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CHAPTER 1
INTRODUCTION

The first section of this introductory chapter
describes in general terms the main problem to be con-
sidered. TFollowing that is a description of the arrange-

ment of material in the main chapters.

1.1 Introduction to Problem

This dissertation is concerned with the design of
decoupled multivariable feedback control systems. Multi-
variable control systems involve multivariable plants, that
is, systems having several inputs and several outputs. In
general there is coupling within the plant so that one plant
input, or control, affects more than just one output. The
reason for applying feedback to the plant is to improve the
quality of the system response, and in the case of decoupling
to eliminate coupling between the closed loop inputs and

plant outputs.

A large number of practical systems are multivari-
able in nature, including aircraft and space vehicles, chem-
ical processes, biological systems and electric power
generating systems. Consequently, there is a need for
techniques to design control systems for these multivariable
systems. The classical, frequency domain approach is directed
more toward analysis of single input-single output systems
and is not well suited to multivariable systems with coupling.

Therefore, the modern state variable approach has been used.
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The systems mentioned are in general non-linear
multivariable systems and a few results are available for
such systems, principally by Iwai [I1], and Nazar and Re-
kasius [N1]. The greater part of the work to date has
assumed that these systems can be described sufficiently
well in a small neighborhood of an "operating point" by a
set of linear constant coefficient differential (or diff-
erence) equations. The same assumption is made throughout

this dissertation including the remainder of this section.

The modern approach to decoupling was first in-
troduced in 1964 by Morgan [M5] who formulated the problem
of decoupling by state feedback, i. e., a control strategy
consisting of linear feedback of the system state variables
combined with a linear combination of the closed‘loop system
inputs. He was able to define a class of systems which
could be decoupled into independent first order subsystems
with this control strategy. These results were extended

somewhat by Rekasius [R1].

Later, Falb and Wolovich [Fl, F27] developed a
necessary and sufficient condition that a system can be
decoupled and a procedure for choosing a control law which
decouples. However, their procedure did not yield all poss-

ible closed loop designs.

More recently Gilbert [G2] developed complete
specifications for the class of control laws which decouple,
the class of decoupled closed loop systems, and the corres-

pondence between elements of these two classes. Some
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additional results involving pole assignability and system
observability by Slivinsky and Schultz [S2] and Mufti [M7]
respectively have appeared since 1968. However, these are
rather obvious extensions of Gilbert's work. Two limita-
tions of decoupling with Morgan's control law which have

been mentioned by Gilbert and others, will now be discussed.

The first limitation involves those multivariable
systems which cannot be decoupled by Morgan's control law,
but which can be decoupled by control laws that include
dynamic elements. Such systems are said to have "weak in-
herent coupling." The second limitation follows from the
decoupling requirements itself. As it turns out, some
systems can be decoupled only by fixing certain closed loop
poles. These poles may have undesirable locations in the
complex plane, causing instability or other objectionable

effects.

Silverman [S1] has given a design procedure for
weak inherently coupled systems which is based on his work
on inverse systems. It results in a control law which in-
cludes dynamic elements and which allows decoupling. Whether
or not his dynamic compensator has minimal order is an un-
answered question at this time. Wonham and Merse [W3, M6]
on the other hand, have results which produce a minimal
order dynamic compensator. At the present time their geo-
metric approach has not been translated into a constructive
design procedure. The most important result is the following.

If a multivariable system has weak inherent coupling, then a
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dynamic compensator can be constructed so that the system
Plus compensator can be decoupled by state variable feed-

back alone.

In addition, Wonham and Morse show that the fixed
pole locations can be shifted by additional dynamic com-
pensation and give a way of calculating the minimal order
of compensator needed to shift any prescribed set of fixed

poles. The compensator poles can also be freely assigned.

Howze and Pearson [H1] also have a procedure for
calculating a relatively low order compensator for free
assignment of poles. However their results are incomplete;

they do not apply to all systems.

It should be emphasized that all of the preceding
remarks apply to the case where the number of plant inputs
is equal to the number of plant outputs. When the number
of plant inputs exceeds the number of outputs, much more
difficult questions are involved and are still not totally
resolved [W3, M6, S1]. In this dissertation it is assumed

that the number of plant inputs and outputs are equal.

All of the results mentioned above involve a con-
siderable amount of computation so that for systems of
moderate or high order (greater than three) hand calcula-
tions are are impractical. Thus a good part of the work
in this area is concerned with computer programs which make
design of such large systems feasible. An example is the

recent paper of Gilbert and Pivnichny [G3].



The end result of all this work is that all cases
which arise can be reduced to the basic problem of decoupling
a plant by state variable feedback. It is not clear at the
pPresent time what the best way is to do this reduction, and
other researchers are currently working on the question.

For our purposes it is sufficient to indicate that reduction
is possible, because our concern is with the basic decoupling
design problem itself. More specific statements and the

currently available details are given in the next chapter.

There are many factors which must be examined in
order to achieve an acceptable practical design. The follow-

ing are the most important:

1. The error between outputs and inputs should
be small.

2. Control magnitudes must not be too large.

3. Effects of disturbances inputs on the

closed loop system behavior must be kept

small.

4, Parameter variation effects must also be
small, particularly changes in static gains

should be very small.

5. Static and dynamic cross-coupling due to

parameter variations should be very small.

At the present time there is no technique which

addresses all of these factors perfectly. The aim of this
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dissertation is to present a reasonable way of approaching
the design of high order multivariable decoupled systems.
A number of complementing procedures are presented which
together can be used to achieve satisfactory closed loop
performance. The most important of these involves selecting
a class of random inputs and solving for those decoupling
control law parameters which minimize a cost functional in-
volving output error variances and control variances. This
technique has the advantage of simplicity along with the
freedom to adjust the weight coefficients in the cost func-
tional so as to achieve desired compromises between the
tracking errors and control efforts. Another advantage is
that is is possible to include disturbance inputs and measure-
ment errors and minimize their effect on output error. The
resulting parameter minimization problem is non-linear in
nature and at this time there are no general existence or
uniqueness results for its solution. Because of the com-
plexity of the minimization problem, a computational algor-
ithm has been developed which searches numerically for a

solution.

Other techniques which might be considered for
addressing the control amplitude aspect of the design pro-
blem are discussed in a later chapter. Results concerning
the parameter variation and disturbance input questions are
also presented. The main value of any synthesis technique,
of course, is its usefulness in the design of practical

control systems. For this reason a number of examples have
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been worked out to demonstrate the practicality of the pro-
posed techniques. Several of the examples are of reasonable

complexity.
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1.2 OQutline of Dissertation

The contents of this dissertation are arranged
in the following way. First a precise definition of the
decoupling problem is given in Chapter 2. Here the main
results which have appeared and are necessary to the under-
standing of what follows are presented. Some results for
weakly coupled systems and alteration of the fixed poles
are also included. All these results and the results in the
subsequent chapters can be applied to sample data systems.

This is discussed briefly in Appendix E.

In Chapter 3 the objectives and criteria for a
design synthesis are examined. Theoretical results involving
the selection of a decoupling feedback law which minimizes
a quadratically weighted sum of output error and control
effort appear here. The basic steps of an algorithm for
minimization are described. Some invariance results which
define the class of disturbance inputs and parameter varia-
tions which affect only the unobservable part of a decoupled
system, and therefore have no effect on the system output
are presented. The necessary restrictions on feedback
parameters which make this invariance possible are also
given. In general the disturbance inputs and plant para-
meter variations cannot be cancelled completely however.

It is shown in this chapter how the effects of such dis-
turbance inputs can be included in the parameter minimiza-

tion procedure mentioned above.

Results concerning the effect of parameter var-

iations which cannot be cancelled completely, on the static
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gain of the closed-loop system also appear in Chapter 3. A
steady state sensitivity matrix is defined, justification
given for its use, and a method of calculating changes in
static sensitivity as feedback parameters are varied is

given.

The question of how to put all these results to-
gether into a useful design procedure is answered in Chap-
ter 4. Questions about selection of design requirements,
noise characteristics, etc. are investigated. Weak areas

in the overall design procedure are pointed out.

Chapter 5 contains details concerning the com-
putational aspects of design synthesis. It is shown how
the previous work of Gilbert and Pivnichny [G3] forms a
basis for the computation required by the design technique
of Chapter 4. Important computer programming questions are

investigated.

Numerical results for several example problems
appear in Chapter 6. Here the results of investigation
concerning problem dimensionality weights on control and
error, input noise characteristics, and computational

speed are presented.



CHAPTER 2

PREVIOUS WORK

The results which we shall consider apply to
those multivariable plants whose operation can be described
sufficiently well in a small region about an "operating
point" by a set of linear constant-coefficient differential

equations of the form:

x(t) = Ax(t) + Bu(t)
2.1)
CX(t),

y(t)

where t is time; the state x is an n-vector; the control u
and output y are both m-vectors. The dot denotes a time
derivative, and A, B, and C are constant matrices of appro-
priate size. The principal design constraint is that the
resulting closed-loop system be decoupled. Consequently

in this chapter we will review the pertinent decoupling
results which are known today. The main objective is to
provide a foundation for what follows in the subsequent
chapters. Readers who are interested in the details about
the historical development of the results should consult

the following references [M5, R1, F1, F2, G2, M6, S2, W3].

2.1 Morgan's Control Law

In 1964 Morgan [M5] first proposed that the plant
(2.1) be decoupled by means of a state variable feedback

control law

u(t) = Fx(t) + Gv(t) (2.2)

10
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where the closed-loop system input v(t) is an m-vector and
F and G are constant matrices of sizes m x n and m x m

respectively. He stated the following:

Definition 2.1 The closed-loop system consisting

of plant (2.1) with control law (2.2)

x(t) = (A + BF) x(t) + BGv(t)

(2.3)
Cx(t)

y(t)

is decoupled if the resulting closed-loop matrix

transfer function
H(s, F, 6) = C(sI - A - BF)"1BG (2.4)
is diagonal and non-singular.

Whether or not there exists a matrix pair {F, G} for a given
plant (2.1) so that control law (2.2) can achieve decoupling

is determined from the following result.
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2.2 Necessary and Sufficient Condition for Decoupling

Let Ci be the i-th row of C, and define the row

vector D.
i
- o8
Di = C;A "B
and
0, if C.B = 0
d, = ot (2.5)
j, 1f CiB =0
where j is the largest integer from (1, ..., n-1) such that
CiAkB =0 fork =0, ..., jJ=-1. Now form the m x m matrix D
. T
D = !
. (2.6)
LDm.J

then a necessary and sufficient condition for decoupling is

given by:

Theorem 2.1 A given system S = {A, B, Clcan be

decoupled by state variable feedback (2.2) if

and only if D is non-singular.

