I, rl(A)PI, Pl+l .,. P .. )· 

It follows immediately 

" 
U(A) = II U,(A). 

1-1 

The infinitesimal translations in the representation 
U, we call P,. 

Now let 

V(P,) = (X1(P,)va -l(P,) 

be an element of the little group of P_I' 



CLEBSCH-GORDAN COEFFICIENTS 1013 

It follows 

and therefore 

(UI (V(PI»F) (P) 

especially 

(U I (al (P1)rjl (p) p(x)rl (p)a -I (P I»F) (p) 

= X)"(pW)F(P). (6.2) 

If we go to infinitesimal transformations p(x), we 
get from the last equation 

W;1l A~(rl(p)a-l(pl»F(p) = AIF(P), (6.3) 

where W;1l is the operator defined in (3.19) with the 
difference that ~ and m have to be replaced by 
~(I) and m(ll, the infinitesimal Lorentz transforma­
tions in the representation UI of Pl. 

From (6.3) we deduce immediately: The functions 

I{:>'),(q; JAIT; 1e) 

are eigenfunctions of the operator 

W;1l A~(rl(P)ajl(p,» (6.4) 

to the eigenvalue AI. Here the replacement 

Pk~Pk 

in the expression rl(p)ajl(pl) is defined by corre­
sponding power series. No difficulties arise from the 
indefiniteness of the order of the different operators 
because the PI commute. In general the operator 
(4) depends on all the momenta operators PI ... p ... 

However, if we make the WJW choice 

a"(b ,) = a[b,], 

and if we confine ourselves to the center-of-mass 
system, this operator becomes very simple. In this 
case we get 

where x(p) in general depends on all the momenta 
Pk' But if we introduce this expression in (6.2), the 
p(x(p» drops out and we get 

(U,(a[pz]p(x)a-I[p,]F)(p) = X)"(p(x»F(p) , 

i.e., J'),(qk; jAIT; 1e) [where qk = (M, 0)] is eigenfunc­
tion to the value Al of the operator 

W;1l A ~(a -I[P I]), 

which is the helicity operator as we have seen in 
Sec. 3. Now let's start from the equation 

(U(POpWp;l)ip)(qk, Pop(x'), 1e)=ip(qk, Pop(x' + X), Ie). 

Here 

Po = pp( -x') == Po(P) , 

where p is determined by p through the relation 
(4.21). If we set by definition 

ip(qk, Po, IT, 1e) = l1l' fo4r dx' ip(qk, Pop(x'), 1e), 

we get 

(U(pOp(x)p;l)ip)(qk' Po, IT, 1e) = eitrXip(qk, Po, IT, 1e), 

or, if we go to infinitesimal transformations p(x), 

~n(p)ip(qk' Po, IT, 1e) = lTip(qk, Po, IT, 1e). (6.5) 

Here n(p) is the vector we get if we apply the rota­
tion 

A(p;I(P» 

to the unit vector pointing in the direction of the 
positive 3-axis. If we again replace the momentum 
PI in n(p) by the corresponding operator in the 
representation UI, we may complete the transforma­
tion (5.23) in (6.5) without difficulties. We then ob­
serve that IT in J(q; jAIT; 1e) has the meaning of the 
total angular momentum in the center-of-mass sys­
tem relative to an axis which is connected with the 
momenta of the n particles in a definite way. The 
situation is similar to the case of a top: IT corre­
sponds to the angular momentum relative to the 
figure axis and A to the one relative to an axis fixed 
in space. 

7. APPLICATION TO THE 8-MATRIX 

We consider the S-matrix of a process 

a~l) + a~l) + ... + a~~) 
~ a~2) + a~2) + '" + a~:) . (7.1) 

Let mk il be the mass, ski) the spin of the particle, 
ail) p~il its momentum, and A!il the third component 
of its spin (for definition of this quantity in a co­
ordinate-system in which the momentum p!i) is 
measured, see Sec. 3). The S-matrix maps the 
II~:'I (2s!1) + 1)-dimensional spin space of the 
incoming particles on the rr;:'1 (2s12) + 1)-dimen­
sional spin space of the outgoing particles, and is, 
at the same time, a Lorentz-invariant generalized 
function of the variables 

p(i) = (P~il '" p~;» (i = 1,2) : S(p°) , p(2). 

