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The effect of temperature gradient on the drift instabilities
in an inhomogeneous high-8 plasma is discussed. The analysis
shows that in the presence of a temperature-gradient, ion-acoustic,
and Alfvénic instahilities can be developed.

The purpose of the present note is to report a recent
finding on drift instabilities in a high-8 plasma which
might clarify some confusion pertaining to the tempera-
ture-gradient effect. The drift effect on the collisionless
plasma due to the magnetic field and number density
gradient has been extensively discussed in the literature,!
most of which are restricted to the low 8 case (8<1),
where 8 is the ratio of plasma pressure to the magnetic
pressure. However, in some controlled-fusion experi-
ment and outer-space solar wind plasma, 8 is known
to be of the order of one. Mikhailovskaya and Mik-
hailovskii? show that the drift effect is highly suppressed
by the enhanced Landau damping for high 8 plasma if
the temperature gradient is not taken into account.

In this note we plan to calculate the drift effect in an
inhomogeneous high g plasma with a temperature
gradient. In a high 8 plasma, the induced magnetic
field effect must be included unlike that in the low 8
approximation. Hence,

Eo=—[(3¢/0ra)+c7(d4a/38) ], (1)

where ¢ is a scalar potential, 4. is a vector potential
which is related to the magnetic field, B,=8,3,04./3rs,
and &.py is a unit cydlic tensor. By using the definition
of the dielectric tensor &,5 and the polarizability vector
Xa of the medium

Eap=dapt (41i/w) 0ag;
Ja=0aplg,

e(ni~n,) = XaFa;

(2)
where 0.3 is the conductivity tensor, Maxwell’s field
equations become?

k= —4Amixakedpt (471w/¢) Xad a, (3)
Fdo= (/) 8apAp— (w/C)Eaplod  (a=x,y,2). (4)
Let us choose the unperturbed inhomogeneous magnetic
field along the Z axis. The spatial dependence of the
field, density, and temperature vary along the X axis.
It is noted that under the low frequency, w<%;, and
high 8 assumption, all the plasma waves, except the
drift waves with k,<<k. are highly damped by the
Cerenkov absorption in an inhomogeneous plasma3+4
where (; is ion Larmor frequency. For simplicity, let k.
align with the ¥ axis: Egs. (3) and (4) may be reduced
by means of the condition of existence of a nontrivial
solution which requires the vanishing of the determinant
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of the coefficients of the equations,

— k2 (14-4mixka/R)  Amwicwya/c dmiwy./c
Epkpw/c B2~ w?8.,/?  — w8/ | =0.
§.akaw/c — w8/ kP—w?8,,/c?

(3)
Equation (5) gives the dispersion relation for the wave
modes of an inhomogeneous plasma. To evaluate the
dispersion relation the explicit forms of dielectric tensor
8ap and polarizability vector x. must be obtained before-
hand. The following relations are postulated that
connect between the distribution function and dielectric
tensor or polarizability vector:

8ap=0apt (4mi/wEp) 2_ €;fva f; dV;
;

Xoa=E, ™" Z ejffi dV,
i

(6)

where 3_; is the summation of the species of electrons
and ions.

The inhomogeneities of By, #, and T are assumed to be
much smaller than their average values such that
Taylor series expansion with respect to the inhomo-
geneity is applicable

B0=Boo(1+GBx+'--); n=n0(1+an+...);

T=To(14Gpx+---), )
where
dB aT dan
= Bog ! — =Ty — Go=m —,
Gz~ B dx’ Gr=Th dx’ o dx

and B, T, np are the average values at the reference
point. These gradients are the causes of drift currents®®
across the magnetic field, e.g.,

(v4;) B=Gpa;1%(22))7";  (v4;)n=Gra22(2Q;)7
(va5) 7= Gra;.2(22;)7, (8)

where a;12=2T j1/m;is the thermal velocity of species j.
The propagating frequencies of drift waves across a
magnetic field are defined as

wn*=(vaj)n/ka;  wr*=(v4;)7/ks.