Proof of Theorem 2.1 is given in [F1] and [G2].
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2.3 Weakly Coupled Systems

The question arises of what to do when the conditions
of Theorem 2.1 are not satisfied. In that case we may ask
whether some other control law will achieve decoupling. It

is obvious that if the open loop matrix transfer function

H(s) = C(sI - A) 'B (2.7)

is singular, for all s, then no control law can effect de-
coupling. On the other hand, Wonham and Morse [W31] have
shown that those plants for which H(s) is non-singular but
have det D = 0 can always be decoupled by the addition of
suitable dynamic compensation. Such systems are said to

have weak inherent coupling.

Consider, for example, a compensator of the form
x = Ax (t) + B4 (1) (2.8)

where X is an n-vector, u (t) is an m-vector, A and B are
constant n x n and n x m matrices respectively. If this

compensator is interconnected with the plant (2.1) by

u (t) = Kl u (t) + K2 x (t) (2.9)

where Kl is m x m, K2 is m x n, then the overall system

can be viewed as a new system S = {A, é, C} of order

~ - . ~ X . ~ - ~
n=n++n with state x = Lﬂ , input u = U and output y = y
with

A BK BK 3
c =[c 0]

T2
1l

o
"
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We remark that although the new control u is different from
the original u, this fact does not cause any great diffi-

culty in design. A detailed discussion appears in Section

4.3,

Wonham and Morse's result can now be stated as:

Theorem 2.2 Given a plant (2.1) with weak

inherent coupling, there exists a minimal order
compensator of form (2.8) for which the combined

system S can be decoupled by state variable feed-

back.

It is clear then that the presence of weak inherent coupling
in a plant need not deter us from satisfying the decoupling
requirement of design, provided of course we are willing to
add the necessary dynamics. Reduction of Wonham's geometrical
results to a computational algorithm for the synthesis of
dynamic compensators has not appeared as of yet. An alter-
native approach, however, is to utilize Silverman's [S1]
algorithm for calculating the inverse of a dynamic system
(which exists if H(s) is n. s.) [S1]. The way in which this

algorithm is used is as follows.

A necessary and sufficient condition [81] for
H(s) to be non-singular is the existence of a positive
integer o < n, a non-singular differential operator N of
degree o , a non-singular constant matrix Da and a constant

matrix Ca such that

Ny(t) = C, x(t) + D, u(t) (2.10)
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Silverman's algorithm is a procedure for constructing N,

Cay Da. If these have been determined, we let s replace

the differential operator d/dt and form N(s) from N. Now
let Bj = max k such that sX is an element of the j-th column
of N(s) and define a non-singular matrix differential oper-

ator A corresponding to the matrix function A(s).
A(s) = diag (s_Bj) (2.11)
Then defining a control law
-1 - -1
u(t) = D "NAu(t) - D ~~C x(t) (2.12)
a o o
we see from (2.10) that
Ny(t) = NAu(t) (2.13)
as for zero initial condition
y(t) = Au(t) (2.14)

which is a decoupled closed-loop system, so the conditions

of Theorem 2.1 must be satisfied for this system (det D = 0).
The dynamic compensator NA which does not contain any differ-
entiators can be synthesized i. e., find A, B, Kl’ K2 such
that u(t) = NAu(t), by standard procedures described in [K1]
and elsewhere. A disadvantage of the +eochnique is *hat it

is unknown at this time whether it yieid- a minimal srder

compensator.
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2.4 Decoupling Theorem

Once it has been determined that det Dz 0 or the
original plant (2.1) has been suitably compensated so that
the combined system has det D 2 0, then we may proceed to
examine the main decoupling results which are due to Gil-
bert [G2] and are presented here for use in later parts of

the thesis.

First of all, an m x n matrix A* is defined

d1+_‘]_.‘
Cl A

A% ) (2.15)

7Gm * 1
Cm A™m ;

then we state:

Theorem 2.3 If D is non-singular, the following

data are uniquely determined from S = {A, B, C}

integers p; > 0, i=1, ..., m; integers r; 2 0,
i=1, ..., m+ 2; polynomials o (s) = sTi- ailsri—l
- ¢ o0 - airi’ 1 = l’ e o 0y m+ 2 (lf I’i= O’

oy (s) = 1); m x m matrices Gi’ i=1y «o., ms

m x n matrices J. i=1y vy my k=1, ...,

ik’

P;3 M x n matrices Ki =1, ..., m, kK = 1,

k? 1

ST ) (the Kik are not defined if r = 0).

The class of {F, G} which decouple is

given by

and (2.16)



moPy T,
= DL A% 4 +
F = -D ~ A :E: (olk nlk) Jix zz: E Pit Klk
i=1 k=1 i=1 k=1
where Tik = LTI k=1, .4, Pis Moy = 0, k = ri+1,
> Py and ., Oi3> Py are arbitrary real numbers
( )\ z 0, i - 1, * .y m)'

Let hi (s, F, G) denote the elements of the
decoupled (diagonal) closed-loop transfer function

matrix H (s, F, G). Then

s a. (8)
h. (s, F, ) = =% (2.17)
i
v, (s, ci)
_ Pl Pi-1 _
wi (s, ci) = s 0;, S “e inl
o, = (oipi, e Gil)

where Ai and the elements of o, may be chosen

arbitrarily.

The characteristic equation of the closed-

loop system is:
m
q (s,F)=det(sI-A-BF)= am+l(s) am+2(s)]];wi(s,ci) (2.18)
The actual details of how these equations arise and a proof of

the results in the decoupling theorem can be found in Gilbert's

work [G2].

We can see from (2.17) all possible decoupled sub-

system characteristics., Notice that all of the subsystem
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poles can be freely assigned, but the zeros are fixed. A

particular characteristic can be specified by selection of

the real numbers %_, i=1, ..., m and %1 1=1, «.., m,
k=1, o0y D;- Once these numbers are chosen, then the

corresponding control law which produces that closed-loop
characteristic can be calculated by equation (2.16). If
the open loop system is controllable, which we shall assume
in Chapter 3 for simplicity, then r = 0 and the matrix

m+ 2
pair {F, G}is uniquely determined.

Observe from equation (2.18) that unless S 0
and r , o, = 0 the roots of O 41 (s) = 0 and the roots of
a4 9 (s) = 0 appear as fixed roots of the closed-loop char-

acteristic equation. In that case we may well ask what should
be done if any of these roots lie in the right half plane.
Clearly it would be impossible to design a stable decoupled
closed-loop system with state variable feedback alone and
another approach such as the one to be described in Section

2.5 is needed.

Determination of all the integers, polynomial
coefficients, polynomial roots, and matrix elements in the
synthesis theorem above would be impossibly difficult without
the aid of a computer program such as the one developed by
Gilbert and Pivnichny [G3]. This program calculates all
this data from the system matrices A, B, and C and as such
forms a basis for the synthesis procedure which is described

in Chapter 3.



19
2.5 TFixed Poles

In the preceding section, the possibility of unde-
sirable fixed poles appearing as a result of the decoupling
requirement was noted. As mentioned in [G3] this phenomena
occurs in a large percentage of the sample problems con-
sidered and is a real concern in any practical case. For-
tunately there are results available which allow us to
circumvent the difficulty of undesirable fixed poles. TFor
it is shown in [W3] that the location of the fixed roots
can always be shifted by dynamic compensation of the type

considered in Section 2.3.

Wonham and Morse [W3] have developed the most
general results. Their solution is stated in the framework
of first separating the fixed poles into those with "good"
locations and those with "bad" locations, then choosing a
minimal order compensator which simultaneously (1) allows
decoupling and (2) results in a decoupled system for which
the only fixed poles are those with the "good" locations.
Unfortunately, their geometrical results lack computer im-

plementation at this time.

Alternative, though jess general results are given in

Howze and Pearson [H1]. Their generality can be seen from
the main theorems which are stated here. Define v, as the
greatest integer j such that the vectors Al B, J =05 cons

v; - 1 are linearly independent.

Theorem 2.4 Assume (A, B) is controllable,

S = {A, B, C} can be decoupled by {F, G} and
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v = p, + for 1 1, ..., m. It is then
i Pl Pm v 1 ’ ’

possible to compensate S by means of a dynamic

compensator of order k (m-1) Po o 1 such that
n + k poles can be placed arbitrarily with state

feedback.

Theorem 2.5 Let the assumptions of Theorem 2.4

hold except v. < p. *+ p for one or more 1i.
i i m 4+ 1

Then if the fixed roots are all real and dis-

tinect, it is possible to compensate S by means

of a compensator of order k =:§: vi - n such

that n + k poles can be i=1

arbitrarily placed.
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2.6 Summary of Results Available

To summarize the material presented in this chapter
we may say that results are available which specify a de-
coupling feedback law for any plant of the type (2.1) for
which det H(s) # 0. This specification involves using state
variable feedback primarily with the addition of only enough
dynamic compensation to allow decoupling and assignability
of undesirable "fixed" poles. Although all the details in-
volved in selecting suitable dynamic compensation have not
been taken care of completely at the present time, and only
a sketch is given of available results, it is clear that
compensators do exist which allow all cases to be considered

as state variable feedback problems.

We have consequently arrived at the starting point
for the original work in this thesis. It will be assumed
in the following that the necessary compensation has been
determined, and the task at hand is to choose a decoupling
control law from the class (2.16) (by suitable choice of
Ass 0539 i= 1...,m; 3 = l,...,Pi) which produces a "best"
overall design. Specification of what constitutes a best

design and techniques for computing it will now be presented.



CHAPTER 3
THEORETICAL RESULTS

This chapter is divided into three main sections.
The first deals with the random input technique for design
of decoupled systems. A precise statement of the problem
is given and the steps of a basic algorithm for its solu-
tion are described. Once the basic algorithm is understood,
various changes in the individual steps of the algorithm
and in the algorithm itself can be made to improve the effi-
ciency of computation. These are discussed in this section

and also in Chapter 5.

Theoretical results concerning disturbance input
effects on decoupled systems are presented in the second
main section. Finally methods for understanding, reducing,
and in some cases eliminating static gain variations and
crogs coupling due to plant parameter variations appear in

Section 3.

3.1 Control Effort and Error Performance Procedure

One approach for the design of multivariable
systems is the well known quadratic tracking problem [x1, All
and its extension to model following techniques [Y1l, T1].
Although it is possible to use these to design multivariable
systems with reasonable error and control amplitudes, how is
a decoupling requirement included? Unlike the technique which
follows, there does not appear to be any reasonable way to use
such an approach to achieve decoupled multivariable designs

except in an approximate way. Appendix A contains a discussion
22
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of the difficulties one encounters.

3.1.1 Problem Approach

Given the plant (2.1), we assume that it can be
decoupled, that is, any necessary dynamic compensation has
been included and the fixed constants in equations (2.16)
for the F and G matrices of a control law have been deter-
mined. Let us consider now the synthesis problem of select-

ing values for the free scalars'xi, = 1y, «vey my k = 1,

o. i
ik’

«» DP.. Although these scalars appear in the expression of

i
the decoupled sub-system transfer functions hi(s) in a simple

way, their effect on the plant inputs is not clear.