From translation invariance, one derives that the 
support of S is the submanifold on V+ (m (I» ® 



1014 MARTIN KUMMER 

Lorentz invariance implies 

~.(» (p(P(1), A»S(r1(A)p(1) , A -\A)p(2,) 

X ~.(')(/(p(2', A» = S(p(1), p(2,). 

If we now define 

T(p(1', p(2,) c54(qCll _ q<2') 

MC,,(l't=LMC,,(2') = M = Cl)i. 

Performing the transformation 

(MJ ' (1'. (2') T ,0"1", 0"2" 

we finally get lithe generalized partial wave decom­
position" 

T(p(1)p(2') = A :~("Cll)A :!C,,(2') 

= ~.(')(p(I)S(pCllp(2') ~.("\p(2'), C7.2) X L: (2J + l)tT(M J; 0"1,,(1), 0"2,,(2') :n;.v,(p). (7.5) 
JrTl t1 S 

where we subtract a c5
4 (q(1) - q(2,) function on the 

right side, if the process under consideration is an In the case n l = n2 = 2, the substitution 
elastic scattering, Lorentz invariance reads Cx ) PI --+ PIP I, 

T(p(l), p(2') = T(A-1(A)p(I" r 1(A)p(2'). P2 --+ P2PCx2) ' 

Hence the inverse of (2) is which leads to 

S(p(1), p(2) = c54(qCll _ q(2')'F(P(1), p(2), 

where 

(7.3) 

1'(p(I), p(2') = ~.(')t(p(1)T(P(I), p(2) ~.(.)(p(2') 

(7.4) 

gives a representation of the S-matrix as a sum of the 
covariants of PI, each multiplied by an invariant 
amplitude T(p (1), p (2'). 

Because of q - q(l' = q(2', we may write, ac­
cording to (5.16), 

T(p(1) , p(2') = Tl(q; p(1), p(2'; ,,(1),,<2') 

X A :~(,,(1)A :!(,,(2'). 

(From the rigorous mathematical point of view, this 
transformation would need a justification depending 
on the test-function space, which is used to define 
the general functions.) Lorentz invariance now reads 

Tl(A- I(A)q; p-1(q, A)p(l), p-l(q, A)/2'; ,,(1'K(2,) 

Choosing 

we get 

p(q, A) = /2', 
and therefore 

= TI(q; pCll, p(2); ,,(1), K(2,). 

A = a(q) /2' , 

TI(q; p(1), p(2'; ,,(1), ,,(2') 

= Tl(qk; p, 1; ,,(1), ,,(2') == f(M, P; X(I)X(2'), 

where P = (p(2')-1/1) and the sign == means "equal 
per definition". It is clear that 

must leave all the equations invariant. It is easily 
seen that this leads to the relations 

A~I) - Ail) = 0"1, 

A~2) - Ai2) = 0"2; 

if nl = 2, n2 ~ 3, only the first of these relations is 
valid, if n1 ~ 3, n2 = 2, only the second one. In any 
case (also in the case n l ~ 3, n 2 ~ 3), the summation 
in (7.5) has to be carried out over those J, for which 

2J == 2 18(1) I == 2 18(2) I mod 2. 

According to (5.29c), invariance with respect to 
space inversion has the consequence 

where 

(II) - (1)-(2)( 1)1.(')I-Il\(')I+I.(')I-I).(·)1-2J+v,+v. 
7J - nn nn - • 

All the results of this section can also be derived 
using the fact that, according to group-theoretical 
considerations, the S-matrix, being an operator-iso­
morphism with respect to the group PI which maps 
-P",(m(1), s(l) onto -Pn,(m(2), S(2,), must have the 
representation 
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where the C-G coefficients 

are defined in (5.54). 
Indeed if we set 

(MJ ' (1) (2» 
T"(')l(') ,00IK, 0'2K = 

x (v,1 T(JM) IV2)(v21 H 10'2A(2), K(2)}, 

(7.6) is in complete agreement with the relation we 
obtain if we combine (7.5) and (7.2). 