9

The important wave dissipation in a collisionless
plasma is the thermal phase-mixing resulting from
wave-particle resonant interactions,” which are treated
with the linearized Vlasov equation suitable for the
inhomogeneous plasma oscillations. The zeroth-order
solution to the Vlasov equation is a function of the
constants of motion of the unperturbed orbits®

fiolv, 2) =f0(8;4, vzy x+2,/9),

where §;1=3%m 1% The perturbed distribution function
may be obtained from the first-order Vlasov equation
by integrating along a path of an unperturbed orbit.
After lengthy but routine calculations,'?#¢ the per-

wg;*= (va;) B/ k1;

(10)



2062

turbed distribution function is reduced to

fi= (JZ_) |Bxy By Be| 2 exp—i [(k

X [— (l-i—k,,T,-J.m A aEY)
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a2 w
0

tan~1(k,/k,) and vy;=Gg;(v1%/2Q;). Under the low frequency, w<%;, and long wavelength, pk1<1,

assumptions (where p; is the Larmor radius of species j), the explicit forms of the dielectric tensor & and polariz-
ability vector x. can be obtained by substituting (11) in (6) and using the relation

21 00 0
/dv=/ daf md'zu.f do,.
] 0 —o0

The dispersion relation for the wave modes of an inhomogeneous high 8 plasma is obtained by substituting the
explicit forms of dielectric tensor &, and polarizability vector x. into Eq. (5). The calculations are rather cumber-
some but straightforward.3® After simplification, the dispersion relation becomes

[Naﬂ] =0 (a)ﬁ=1,273)) (12)
where
2 112 el/2 K 4 212, 3k
Wpe W W %wpe Gel 1T “Wne de.l. WRe
Ny=—k+ =2 [— (1+ )+ . - ( 1+ )
Qo k2t ko k)
1/2 ¥4 02 * *C
LT e Qe whB wr;
b (1+ ¢ ) = (1_7‘,2]“2)]
2k,a,| [3 w wa; ||
20,2k 10;1° wn®  wr®
Nyp=— I+— =],
cﬂia,” w w
w @er? Wne i ' Pwp* 1 20p F@er? wpet wrcs?
5= 2 [ (1+ )( +— - — 1 )+ (1 dpdka?)
Qe |°C kzde“ w kzde” kzaeu 2kz Ge|) w k,w qb||
Ny= i(w,,,;zwm*aiﬁ/chQiaﬂ |2) k.L,
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W=R—
c @ / 2cq’ai?  dwecd’ei)’
N23= —i(wT@-*Qiailsz./ZcA?k,au ]2)
wky  wplw [@er? wpe™ waet\ | wrwpe | | csler®
Ng= 22— =22 { = =) = )+ = [+ (1=3p2ka),
4 CQg)\| kz @el w (57 zH
N32 =i(w1-,-*ﬂia,-;2/2642kza,-| ]2) kJ.,
N. X1 o’ + wp}w? Ber? < 14 wne*)( 1 wBe*> wTe*wBe*] + ngwm*} wrifwkle.?
B=R— — — — —
¢ ek |ae® w @ w? @)’ de’klaq)?

Here, C4 and Cs are Alfvén and ion-acoustic velocity,
respectively.