We begin by selecting a random input vector v(t).
This vector is generated by passing zero-mean Gaussian white

noise through a filter

.
1]

A,p + va(t)
(3.1)

v(t) C v

\Y

where y is a v-vector representing the state of the filter,

A B and Cv are constant matrices of sizes v x v, v x m,

v Ty
and m x v respectively, and w(t) is a zero-mean Gaussian

white noise m-vector with co-variance matrix
Elw(t)w' ()] =r16(t - 1) (3.2)

where I' is a diagonal matrix and 6(t -t ) is the Dirac delta
function. A vector or matrix transpose is indicated by a
prime. We assume that the filter is asymptotically stable

(eigenvalues of A, have real parts < 0), and the filter
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consists of m independent single input-single-output sub-
sections which are represented in the combined form of (3.1)
only for convenience of notation. Now combine the plant and

filter states into the augmented state vector z of size n + v

i

and the augmented system equations can be expressed

5 = Az + Bu(t)

A (3.3)
y(t) = Cz
where
A A + BF BGC A 0 A
A = Vi, B = , C=1[C o01.
0 A B
v \Y%

We define a covariance matrix for the augmented system vector
P(t) = Elz(t)z'(t)]

then it is well known [A2] that the covariance matrix of a
linear constant coefficient dynamical system obeys the Ly-

apunov differential equation

. A A A A
P(t) = AP(t) + P(t) A' + Brap' (3.4)

A
with initial condition P(to) = Po' For a stable matrix A,

this matrix differential equation has a unique symmetric
steady state solution matrix P = lim P(t) given by the

troo
solution of:

ANea A AN A
AP + PA' = -BrB' (3.5)
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Define another 2 m vector g(t) consisting of the
error e(t) =vv(t) - y(t) and control u(t) vectors.
vit) - y(t) -C C
g(t) = = Wz(t), W = M (3.6)
u(t) F GC,
For convenience let the expected value notation with a bar
above indicate the steady state expected value if it exists,
and supress the time argument e. g.
- 1lim
E[g' €] = (,o El'(D)e(D)].
Now define a cost functional J consisting of a quadratically
weighted sum of the steady state error and control variances
- Q O
J = E[g'QOEJ, Q, = [0 R] (3.7)
where the m x m constant matrices Q and R are positive definite
and symmetric. Then it is an easy derivation to show that the
cost functional can be expressed in terms of the trace (sum

of diagonal elements) of a matrix product
J = trlW'Q WPl (3.8)

Observe that the cost is a function of the free scalars xi,
0410 1i=1, ...,my, k =1, ..., P which appear in the
expression for W and in the Lyapunov equation (3.5) which

has P for its solution.

The synthesis problem can now be stated precisely
as given a plant (2.1) with control law matrices (2.16),
given an input filter (3.1), a diagonal covariance matrix T

and weighing matrices Q and R, select the values of the free
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scalars Ai’ 050 to minimize the cost functional J of equa-

tion (3.8).

Because of the highly complex way in which these
scalars affect the cost functional, no analytical solution
could be found and an iterative computational procedure for
the minimization problem was developed. Before going into
this procedure, however, we shall discuss in more detail,
selection of the random input v(t) and selection of the

weighing matrices Q and R.

3.1.2 Input Selection

We assume that the filter (3.1) consists of a
combination of m completely independent single-input, sin-
gle output filters. The order, pole location and zero lo-
cation of the filters may be freely chosen although we do
assume that the filters are stable. If the i-th filter

element has orderO. and is described by the equations

1,i = Aviyi + bViWi(t)
(3.9)

Vi(t) = Cviyi

whereys. 1s a=v. vector, A isO. ., b is a ». column
?1. 5 s vy :LX‘tha Vi 5

vector, and cg, is a-Ji row vector, then one simple way to
1

combine the individual filters is to let
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FAvl'o b, to
B B
bA 0 'b
_ |V - oV
A= T‘T‘QT"*“ » B,® il B
+ ~ 0 ' LY
(] | N , ~
v O A | b
L ) VmJ L : Vm.
o ]
Vl:
C* :cvz.
b ey
L [} md

It is also assumed that the spectral density of each ele-
ment v;(t), 1 = 1, ..., m of the class of inputs v(t) which
the closed-loop decoupled system will be asked to follow is
known. The output spectral density S, (w) of each individual

i
filter on the other hand can be calculated from the well

known formula
Syc(w) = 8, (w) [H (Gu)| (3.10)
Vi Wi i

where Swi (w) is a constant, (white noise) and Hi(jw) is the
Fourier transform of the filter inpulse response h.(t). One
rationale for filter selection, then, is to choose a filter
so that Svi(w) approximates the expected content of vi(t).
In practice low (first or second) order filters seem to be

adequate. Some experimental results on the subject of filter

selection and its effect on the synthesis problem are pre-

sented in Chapter 5.
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3.1.3 Cost TFunctional

In general, no single procedure for selecting the
elements of the weighting matrices Q and R can be stated.
We assume that some knowledge of the acceptable control
magnitudes and acceptable error magnitudes is available.

In order to get started, we may select Q and R to be dia-
gonal matrices with element values chosen to reflect this
knowledge of acceptablemagnitudes. Furthermore, the rela-
tive weight of the elements of Q compared to R should re-
flect our tradeoff of error magnitude for control amplitude.
This latter consideration is particularly important in
situations where the plant (2.1) will be asked to follow
inputs with significant high frequency energy components
compared to the time constants of the plant itself. 1In
that case, we must accept either large controls or large

errors, or a tradeoff where each is significant.

Usually the synthesis result using our first choice
of Q and R will not be entirely satisfactory. After exam-
ining the control and error variances, we may decide some
are too large and decide to choose another Q-R pair, this
time weighing more heavily (increasing the corresponding
elements of Q and R) those errors or controls which turned
out to be unacceptable. Another synthesis result can be
calculated with confidence that these objectional items will
be reduced. Because no statement can be made about exactly
how much each will be reduced for a given increase in weight,

several tries may be necessary. In practice only a few such
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tries are necessary before reaching an acceptable design.
Some practical results which demonstrate this technique and
the effect of changes in the weighting matrices are presented

in Chapter 5.
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3.1.4 Form of Gradient and Hessian

A Newton procedure is used to minimize the cost
functional J. In this section, we shall examine the form
of the gradient vector and Hessian matrix of J, both of
which are the essential ingredients of the Newton procedure.

The procedure itself will be described in detail in the next

section.

Assume we have already obtained the matrices
D_lA*; Gi, i = l, o o9 m; Jik) i = l, e o 0y m, k = 1, LR ]
p; the scalars LT 1= 1y eeey my, k = 1y ..y D; of a

centrol law (2.16). Select a starting value for the free
scalars_xi and gik? 1= 1y veey my kK = 1, +0u,y D; - Call
these starting values i;, and ;. For convenience we

now convert the double subscript ik to a single subscript j.
The conversion is given by

i-1
j=x+ k
=1

"

The control law (2.16) can then be rewritten in
terms of the new variables Xi’ i=1, ..., m and Ej’ 3= 1,

+> D

- (3.11)
G =6, +ﬁnj N
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where

J=1 jO j j (3.12)

Note that the new variables Ej and ii all have a value of
zero when ¢. = ¢, and A, = A. . This property is very

] jo 1 10
important in reducing the complexity of the expressions
for the gradient and Hessian by removing cross product

terms which would otherwise appear. Corresponding express-

. . A
i1ons are written for A and W

A - m -
A=A +f§ g A, +¥ . X.A
o | i=1 1

j=i 1
(3.13)
W= W +f§ oW, +i§l AW,
o j=1 J 3] i=1 1
where
i%: (A + BD A* 0
A = o. A, + A, A+
°© 3=1 103 q=p el 0 A
A v
W = G + A .+
° Fm1 390 fEried fpthas o |
BFj 0 [0 BGlcVW
A, = A =
i g ol 7 i T, o | (3.14)
0 0 [0 0
W. = , W, =
I |r. 0 1 Jo @.cC
J - V4
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Again for simplicity of notation we re-name the Ti variables

A = Gp g g0 17 1, «v.y m (3.15)
Now taking the gradient of J, that is, the derivative
with respect to each of the variables 6y J =1y ve.y P+t m
from (3.8), we denote the jth element of the gradient vector
evaluated at Oj =0, 3=1, ..., P+ m as

od . : 3P ' - -
w3 (0) = tr [WOQOWO gaj+ W' QgHsP + WiQOWOP] (3.16)

Note that the last two terms are symmetric and thus have the

same value under the trace operator. The terms iz_ may be
907

obtained by implicit differentiation of the Lyapunov equation
(3.5).

8 4 3P A vz _A.P - BAL (3.17)

o 86j 35. © ] J
J

Evaluating everything at 5, = 0, j = 1, ..., P + m, we find

that if A is stable, then P has already been specified as

the solution of (3.5), and Ao = A is also stable. Then

(3.17) also has a unique p. d. solution Ez_ which may be

00

used above in evaluating the gradient. .

We differentiate equation (3.8) twice to obtain

elements of the Hessian matrix

2 5 >
J - 3P P

-%——~—(O) =2 tr |(W.Q W.P + W "Q Wo— + W _'Q W.i_,
i j O 1 O (@] la O j -

BGi acj 0. ao‘.

- 1
25
+ tr [w rqw 2°F ]
(@] OOB—-B—

91995 (3.18)
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The matrices P,9P  having been previously determined, we

90
. 0= i . . . .
obtain 32P from (3.5) by differentiating it twice
90:00
1]
2P 3% _ _ _ _
A 9g.%s. .- - A ' = -A. 3P - BPA.,' - A.35P - oPA.'! (3.19)
0 "1°7] 903905 0© I35, 35, 3 135, %0,

i I

We state, as before, that equation (3.19) has a unique

P. d. symmetric solution if AO is a stable matrix.

3.1.5 Algorithm

The basic steps of an algorithm for the minization
of the cost functional J () by means of a Newton procedure
will be described in this section. The Newton procedure it-

self consists of repetitive application of the algorithm.

k+1 _ k -1
o =g - Hk VJk (3.20)

where oKdenotes the independent vector variable at the k'
th iteration step, and Hk and VJk are the Hessian and grad-
ient respectively of the cost functional evaluated at c=ck

This procedure is known to converge very rapidly
in the vicinity of the optimum o¥. Exactly how close the
starting point must be to o%* is difficult to determine for
this problem in light of the fact that existence or unique-
ness results aremot available. In any event, our purpose
is to locate a minimum (if it exists) and not to study the
fine details of minimization procedures. In line with

current practice, the existence of additional local minima
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can usually be detected by using a wide variety of starting
points. Only one minima has ever been found for any of the
examples tried. TFor clarity, a flow diagram of the compu-

tational process is shown in Figure 3.1.