In an analogous way, we may define a decomposi­
tion of the 8-matrix with respect to the group P 
using the corresponding C-G coefficients given in 
(5.54) and (5.55). 

Finally, we remark that, according to (3.23) 
in the case m~i) > 0, the connection between our 
T(p{l), p(2»-matrices and the Lk.; EB (s!i), 0)­
tensors (with respect to L1) of Stappll and Hepp12 
is given by 

:08(a(p{l))T(p{l), p(2» :.oS(eaT(p(2») = M(p(l), p(2» 

[M(P(l), p(2) = Lk,' EB (s~i), O)-tensor]. 

Notes added before print: 

A. After having finished the preprint of this 
paper it was learned by the author that two other 
authors have written a paper on a similar subject: 
P. Moussa and R. Stora, "Some Remarks on the 
Product of Irreducible Representations of the In­
homogeneous Lorentz Group (Preprint, edited at 
Centre d'Etudes Nucleaire de Saclay, Gif-sur-Yvet­
tes, France.) 

R. Stora has called to this author's attention their 
paper and their method of reducing the product rep­
resentation applied in their work: the method of 
induced representations, presented in Mackey's 
book. [G. W. Mackey, The Theory of Group­
Representations (The University of Chicago Press, 
Chicago, 1955)] It turned out that the method 
applied in the present paper is strongly related to 
Mackey's general scheme. 

I wish to thank Dr. Stora for the correspondence 
concerning this point. 

B, A reader looking through the present paper 
without studying it in detail might get the impression 
that, besides the helicity coupling scheme, no other 
scheme has been treated, which wouldn't justify the 
term "most general" in the title. That's why the 
author wants to emphasize that the C-G coefficients 

(5.54) are quite general and especially that it in­
eludes also the l-s coupling scheme of J 00S5 and 
Macfarlane.1 

To show this in some detail, assume m. > 0 
(i = 1 ... n) and replace (4.44) by 

a~(bl)=a{bd. (Bl) 

Then (5.54) is formally unchanged, the only dif­
ference being that :o~,~(p) is defined with the help of 

rdp} = a-1 {bda-1(p)al(Pl) (B2) 

instead of 

rl [P] = a -1[bl]a-1(p)al(P,). (B3) 

In addition, we choose (vi H Ij.', 0', K) in (5.54) to be 

(~,! I ; c), v = (l, 1', {), (B4) 

i.e., the C-G coefficient of 8U(2) which composes 
SI '" s,., l to J. T = 0' - L~-1 A',; r is conveniently 
chosen to be r .= (SI2, SI23 ... S12 ..... ), where SI2"'k is 
obtained by composing s) ••• Sk' Because of the 
relation 

rl {p} = p[bl]rl[P] 

following from (B2), (B3), and (2.21), the procedure 
described so far is equivalent to directly choosing 

(vi H Ij.', 0', K) 

in (5.54) to be 

L :O~"l,(p[(b])(~,,! I ; c). 
:lo" 

It is easy to see that this choice leads to the C-G 
coefficients of J OOS5 and Macfarlanel in the case 
n = 2. Notice that the choice (1) implies y(b1 , x) = 
y(b2 , x) = p( -x) [Compare (4.40)], such that in the 
case n = 2: Al + A2 = 0' and therefore T = O. For 
n 2:: 3, however, it leads to a simpler expression than 
the one obtained by Macfarlane who essentially 
constructs the C-G coefficients for n 2:: 3 according 
to the "Dalitz-scheme" (1), (2) -+ (12); (12) (3) -+ 

(123), etc. using only C--G coefficients for n = 2. 
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