It is noted that wave drift effect is important under
the following condition?:

a>w/k.;

With the inclusion of low frequency w<Q;, long wave-
length pk4<1, nonrelativistic effect w/k.<&Lc, and
drift-effect condition mentioned in (13), Eq. (12) may
be further simplified. Let w=c;+4vx, v+ be the imag-

Codw/k. (13)

inary part of the frequency or the growth rate is
reduced under the above simplifications and we obtain

vi=2k(Tor/Tep)) (@i11/ca) Y[ (vai) P~ (vas) n ]~/ k}.
(14)

Here, a;;/ca<1 for the high 8 plasma. For waves of
small growth rate we can make v; satisfy the condition
Ti/oxKl. It is postulated that electron temperature
ratio Teu/ T shall be either equal to or smaller than
unity. When the electron temperature ratio Tes/Tej is
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of the order of one, the real part of the frequency is
reduced to

Wy~ — Csk.L(szTi) (Ti/Te) 1/2‘ (15)

This means that when ion drift velocity [ (v4:)7— (v:) =]
overcomes the phase velocity of ion-acoustic wave, the
drift effect will excite the instability ion-acoustic wave
across the field. Physically speaking, the gradient effects
of ion temperature and ion density generate the ion
current j=en (va;)r— (va:)»] flowing across the mag-
netic field. These crossing-field currents make the ion-
acoustic wave unstable when the ion-drift velocity
[(va:)r— (va:)n] is greater than the phase velocity of
ion-acoustic wave. Notice that from Eq. (14) when the
temperature gradient vanishes, the growth rate of the
system +; takes negative values. This implies that the
strong Landau damping suppresses the drift instability
of high B plasma oscillation when the temperature
gradient is negligible. This strong damping mechanism
of high 8 plasma oscillation with vanishing temperature
gradient complies with the result obtained by Mik-
hailovskaya and Mikhailovskii.?

When the electron temperature ratio 7.1/ T is much
smaller than unity, the real part of the frequency is
reduced to

(16)

Here, the coefficient inside the bracket denotes the
finite Larmor radius correction which is very important
in the high 8 case. This expression shows that when the
electron temperature directed along the field is much
greater than the electron temperature across the field,
the firehose instability drives the Alfvén wave unstable.

From the analysis we have shown that the existence
of temperature gradient generates the currents across
the magnetic field. It turns out that the drift effect
induces the instability of ion-acoustic wave when the
electron temperature ratio T.1/T. is the order of one
and the drift velocity is higher than the phase velocity
of ion acoustic waves. Similarly, the drift effect also
makes the electron temperature along the field much
greater than that across the field,® this, in turn, causes
the instability of the Alfvén wave.
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The nonlinear interaction between unstable and damped ion
acoustic waves is investigated numerically. Energy couples to
damped waves, stabilizing the system. The manner of stabiliza-
tion depends strongly on the functional dependence of the growth
(or damping) rate on wavenumber.

This note introduces a numerical study of the role
played by resonant mode coupling in the stabilization
of instabilities.

The equation for the kth mode can be written as!

aC(k)

= =y(k)C(k)

+ X iV (k, B, k+E)C*R)C(k+F)
k!

X (exp{—i[w(k) +w (k) —w(k+k")1}2)
+ 2V, k=, E)YC(E)C(E—F)
Y

X (exp{ilw (k) +w(k—k) —w(k) J}2). (1)

Above C(k)=8(k, i) (4m)712(d¢/0w)'2, e(k, w) is
the plasma dielectric constant, and the total electric
field is given by

&(z, t) = 2_ &(k, 1) exp[i(kz—awif) JHcc. (2)

The matrix elements, e.g., V(k, k’, k—Fk’), are sym-
metric with respect to argument interchange and the
v+'s are the linear growth or damping rates. In the
small amplitude limit, electric fields at each wave-
number grow or damp according to linear theory.
As the amplitude of the unstable fields grows, the
nonlinear terms will couple energy to damped modes
and the system will presumably stabilize.

Equation (1) can be solved or greatly simplified in
two cases. First, if there are only three interacting
waves and no linear growth or damping, a solution in
terms of elliptic functions is possible. When growth
and damping are included, one could surmise that the
equation for an unstable wave looks basically like

 n )~y (&)~ Vi (R), 3)

where #(k) =| C(k) |2 At nonlinear saturation, then,

n(k)~(v/V)2 C))