Step 1 The matrices AO and WO are calculated from the current
values for o35 i=1l, +.., P+ m. This step must be repeated
after each Newton iteration in order to guarantee that the
variables aj and Xs have a value of zero. Otherwise the ex-

pression for the gradient and Hessian will not be valid.

Step 2 The Lyapunov equation (3.5) is solved for P. Solu-
tion methods for this equation is a subject of current re-
search. There are several techniques available at the present
time. For reference see Chapter 5 and [Bl, M1, M3, D1, xuj.
The most obvious is to convert the (n +y) x (n + y) symmetric
matrix P into a (n + v) (n + y +1) vector p. Because P is

2
symmetric, only the upper triangular part needs to be deter-

mined. Let the i'th element p; of p be given by the j, k'th
element [ﬁjk] of P, i. e,

k (k - 1)
i = """_E“"" + 3

The symmetric matrix BrB' is simularly converted

into a vector q. Then equation (3.5) can be written as
p=q (3.21)

where Ap;q is a square matrix of size (n +v ) (n +y +1).

. 2
A . .
If A is a stable matrix, then the large matrix Aprg must be




35

Read Data
and Print It

R

FA = A - 7\iA. + oA,
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L
t
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L 1] 1j
i
- 1
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e
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{

Figure 3.1
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non-singular because equation (3.5) and thus the equivalent

system (3.18) is known to have a solution.

-1
= A 3.22
P = Pp1gd (3.22)
Techniques have appeared for forming the matrix
ABIG from A with a small number of steps. See [B2] and
[c1]. Inversion is a straightforward matrix inverse pro-
blem. Other solution methods for equation (3.5) seek to

avoid inverting such a large matrix by using an iterative

procedure instead.

Another item to consider for reduction of the com-

putational burden is to partition equation (3.5)

1]
A + BF BGCV Pll P12 P11 P12 (A + BEF)'O
+
. 1 t
0 AV P21 P22 P21 P22 (BGCV) Av
0 0
0 Bra'

Writing the partitioned equations:

1 |
(A + BF) P + BGCVP21 + P11<A + BE)' + le(BGCV) =0

11

+ + + L
(A BF) P12 BGCVP22 PQlAV 0
(3.23)

1 | R
AVP12 + P12 (A + BE)' + P22(BGCV) =0

+ ' = '
APy, * PyoA,  ==BIB
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The third equation is merely the transpose of the second and
presents no new information. In addition, the fourth equation
is independent of the Ej variables and needs to be solved only
once for each filter selection, while the first and second
equations need to be solved at each iteration of the ¢. vari-

]
ables.

Step 3 Calculation of the cost J. Simple matrix algebra
and a trace operation are all that is needed here.

3P

Step 4 Determination of P, = 97,
—_— i

[+3

The right hand side of equation (3.17) is computed using the
matrix P determined in Step 2. Then the Lyapunov equation
is solved for Pi' Note however that if the straightforward
matrix inversion technique is used to solve for P, then the
same matrix inverse is used to determine Pi so there is no

lengthy calculation here.

2d
aUvi(O) .

Step 5 Calculation of the gradient terms Ji
Again, simple matrix algebra and a trace operation are used.
The computation is somewhat longer than in Step 3. Take
note that Steps 4 and 5 must be repeated for each element

of the gradient vector. Also the P. matrices determined

in Step 4 must be stored for use in Step 6 below. Otherwise

they will have to be recomputed.

Step 6 Determination of P.. = 3¢.33
s ij 1975
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The right hand side of equation (3.19) is computed using
the Pi’ i=1, ..., P + m, matrices determined in Step u.
Then the Lyapunov equation is solved for Pij as before,

making use of the simplification discussed in Step Uu.

2
J
Step 7 Calculation of the Hessian terms Jik = %g"gg‘
i3
Matrix algebra and a trace operation, this time on an even
lengthier expression is used. Steps 6 and 7 must be repeated
for each element of the Hessian matrix. Because of its sym-

metry, however, only the upper triangular portion needs to

be computed in this way.
Step 8 Invert Hessian

An inversion routine which takes advantage of the symmetry

of the Hessian matrix is preferred here.

Step 9 Calculation of the step size

k + 1.

The new starting vector for the k + 1 iteration ¢ is
computed by equation (3.20) from the 1 th starting vector:
-1
CHIMEE TSI g A (3.24)

where H and VJ are evaluated at ok. The matrices Ao and WO

are recomputed and another iteration is taken. There are

many possibilities for a stopping criteria and the one selected
for this problem is to specify a maximum number of steps and
after each step, a norm of the gradient vector specified by

2
oJ
norm =E:G6()
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is computed and compared to a specified scalar. If the
norm of the gradient is less than this specified constant,
then it is assumed that the minimum has been reached, and

no further steps are taken.

If one uses the method of inverting ABIG to find
ﬁ, then the Newton procedure is preferred over a pure grad-
ient or conjugate direction method. The reason is that it
is difficult to determine the cost J by the method of in-

BIG but once Ag%e is determined, computation of

verting A
the gradient vector and Hessian matrix elements does not
require much additional effort. The additional computer
time required to compute the Hessian and invert it is pro-
bably well justified by the more rapid convergence of the

Newton procedure, particularly in the vicinity of the op-

timum.

However, if an iterative method [K4] is used to
find P, then it is more reasonable to use a gradient pro-
cedure because the iterative method would have to be re-

peated once for each element of the Hessian matrix.

Many authors suggest that for the first iteration
with a Newton procedure, only a partial step be taken as
a precaution against a serious overshoot which is theoret-
ically possible. For the practical examples considered in
Chapter 6 this precaution was found to be unnecessary, be-
cause overshoots seldom occurred. For those few cases in
which it did, the overshoot entered the region of an unstable

A
A matrix. A simple correction procedure which worked well
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was to cut the initial step in half and use this point as
a new starting point. In all cases, this procedure was

sufficient and convergence was achieved.

Additional questions in regard to efficiency of
computation and computer run time requirements are dis-

cussed in detail in Chapter 5.

3.1.6 Independent Inputs

Because the closed-loop system is decoupled, it
is possible to reduce the problem as stated in Sections
3.1.1 - 3.1.5 into m independent problems of lower order

as the following development demonstrates.

The cost functional J from (3.8) can be expressed

as.:
J = tr EW'QOWPJ = trp [QOW§W'] (3.25)

Also denote the upper left hand part of the error and control
variance matrix WPW' as (Xi) where Xi is an m x m error co-
variance matrix. For a decoupled system, the individual sub-
systems are independent single input-single output systems;

consequently, the errors
. t = - t - t 1 = e s »
el( ) vl( ) yi( ), 1 1, , m

are independent and thus Xi is a diagonal matrix. So for
decoupled systems, off diagonal elements in Q have no effect
on the cost J. We express J equivalently as

- m
J = Elu'Ru +3%__ q.e. 2] (3.26)
i=1 + ¢
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th

where q, is the 1 diagonal element of Q . The control u
i 0

can be expressed as the sum of control responses due to the

individual inputs because of linearity.

e i
u=3.u (3.27)
i=1

where u' is the control response due to vi(t) with v (t) = 0,

j # i. Thus

m . m
u'Ru = i;: , (ut)' RY (u)

1=1 k=1
m m .
=57 97 WhH'RdE
i=1 k=1

Now u and u are independent and thus uncorrelated. Hence

- m . 1
E[u'Rul = ). (ub) 'Ru’

i=1
and
= iyip.d 2 A&, 1
J=E2. (u)'Ru” + q.e, =¥ J (3.28)
i=1 11 i=1
where
g5 = E[(ul)rrut + qieizj (3.29)

Using the canonically decoupled form [G2] described
in Appendix F it follows that if a suitable change of co-
ordinates for state space is made (Q = sz) and the resulting

AL . . 1
state vector (x) is partitioned into subvectors x ', ...,

+ . . . eu s
% lof dimension Pys +ves Py 1o the equations describing
u' and yl can be written as
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% (t) = A.xT(t) + b, OLv. (1) + oixb)
1 1 1 1

<M+ :
ey = A 2™ ) + A%t + 5%y, (1)
m+1 1 1 11
eixlu:)) (3.30)
) = W) W, 2™ ) ¢ v vo(n) +
1 mt+1 13 1
V.8 xT(t)
1 1
yr(t) = cixl(t)
. c c .
where the matrices Ai’ bi’ Am+l’ Ai’ bi’ c;, are given as

partitions of the CD system matrices A, ﬁ, ¢ in [G2] which
are also shown in (3.34). Since there is a one-to-one
correspondence between the elements of the row vector ei
and the elements of oi = (cipi s

that J° is a function of Ai and ot only. As a result, the

vy 0. l) it follows

overall minimization problem has been separated into m

smaller (in the number of search variables) problems.

This separation into m sub-systems has the con-
sequence that even if the original problem is solved di-
rectly without separation, the Hessian matrix is now known
to be block diagonal in blocks of sizes (p; + 1) x (p; +1).
The blocks are P: X P if the unity static gain constraint
is imposed. This simplification means a considerable re-
duction in the number of elements of the Hessian matrix
which need to be calculated and a consequent reduction in
the computer time required. The saving is discussed in

later chapters.
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In addition to the reduction in the number of
search variables, the m individual problems will each have
smaller state dimensions than the overall problem. A saving
in overall computer time may be possible because of the re-
duced dimensions even though m individual problems must be

solved. Questions of this nature are discussed in Chapter 5.

If disturbance inputs are present, then it is un-
likely that their effects will be confined to just one sub-

system. In that case, the preceding results do not apply.
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3.2 Disturbance Inputs

3.2.1 Complete Cancellation Results

Consider the case when the plant (2.1)
has disturbance inputswvhich can be described by the modi-
fied set of equations

X = Ax + Bu(t) + Nr(t)

(3.31)

y(t) = Cx
where r(t) is a g-vector (elements ri(t), i=1, ..., q) of
disturbance input functions. The matrix N is a n x g con-

stant matrix.

Definition 3.1 - The output y(t) is said to be

invariant with respect to the (scalar) disturbance

input ri(t) if
y(t) = 0 for all ri(t) and x(o) = 0

It is assumed that Morgan's control law (2.2) is used for

closed-~-loop control.

A necessary and sufficient condition for invar-
iance was first developed by Wang [W1]. This condition is
stated below in Theorem 3.1 as it is reported by Cruz and
Perkins [C3]. Take note that the theorem applies whether

T and G decouple or not.

Theorem 3.1 A necessary and sufficient condition

for the system (3.30) with control law (2.2) to

be invariant with respect to ri(t) is that
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C(A+BE) vy =0 fork=0, ..., n=1
. . th .
where v 1s the i- column of the matrix N.
For a proof of Theorem 3.1 see Wang [W1l].

It is easy to show that a consequence of this con-
dition is that except for the trivial case v = 0, the closed-

loop system

x = (A + BF)x + BGv(t) + vr,(t)
. (3.32)
y(t) = Cx

must not be completely observable.

Returning now to the additional requirement that
F and G decouple, we shall see what effect Theorem 3.1 has
when applied to the decoupling problem. The problem we shall
consider caﬁ be stated as: Given A, B, C what v are per-
missible so that y is invariant with respect to ri(t) and

the system (3.31) with control law (2.2) is decoupled?

In general, for a given plant S = {A, B, C} the

space of permissible v given by
n k
M= {v: veR"', C(A + BF) v=0, k=0, ..., n-1} (3.33)

will be dependent on the free elements o i=1, .., M,

k,
k= 1, .04 Ps in the expression (2.16) for the decoupling

feedback T matrix.

If ?Lis known in terms of the O

examine the columns of N and determine which of the dis-

, then we can
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turbance inputs can be made invariant (complete cancellation)
and which cannot. For those which can it may not be possible
to make them all invariant because of conflicting require-
ments made on the S elements. One has to choose which
disturbances are more important. For those which cannot

and those which would require an unacceptable feedback F

matrix, the results of Section 3.2.2 can be applied.

Some results can be seen more easily if we consider

the problem transformed into CD form as in Appendix F.

A “logym -1 o -1
= - %
A TZTl(A BD TA )Tl T2
i\ 1
B = TZTlBD
(3.34)
A
_ -1 -1
C = CTl T2
A
\)—Tle\)

A A A
Note: These particular A, B, C matrices should be distinguished

from other matrices with the same notation in Section 3.1. The
A A A
form of A, B, C is given by equation (r2 ) of Appendix F.

Furthermore, in this CD form F can be expressed as

(3.35)
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A
Partition the vector vy similarly into m + 1 sub-vectors

each of dimension D; i=1, ey m+ 2
A
v = vl
V2
(3.36)
6m+1
The following results can now be stated.
- Result 7 The allowable'\)m F 1 is completely free
for all feedback matrices which decouple.
" Result II The conditions for the allowable
v.y 1 = 1, ..., m are independent of each other

and depend only on the respective ith subsystem

A., b c £f..
13 i’ i, i

Proof: From the partitioned form of the matrices
given in Appendix F and (3.35) we calculate for

any power k the expression

A AT AAC
C (A + BF) =

— k T
Cl(A1+b1fl) 0 0 0
k

0 GZ(A2+b2f2) 0 0

|
k
| 0 ' 0 c (A +b ) 0]
m m mmn

The location of the many partitions which are
zero for any k, k = 0, ..., n - 1 establishes

Results I and II.
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Now consider the individual subsystem Ai, bi’
fi, v From Result II we can examine each subsystem
i=1, ..., m separately, and by the Cayley Hamilton theorem,
powers of (A; + bifi) higher than <Pi - 1) can be expressed
in terms of lower powers so we can write the condition of

Theorem 3.1 for a subsystem as
(A; + by£)y, = 0 for k = 1 (3.37)
c; (A; 1530 vy F ork—O,...,pi— .

rather than for k = 0, ..., n - 1. This simplifies the

procedures for finding the permissible v

Pi

o ma T _ . k
Result III The spacehi = {\,i.\,ieR , ci(Ai+bifi) v,
= O, k = 0, LN Y pi - 1}
will have dimension d(JZ)
1

o <d.)<r.
17771

and in general will depend on the actual values

taken by the free scalars 0 4100 k=1, «.0y P~

Proof:

Form a matrix Mi consisting of the row
k
vectors c:i(Ai + bifi) , k= 0, ouuy P, - 1
s -
i
c.(A, + b.f.)
i iti

M. =|c.(A. + b.£)?2
1 1 1 1




49

The space 7li is given by the null space of this

matrix. From the form of Ai’ b,

c., f. we cal-
i? Ci* T1

culate the upper left hand (4, + 1) x (di + 1)

elements (di = p; - Ty -1) which turn out to

represent an identity matrix. Clearly rank

Mi > di + 1, thus the null space has dimension
<.

Obviously as a consequence of Result III if r, = 0
then Vi = 0 is the only element of)ii, that is if there are
no numerator dynamics in hi(s) then that subsystem will be
completely observable for all choices of 01 kK =1, «o0y pi.
In fact, the only possibility for vie}zwhen v, o® 0 occurs
when pole-zero cancellations are made in hi(s) by a suitable

choice of ¢ k=1, ..., pi' Recall that the numerator

ik’
dynamics are fixed, i. e. cannot be altered by state variable

feedback alone.

Conditions on the Oy variables in order to cancel
several numerator roots are rather complicated, however, some
rather general results can be obtained. It will be easier
to prove the results if we make an additional transformation
to companion form indicated by the v superscript.

Transform y Y Y
i? i’ 071 i’ Ui i’ 7i’ i i’ Ui’

This transformation which corresponds to a change

in coordinates in state space can always be made, see [G1l],

and for a decoupled subsystem, the matrices will have the

following form [G2].



\ 0 T Vv 0
A, = b =10

1 0 a. 1 0

i
0
1 ]

v
v, = K, v

i i i
v (3.38)
c. = [-a 1 O 0l

i
Fo= I

. - 0] g _19 y O - 0o s O - = o -

o3 Op - al]
where o, is an r, row vector a, = [ari O, =] *ees al]
and - 1
s™1 - alsrl - - o
hi(s) = - Ty
sPi - olspi-l - ev. -0
P

and Ki is the nonsingular transformation matrix.

The conditions for complete cancellation of
disturbances can be stated for the the companion form

sub-systems

=0 fork=20, ..., p. (3.39)
i

by applying the transformation to (3.37).

Silverman [S1] has recently obtained powerful
results for a more general disturbance cancellation problem

which can be applied here. We state the following result
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which is based upon the idea in his Theorem 5.2 but as
stated here applies only to single input-single output
companion form systems (3;38) and is easy to prove by
direct expansion without reference to his work. It in-

volves a matrix LB which he introduces.

Theorem 3.2 There exists a matrix fi such that

condition (3.39) is satisfied if and only if

LBiE_: 0. The (pi - ri) X p, matrix LB for

this problem is given by:

3 |
L,o=| *
8 v
(3.40)
| 1%

-

Proof: Necessity is established by noting from

v v v Vo, .
the form of C.» Ay bi’ fi just given that

\" v V
EN = oAk
1 1 1 1

o< ¥

V(IL/\ +

fOI’k’-’ 0, ¢ o ey pi —I‘i— lc

These are the rows of LB. For sufficiency, choose

0i= Oti, i= l, ¢ o0y Pi, O'i= 0, I’i<i5pi
then

\ v vV Vv k

c.(A, + b.f.)

= 0 for k > P, - T - 1.

This result establishes clearly that there does

. - V . . .
exist a matrix fi such that.d(%i) = ri and that this space
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‘Wi can be calculated as the null space of LB. The column
vector xi must lie in this null space in order for it to
satisfy (3.39). If there are several disturbance inputs,
then the vectors xi corresponding to each disturbance input
must lie in this null space; otherwise, they cannot be com-
pletely cancelled by any choice of %i' Direct calculation

shows that elements in the null space of He are given by

L -

vi? 1
Vi, 2
v, = . » free
i
Vi ri
r.
+ =
vl, rl 1 ai,] vri_J
j:l (30”‘1)
r, )
Vis Ty + 2 = LTEN Vri + 1-]
J=1
Ty
\)i, pi :Z (li,] Vpi_j
" j=1 ) _

Another result originally due to Silverman [S1]

can be applied to calculate conditions on the elements of

v
a matrix fi which satisfies (3.39).
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Theorem 3.3 Let Xi be such that LBXi = 0.

Then (3.39) is satisfied if and only if
;.(X.)j :. =0 for j = 0, :.;, P. (3.42)
i i i
Proof of this theorem is lengthy and is omitted.
The theorem is established by direct application
of Silverman's Theorem (5:3) for the companion

form shown.

It is clear that simultaneous satisfaction of
Lsxi = 0 and (3.42) is equivalent to satisfaction of (3.39).
For a general companion form system, the two equivalent ex-
pressions afe quite difficult to solve in terms of the para-
meters a, . On the other hand, if specific numerical values
are available for a particular companion form system, then
Silverman's results are much easier to use in calculating

conditions on the elements of %i.than (3.39).

General solutions have been found for two specific
cases. They were developed before Silverman's results became
available directly from (3.39), and application of Lsxi =0
and (3.42) do not simplify either case. The results are pre-
sented because they do provide general solutions which would
otherwise be unavailable and because they apply to the great

majority of examples, that is, those for which p.<3, i = 1,
i

.., I as well as some others.

The first case for which a solution can be found

i i i = | i L] L] . = . + L]
easily 1s 1f ri 1, 1. e P, ‘dl 2
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Result IV If ri = 1 then
~ v - o
ci —al 1 0 0
v v VvV
Cl(Ai+bifi) 0 —Gl 1 0
_ 0 0 —0q 1
VERRY +v v ) 1'1 .
R A L B O
1t .30, then
oq 1
02
pr free
o
=1
Pl .
o = o Pi - g o Pi~1 - Gno 1-2—
p; M1 1% 2%1
af V. R
an or any v.e 3
. 1T
v Vil
v. -—
I =jagvey
2
17V51 .
»Viq 18 free
Pi-1
%1 il
L )

0
0
0
—al 1
0'2 Ol—a
“9p.-1%
i

(3.43)

(3.404)

(3.45)
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null space of the P; X Ps matrix.
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Obviously, the vector v:; must lie in the

The partitioned

portion is triangular with all 1's along the dia-

gonal and thus has rank di + 1 which agrees with

Result IIT. Ekm'za §é 0, we require that the entire

matrix be singular.

Evaluating its determinant along

the last row and requiring it to be zero gives

0 = -0
Pi

+(ol-ol) (-a

and coensequently (3.h4),

+ cp _l(-al) -0

i

._1(u1)2 + ...

P

l)Pi-l

From (3.43) with condition

(3.44) it can be seen by inspection that for any

xiq%i condition (3.45) must apply to Xi'

Note that the expression for the permissible vy is independent

of the free values of the Oi

variables. Furthermore, note

that P; - 1 of the 0. variables can be arbitrarily specified

since it is only necessary to cancel one numerater root.

The other case for which a solution can easily be

found 1s if r. = pi-l and
cancelled.

In that case

Result V If ri

all of the numerator zeros are

The resultant hi(s) will then be first order.

(3.486) _

-Oll l

(o

p._l—ar. 2-a2) (0

1—al)
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and a necessary and sufficient condition for

(3.46) to have rank = 1 is that

(02 - ay) = -al(cl - a.)

1
(03 - a3) = —a2(01 - al)
9.5 free (3.u47)
(o - a. ) = -a (6. - a )
Pi"l Pi Pi-l 1 1
o = -a, (o, - a,)
Pi ri 1 1

Furthermore for this relationship we have for

v v
any viéni

<<
n
<
e
N
v

free (3.48)

3=1 J°1 r; +1 - j

Proof: The details of this result which are some-

what involved can be found in Appendix D,

The equation (3.47) gives the greatest possible
dimension tojﬂi when r, = pi—l, that is, completé cancellation
of the numerator. Of course, greatest dimension in;vi results
in the strictest condition on selection of the o;, variables

so that only one element of o, can be chosen freely. Notice
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. . . . v, .
that this expression for the permissible v, 1s also inde-

pendent of the particular value of ¢ The transfer function

1°

for condition (3.47) on the oik's will be

- A
hi(S) = 1
S—Ul
It appears that partial cancellation of the numerator when
r, = p;-1 or for either complete or partial cancellation when

l<r, < p. - 1 is a particularly difficult problem because
i

there are many ways in which the cancellation can occur.

Another technique which may be considered is the
possibility of feedforward control of measurable disturbance
inputs by means of a control law |

9
u(t) = Fx + 6v(t) + 33 Kyr; () (3.49)
i=1
where Ki is an x 1 constant matrix and the summation is made
over those indices i1 which are measurable. One simple result
by McLane and Davidson [M2] is available here, but in general,
the overall problem of using both feedback and feedforward
control to cancel disturbance inputs in decoupled systems is

an open area for research with no general results available

at this time.
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3.2.2 Inclusion of Disturbance Inputs in Minimization

Procedure

Assume we are given a plant with disturbance inputs
(3.31). If the effects of the disturbance inputs cannot be
eliminated from the output y(t) by the results of Section
3.2.1, or if we choose not to eliminate them completely, then
an alternative procedure is to include their effect in the

minimization procedure of Section 3.1.

We assume the spectral content and magnitude of the
disturbance vector r(t) can be expressed as the output of a
filter driven by a white noise source. This filter is des-

cribed by the dynamical system

; = An¢ + Bnn(t)

(3.50)
r(t) = Cn¢

where ¢ is an nn state vector; Ah"Bn”Cn are constant matrices

of size noox D, Npox G, and q x n_ respectively; n(t) is a

white noise source g-vector.
E [n(tn' ()] =T 6(t - 1)

where Fn is a positive definite symmetric n x n correlation
matrix. It is also assumed that the noise input n(t) to filter
(3.50) and noise input w(t) to filter (3.1) are independent

and therefore uncorrelated.

Eln(t)w' ()] 2 0
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All of the comments made about selection of the filter char-
acteristics in Section 3.1.2 apply here to the question of
selection of the elements of An’ Bn’ C

ni

We assume furthermore that we wish to decouple the
plant (2.1) with a control law (2.16). Now form the augmented

state vector z, and augmented noise input vector u.

b4
z = u(t) = fw(t)
¢ n(t)

and combining equations (3.31), (3.1), and (3.50)

z = Azt Bzu(t)

(3.51)
y(t) = C,z
where ) - -
A + BF BGC NC, 0
v h
A, =| 0O A o |, B, = |B, (3.52)
0 0 A B
L no. | BRI
c =[ ¢ o o |
z |
As before, define £(t) as the error and control vector
v(t) - y(t)
g(t) = = Wn(t) (3.53)
u(t)
where
-C C 0
I M (3.54)
n F efe 0
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We observe that the inclusion of a disturbance input to the
minimization problem of Section 3.1 has not made any sig-
nificant difference in the problem formulation. Equations

(3.51) and (3.53) are analogious to (3.3) and (3.6) respectively
and the same procedure can be used to solve the problem posed

in this section. As before, it may take several tries with
different weighting matrices Q and R in the cost functional
(3.7) to achieve an overall acceptable design, however, also

as before we have the advantage this technique offers in know-
ing how to modify a previous choice of Q and R in order to re-

duce an unacceptable control or error magnitude.

As we note in Section 3.1.6, the disturbance inputs
in general couple to all 033 variables and consequently the
independent inputs simplification of that section does not

apply when disturbance inputs are treated as above.
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3.3 Sensitivity

3.3.1 Complete Cancellation of Parameter Variation Effects

Consider the closed-loop system (2.3). If the A

matrix changes by §A from its nominal value Ao.
A=A + A (3.55)

then we would like to know under what conditions the response
y(t) for the perturbed system is identical to the response
yo(t) of the unperturbed system. Some results for this pro-
blem are reported by Cruz and Perkins [C3] however, the
development which follows is more general and includes their

results.

Definition 3.2. The closed-loop system (2.3) is said

to be invariant with respect to 8A if for all inputs

v(t), t =2 0 and all initial conditions x(0),
y(t)= yo(t), for all t = 0.

The output of the wmperturbed system given by

(A +BE)t t  (A*BF)(t-1)
y (£) = Ce x(0) + f ce Bev(t)dr  (3.56)
e}
and the perturbed system
(A * A+BE)t t (A + A+BF)(t-1) (3.57)
y(t)=Ce x(0)+ [ ce © BGv(t)dt
o}

Because x(0) and v(t) are arbitrary, we have the necessary

and sufficient conditions:
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(A +8A+BT)t (A +BP)t
o o

Cle -e ] = 0, for all t0

and
(AO+6A+BF) (t-1) (A +BF) (t-1)
(@]
Cle - e

for all t<0, O<t< t

1BG = 0,

(3.58)

(3.59)

Clearly (3.58) implies (3.59). Using the series expansion

for exponential yields

K

o, t
Y KT [(A +sa+BEYK - (A +BFY ] =
k=0 © ©

therefore

C[(AO+6A+BF)k - (AO+BF)k] = 0 for all integers k=20

0 for all t=0

(3.60)

By mathematical induction and the Cayley-Hamilton theorem,

we establish the necessary and sufficient condition that

(2.3) is invariant with respect to §A,

C(AO+BF)k5A =0 fork = 0, ..., n-1

(3.61)

By following the above steps it is also possible to

show that if B changes by 6B from its nominal B_, but A and

C remain fixed, then a necessary and sufficient condition

that (2.3) is invariant with respect to 6B

C(A+BOF)k6BF =0 fork = 0, ..., n-1

1s that:

(3.62)

Unfortunately, there are no simple conditions if both A and

B change simultaneously.

Observe that conditions (3.61) and (3.62) on parameter

variations are essentially identical to the condition of
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Theorem 3.1 for invariance to disturbance inputs. Conse=-
quently, all the subsequent results of Section 3.2.1 apply
directly to this problem. We merely require that the
columns of §A or 6BF simultaneously satisfy conditions

on v so that (2.3) is invariant with respect to SA.

Conceivably, the unperturbed system may be invariant
to a disturbance input whereas the perturbed system is not.

The following result applies to this possibility.

Definition 3.3. The closed-loop system (2.3) is

said to be simultaneously invariant with respect
to a disturbance input ri(t) and a parameter varia-
tion 6A if for all inputs v(t), tz 03 r;(t), t= 0

and initial conditions x(o),
y(t) = yo(t) for all t =2 0

Theorem 3.4. The system (2.3) is simultaneously

invariant with respect to ri(t) and sA if and only

if
k
C(AO + BF)'y, =0 (3.63)
and
k
C(AO + BF) 6A =0, fork =0, ..., n-1 (3.64)

Proof: Necessity is established by following the

previous development where
(A_+BE)t t (A _+BF)(t-7) :
y(t) = Ce x(0) + fce © BGv(1)dr
o)

t (AO+BF)(t-T)
+£ Ce Pi(T)dT
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and noting that C(A_*BE)v = 0, k = 0, ..., n-1

is necessary, from Section 3.2.1 for the definition. Suffi-
ciency is proved by observing that the necessity proofs are
also sufficient for the conditions of the definition and for

arbitrary v(t), ri(t), x(0).
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3.3.2 Calculation of Static Sensitivity and its Gradient

In this section, we consider the effect of parameter
variations on the static gain of a closed-loop decoupled
system. The approach involves definition of a static sen-
sitivity matrix, giving its interpretation, and the computing
the effect of changes in the feedback parameters upon it.

Some preliminary results will have to be collected first.

Extended Leverrier Algorithm

Given a sum®* G = A + oJ of two square n x n real
matrices A and J where o is a real scalar, then the well
. -1 .
known expression for (sI-A) can be extended to this sum

G yielding the following equations

_1 -l "'l
(sI-G) = (sI-A-0J) = q (s, o)[R(s,0)]
- -2 n-3
R(s,0) = Is™ 1+Rl(o)sn +R2(o)s +...+Rn_l(o) (3.65)
_ n n-1 n-2

q(s,0) = s -ql(o)s -4, (o)s™ “=...-q,(0)
The coefficients qi(o) i=1, ..., n and matrices Rj(c)
3 =1, ..., n-1 can be calculated simultaneously by the use

of the Leverrier algorithm, which is here extended to the

case of a sum of two matrices.

*also called a pencil of matrices, see Gantmacher [Gl].
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Al(a) = A+ oJ ql(o) = trAl(o)

Ay(o) = (A + oJ)Rl (o) qz(o) = 1/2 trAZ(c)

A _1(0) = (A+ ocI)R _,(0) q,_;(0) = ;%TtrAn_l(c)

A (o) = (A + oI)R _,(0) q (o) = 1/n trA (o)
Rl(c) = A(0) - ql(o)I (3.66)
Rz(o) = Az(o) - qz(o)I

R (o) = A 1(0) = q ()T

Rn(c) = An(c) - qp(a)I =0

From the extended Leverrier formulas, one concludes that the
elements of Ai(o), and Ri(o) as well as qi(o) i=1, ..., n
are polynomials of degree n (or less) in the scalar o. Be-
cause the algorithm is recursive, the calculation of the
formulas is easily performed on a digital computer with a

small amount of storage required.

Computation and storage of the constant matrices which
are the coefficients of the powers of o in the expansions for
Ri(o) and A. (o) as well as the scalar coefficients in the
expansion for q; (o) is straightforward. For use in later re-

sults we shall see that only the coefficients of the first and
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zero powers of ¢ will be needed. It should be clear from
the algorithm expressions that only the coefficients of
these two powers need to be stored at each iteration, rather

than the entire nth order polynomial coefficients.

Lemma 3.1 The matrix G = A + ¢J is singular iff

qn(o) = 0.

Definition 3.4 (A, J)cRT is defined as

B = {oioe Rl, det (A + ¢gJ) = 0}

Lemma 3.2 For any two square real matrices A and J
of dimension n, the set,J has either 0, 1, ..., N

elements or else xyEER;.
Proof: By previous lemma det (A + oJ) = 0@q,(¢) = 0.

From the Leverrier development q,(c¢) is a polynomial
in o of order n or less and thus will have at most
n real roots. However if qn(c) = 0, then A + oJ

is singular for all o.

Lemma 3.3 If G

ofd, then

A + ¢J is non singular, i. e.

1

(A + oJ) (a) (3.67)

-1
. (6)R,_q

Consider the system of closed-loop differential
equations

% = (A + oJ)x + BGv(t) (3.68)

y(t) = Cx x(0) = x4
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where A, J, B, C, and G are real constant matrices of size
nxn,nsxn,nxm, pxn, andm x m respectively, o 1is a
scalar parameter, x an n-vector, v an m-vector, and y a

p-vector denoting the state, input, and output respectively.

Assume A + oJ is a stable matrix. Also assume v(t) is a
piecewise continuous function for t > t and v(t) approaches
a constant vector 0 as t+ +w. Then it is known (see [K3 p.338]
and [C21p. 7u4] that the solution

(A + o) (t-t ) +f:e(AmJ)(t-T)'

x(t) = e X BGv(t)d

o
to (3.69)

. A
will approach a constant vector x called the steady state
. A A
state vector. The corresponding y = Cx is called the steady

state output vector.

Lemma 3.4 Let A + ¢J be stable, then the steady

A
state output vector y is given by
A : -1_ A
y = C(A + oJ) “BGV (3.70)

Under the assumption of this Lemma we have

Definition 3.5 The p x m matrix

T(A, B, C, o) = C(A + oJ) 'BG (3.71)

is called the steady state gain matrix.

Returning to the system of differential equations (3.68) con-
sider the case when the matrices A, B, C change by §A,8B, &C

C_. That is

respectively from their nominal values of Ao’ Bo’ o



A= A+ 8A
B =B, + ¢B (3.72)
C=2C_+sC

o]

Assume that both AO + oJ and A + ¢J are stable matrices,
then the steady state gain matrix

T(A, B, C, o) = (C_ + §C) (A + SA + cJ>‘1<BO+aB)e
(3.73)

will also be changed from its nominal value

_ -1
To(Ags Bys Cos 0) = C (A, +00) 7B 6 (3.74)

~Definition 3.6 Again, let m = p and also TO(AO, Bo’

Cqo o) be diagonal and non-singular. The sensitivity

matrix M is defined as
M=T _1(T T ) | (3.75)
- 0o - (o] *

The diagonal elements of M may be interpreted as the
percentage change in the diagonal elements of the steady
state gain matrix with respect to the corresponding nominal
diagonal elements of To. The i, jth(i # j) element of M

h

measures the steady state interaction between the jt input

. th
and 1 output.

-1
Lemma 3.5 Letm = p, if H (s,0) = C(sI-A-0J) BG
is a diagonal and non-singular matrix, then for all

o/JQA, J), T(A,B,C, o) is also diagonal and non-singular.
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Consider the open loop system

X = Ax+Bu(t)
(3.76)
y(t) = Cx
Aisnx n,Bisnxm, Cis p*x n, Let p = m. Assume (3.76)
is controllable and can be decoupled so that the control law

(2.16) applies with the Ky =0-

Temporarily fix the scalars

Oik T Oixe  d» Koz iy k_ (3.77)
and let

Oioko - O (3.78)
SO

F o=y ¥ ool F1 oDTAR 4) 0

ik 2 1oko

The the closed-loop transfer function

- - -1
H(s, ) = C(sI-A-BF) 'BG = C(8I-A_-0J) "BE  (3.79)

where

A = A+ BF, J = BJ:

o ioko (3.80)

Theorem 3.5 Given any decoupled closed-loop system

with transfer function (3.79), let the elements of

A change by 6A from their nominal Ao’

~
~

A = Ao t §A, (3.81)
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so that the corresponding elements of A also

change by 6A from their nominal Ao
A=A+ 8A (3.82)

Then dM is given by
do

QM = dL(Aj,0) | Ry 1(A,0)

do ao

BG (3.83)
qn(Aso')
qn(A,o)an_l dqn(A,o)
* L(AO’O)C - _.(A?g)fv,ao ..... Rn—l(A’c)
do BG
1, %(Ay0)

where L(A ,0) = 'I‘o-l is a diagonal and non-singular
matrix with at most one element which is a function
of ¢ and that one is of the form n-lo, T @ non zero
scalar.

Proof: If H (s, ¢) is diagonal and non-singular then
F has the form of (2.16) and H(s,q) = diag (h;(s, o)
is obtained from (2.17) where .. and A; are fixed

1]
12 1y veesy My J = 1y ouny r. and independent of

9ik*
From Lemma 3.6, TO will be diagonal and non-singular and can

be calculated from TO = H(o, ¢). By inspection of (2.17) it

is clear that :
(n_ if io, ko = i, p;

hi(S) i = “irwAiz o (3.84)
s=0 1 @iy A
°ip; | 1 if ioy ko 2 i, p
in
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which demonstrates that at most one element of To(and also

TO_l because TO is diagonal) can be a function of o. All

other elements of TO are fixed (constant). The scalar r,

is non-zero because otherwise H(o,s) would be singular.

Now by definition

-1
M =T (T-T )
© o (3.85)
-1
= L(AO, g)C(A + oJ) BG-I
By Lemma 3.3
M =1L (Ao,g)C A Rn_l(A,o)BG-I (3.86)

qn(Aa 0'5
Taking the derivative gives the desired result (3.83).

Application of Theorem 3.5 in the overall design
of decoupled systems is discussed in Chapter 4. The evaluation

of (3.83) is easier than might be expected.

Rn_l(',') and qn(‘,') as previously mentioned are

polynomials in g of order n or less, so the indicated differ-
entiation can easily be calculated. Furthermore if we evaluate
the derivative at ¢ = 0, then only the coefficients of the

first and zero powers of ¢ in R (*,") and q,("»") are re-

-1
quired, resulting in a reduction in computational effort as

previously mentioned.
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3.3.3 Integral Control for Static Sensitivity Improvement

The idea of integral control is invariably con-
sidered when one has stringent requirements on allowable
variations in static gain. A general statement can be made
regarding the case of integral control in multivariable sys-
tems, whether or not they are decoupled. The author feels
that this result must be known by other control theorists,
however, it does not seem to have appeared previously in the
form presented here. TFrequency domain techni@ues are used to

establish the result.

Let the (m x m) matrix transfer function Q(s)
describe a multivariable system with frequency domain input

V(s) and output Y(s). Then
Y(s) = Q(s)V(s) (3.87)

In practice Q(s) might be a decoupled feedback
system obtained by using the control law (2.16), i. e.,
Q(s) = H(s, F, G). We require Q(0) to be defined and non-
singular. Add integral control by letting

1
V(s) =<s A+ AQ)E(S)

(3.88)

E(s) W(s) - Y(s)

where Al and Az are m x m real constant matrices representing
the integration and proportional constants reépectively of the
controller. The controller operates on the error E(s) between

the closed-loop input W(s) and the output Y(s). It is assumed
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that A4 is nonsingular. An analysis of the combined system
leads to:
:. '/ + -
Y(s) Q(s)(_;_L_Al AQ)(VJ_(S) v(s))
(3.89)

[1+Q&) (_1_1\1 + 401 ¥(s) = Q(s) (_;_ A1+A2>Vl(s)

S

The assumption is made that the matrices A, and A, are selected

1
so that the combined system is stable.

Then if the input has a constant steady state
A
value v, we use the Final Value Theorem [K3] to calculate the

A
steady state output y and find:
A
9 = v (3.90)

indicating that the static gain is independent of parameter

variations in Q, Al’ and A If Q(s) were diagonal it would

2'
be natural to specify Al and A2 as diagonal. This would sim-
plify the choice of Ay and‘A2 since then the design problem
separates into m problems each with only two parameters to con-

sider.



CHAPTER 4
DESIGN PROCEDURE

In this chapter we show how the theoretical re-
sults of Chapter 3 can be consolidated into an over-all
design procedure for fairly high order systems. The nature
of the approach involves trial and error design methods and
by no means is a truly automated procedure. However it is
systematic in the sense that after a particular trial is
arrived at, its overall performance is evaluated as expli-
citly as possible within current theoretical limitations to
determine whether the design requirements are met. If they
are not, then systematic guidelines are given which, if

followed, lead to an improved design.

b.1 Design Data

Assume that for a particular application, we have

the following information:

1. A linear model of the plant
2. The decoupling requirement
3. The expected power spectrum Sv.(“) of the
i
inputs vi(t), i=1, ..., m under actual operating

conditions. It is further assumed that the actual

inputs are uncorrelated, E[vi(t)vj(r)]EE 0, i = j.

4, Control magnitude constraints PP i=1,
LR ]Tl, Where u-(t) < u. ’ i = 1’ ""m’ fOI'

1 hilo)
all time t.

75
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5. Desired error performance - For each i = 1,
., m the variance of the steady state error

Elv. - yi)z] < €54 where the set of ¢. i=1,

io’

.+.s M are positive scalars.

i
inputs ri(t), i=1, ..., k. The disturbance

6. The power spectrum S, () of disturbance

inputs are assumed to be independent of and there-
fore uncorrelated with the piant inputs vi(t),
i=1, ..., m. However, the disturbance inputs

may be correlated with each other in which case

the correlation matrix or equivalent cross spectral
density matrix is assumed to be known. The maximum
allowable steady state variance of each output

, 1=1, ..., m caused by these disturbances
with zero inputs vi(t) =0, 1=1, ¢v.y mis

specified.

7. Known parameter variations given by the
triples (5Ai, aBi, §C.), i =1, ..., k which are
i

explained in detail later in this chapter.

8. Allowable static and dynamic cross-coupling
due to parameter variations. Restrictions on

static cross coupling are given as limits on the
magnitude of the off-diagonal elements of the static
sensitivity matrix M defined in Section 3.3.2. Dy-
namic cross coupling is specified by limits on the

allowable magnitude of steady state output variances
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E[yizl when the inputs.vi(t), i=1y veey, m
are excited one at a time by their normal input

functions.

9. Allowable static and dynamic gain varia-
tions due to parameter variations. Static gain
variations are specified as limits on the magni-
tude of the diagonal elements of the static sen-
sitivity matrix M. Dynamic gain variations are
restricted by requiring that the error performance
specified in item 5 above be satisfied for all

parameter variations specified in item 7.
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4,2 Reduction to State Variable TFeedback Problem

We determine if decoupling is possible, and if
not, suitable dynamic compensation is determined, and an
augmented system é = {A, é, Clis formed. The computer
program described in Gilbert and Pivnichny [G3] is used to
determine all of the fixed data given by Decoupling Theorem
2.3. In particular, the location in the complex plane of
any "fixed poles" are calculated and examined. Because
these poles appear in the "unobservable part" of the closed-
loop decoupled system; they have no effect on the oufput,
and the information above gives no guide to evaluating whether
their locations are acceptable. Obviously from stability

considerations, those which lie on or to the right of the

imaginary axis are unacceptable.

In addition, although no specific rules are given
in Chapter 3, any poles located close to the imaginary axis
in the left half plane should be examined carefully because
parameter variations given by item 7 abovemy cause their
location to shift onto or across the imaginary axis. Further-
more, if a complex pair of roots is located near the imaginary
axis, the corresponding "part" of the closed-loop system will

have a highly oscillatory response which is usually undesirable.

Once the wmidesirable fixed poles are identified, then
additional compensation is determined so that only the accept-
able fixed poles remain fixed, i. e., all other poles of the
augmented system can be altered by state variable feedback

while maintaining the decoupling requirement item 2 above.
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4.3 Application of Optimization Procedure

In order to apply the results in Section 3.1, an
input filter is selected which when driven by zero mean
Gaussian white noise produces a signal similar in magnitude
and spectral content to the information given in item 3
above; Initial weighting matrices Q and R are chosen from
the error performance and control magnitude constraint in-

formation.

If the plant has been augmented by a pre-compen-
sator, as required in the previous section, then if the
results of Section 3.1 are applied directly, the matrix R
will weight the inputs u to the compensator rather than
the desired control inputs u to the plant. See Figure 4.1.
A modification in the definition of the matrix W defined by
(3.6) is used in this case so that the proper variables are
weighted by the matrix R and appear directly in the cost

functional J. The details of the modification appear in

~

Appendix B. Then we define for the augmented plant S ={A,B,C}.
W= |-C C
~ ~ ~v ‘ (uol)
KT + K K.GC
1 2 1 v

where {F, G} are a decoupling pair for the plant S and K2 =

[0 Kz] is an m x n matrix.

The cost functional J is minimized by a computer
program using the algorithm described in Section 3.1.5. When
a minimum is reached, the error variance matrix E[ee'] and

control variance matrix E[uu'l] can be examined by having the
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computer print the matrix WPW' evaluated at the optimum
values of the variables oi, i=1, «0.y pt m} The error
variance matrix will be given by the upper left hand m x m
partition and for a decoupled system will be diagonal. The
control variance matrix on the other hand will be given by
the lower right hand m x m partition and in general will not
be diagonal; but since it is a variance matrix; it must be
positive definite and symmetric. By examining the diagonal
elements of these variance matrices we can compare their
magnitude with the allowable error and control magnitude
specification above and decide whether another minimization
should be run with stronger weights on certain error or con-

trol elements as discussed in Section 3.1.3.

Because of the mture of the problem, particularly
the lack of existence and uniqueness results, it is not
possible to know if other weights will allow all error and
control constraints to be met simultaneously. That is, there
is no way to tell whether a particular set of constraints
represents an impossible design problem or not. Although
this lack of knowledge represents a weakness of the design
approach, in practice the difficulty is most likely to occur
only for systems which allow only small control amplitudes

yet require exceptional error performance.
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L.b Investigation of Disturbances

Disturbance inputs given in item 6 above are ex-
amined using the results of Section 3.2.1 to determine
whether they will disturb the output. If so, we determine
whether their effects can be eliminated by a proper choice
of the o variables, determine what conditions on the varia-
bles will cause this elimination and then decide whether to
alter the variables from the optimal calculated values, so
that they satisfy the complete cancellation conditions. In
some cases, a small shift in the o; variables may be suffi-
cient. However even a small shift in the 0. might make
large changes elsewhere, particularly in the control variances,

so these must be checked with the shifted 0. values.

Another possibility is to do a constrained minimi-
zation design with the 0. variables constrained so as to
eliminate the disturbances. In that case, the basic algorithm
of Section 3.1.5 which utilizes a Newton procedure cannot be

used, and another procedure would have to be devised.

An evaluation of the effect of disturbance inputs
which are not eliminated can be made in the following way.
Assume an optimal set of os variables has been determined
without considering the effect of disturbances. Select a
disturbance input variance matrix r, and disturbance filter
given by Aj, Bn’ C,» whose output r(t) has approximately the
same amplitude and spectral content as the disturbance inputs
in item 6. Foilowing the development in Section 3.2.2 eval-

uate the covariance matrix WyPW! with zero inputs, i.e.,
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set T = 0, at the optimum o, values. This matrix represents
the output and control variances, similar to WPW', due to
the disturbance inputs alone. In general, that portion of

WnPW'n representing the outputs will not be diagonal as before.

A scalar measure of these variances can be defined,

as before
- [y]' vl Q, O
J =E Q , Q = (4.2)
on

where Qn and Rn are positive definite symmetric m m matrices,

and Jn is calculated by the equivalent trace operation.
J_ = trlW'Q_WP] (4.3)
n on

Such a scalar measure can be used to compare various
designs for their response to disturbance inputs. In many
cases, we shall let Qn = Q, Rn = R, although this is not necess-

ary for comparison purposes.

If it is decided that the cost J is too large, then
the disturbance input effects can be included in the minimi-
zation proéedure as described in Section 3.2.2. As mentioned
there we assume that the disturbances and ordinary inputs are
independent so that J and Jn are additive when both inputs and

disturbances are present.
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b,5 Check on Parameter Variations

The effects of known plant parameter variations
are examined and compared to the information in items 8 and
9 above to determine whether the closed-loop design has
acceptable sensitivity performance, that is, we calculate
what effect a variation in plant parameters will have if it

causes the A, B, and C matrices to change by s§A, §B, &C

respectively from their nominal values Ao’ BO, Co.
A=A + §A
o
B =B + §B (4.4)
o
C=2C_ + sC
o

A suggested method of determining the triples
(sAi, GBi, GCi) for parameter variations is the following.
The linear model (2.1) is usually obtained from a set of
nonlinear differential equations which are linearized about
an "operating point" the static solution, which in turn de-
pends upon the parameters of the process. Suppose there are
k of these parameters. Then we perturb each of them one at
a time, i = 1, ..., k by a fixed amount indicative of the
anticipated variation, compute a new static solution, lin-
earize about it, and determine which elements of A, B, and
C have changed from the nominal Ao, B , CO. For i = 1, ...,

O

k the triple (GAi, aBi, GCi) represents this change.

The effects of these variations are calculated by

the following procedure which is repeated for i =.l, ...; k.
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The steady state sensitivity matrix M defined in Section
3.3.2 is calculated and its elements are examined. If any

of the elements are too large compared to the data in items

8 and 9, then the gradient of this matrix with respect to
each of the (free) o4 variables is calculated from Theorem
3.5. It may turn out that a small shift in one or several

of these variables will reduce the magnitude of the unaccept-
able element of M without causing an unacceptable increase in

the error or control magnitude variances from the nominal

A, B

Co’ which will have to be recalculated. What effect

O) O’

any change in the'gi variables has on previously obtained

disturbance input calculations is determined by repeating

them for the new values of the o3 variables.

If this procedure does not result in an acceptable
design, then the addition of integral control should be con-

sidered. The results of Section 3.3.3 apply.

The effect of a parameter variation (4.4) on the
dynamic performance of the closed-loop system is evaluated
by calculating the cost J(3.7) and the variance matrix WPW'
for the perturbed A, B, C matrices. The change in the cost
and the variances can be evaluated using the information in
items 8 and 9. In general, the perturbed system will not be
decoupled and the magnitude of the off diagonal elements of
that part of WPW' which represents the error variances, gives
a measure of the severity of cross coupling introduced by the

parameter variation under consideration.
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If either the static or dynamic effects due to
parameter variations are unacceptable, then the possibility
of complete cancellation of parameter variations should be
checked using the results of Section 3.3.1. Because of the
rather stringent conditions for this cancellation to occur,
however, it ismt likely that they will be met; Nevertheless

it is worth trying; the calculation is not very difficult.

Other than complete cancellation, there is at the
Present time no systematic procedure for altering the closed-
loop system while maintaining decoupling if the dynamic in-
teraction caused by parameter variations in unacceptably large.
In theory, a scalar measure of dynamic interaction can be
defined in terms of these off diagonal elements and this scalar

measure can be added as an additional term in the cost func-

tional J (3.7).

A new minimization problem can then be formulated
which includes this additional term in the cost. It is not
clear, however, what the functional form of this scalar
measure should be. Even if one is defined, the problem of
determining expressions for the gradient and Hessian of J

is a formidable task.
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4.6 Limitations of Design Procedure

The lack of any clearly defined procedure to
handle dynamic interaction due to parameter variations in
decoupled systems is one of the weakest areas in the overall
design procedure. Another weak spot is the lack of general
existence and uniqueness results for the minimization pro-
cedure. Indeed it can be shown that for the first order
example of Appéndix C, with certain choices of parameters,
no minimum of J exists such that the system is stable. Con-
sequently, a certain amount of good engineering Jjudgement

must be exercised when using the procedures just outlined.

If one permits some interaction for parameter
changes, then an argument can be made that it should be per-
mitted in the choice of F and G for nominal system. In
answer, one can argue that there is at present no other way
to guarantee that the interaction will be small without re-
sorting to large control amplitudes as are required by the
quadratic tracking problem, see Appendix A. Use of decoupling
matrices for F and G also very greatly reduces the number of
free elements in F and G which have to be selected. This is

an important computational advantage.



CHAPTER 5§
COMPUTATIONAL QUESTIONS

In this chapter, we examine computational ques-
tions which arise when the techniques of Chapters 3 and b
are implemented on a digital computer. The main considera-
tions are core storage requirements, run time, and round

off errors.

The minimization procedure of Section 3.1 was
programmed in Fortran IV language; Extensive use was made
of the subroutine call feature in order to keep the programs
flexible. One subroutine; for example, called INNER computes
the trace of the product of two matrices, another called
SOLVE, solves the Lyapunov equation A'ﬁ + §A1= -Q. For matrix
manipulation, extensive use is made of the well known Fortran

IV SSP subroutine written by IBM Corp. [Z1 1.

Most of the computing was done on the University of

Michigan computer system which consists of an IBM System 360
Model 67 time sharing system with dual processors. For com-
parison purposes, this system has an effective internal CPU
cycle time of 0.2 microseconds. When references are made
later to run times, they were determined for this computer
configuration; Some of the examples in Chapter 6 were run
on an IBM System 360 Model 65 computer. As we shall see,
because of the relatively large number of computations in-
volved, it is necessary to use a large computer such as one
of these two just mentioned in order to keep run times down
to reasonable levels for examples of order greatér than 5.

88
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5.1 - Input Data - Decoupling Program Results

Input Data for the minimization program consists

of the following:

System Data - nj; m; pi, i=1, «v., m + 1j
i .
k* *

m’kzl, e o vy Pi; Gi,i=1, e v ey

-1
A, B, C, D A%, g = 1, ey

m

Input Filter Data - v; A 3 B 3 C
v v v

Weighting Data -Q; R; T

S'tal’"ting Data - Gik, i = l, o e ey m; k = l, LRI Y pi

Stopping Data - maximum number of steps; norm of

gradient

For each example, we assume the integers n, and m
and the matrices A, B, C are given. The additional system
data is determined by the use of the decoupling program des-
cribed in [G3] and [ 1. Filter and weighting data are
selected as previously described. For each example, these
determine the final closed-loop design, consequently a cap-
ability for repeating minimization runs for different wvalues
of Filter and Weighting data is included. Because of the
absence of uniqueness results, capability for repeated runs

with various starting data is also included.

Stopping data provides some control over the total

run time. Some of the largest problems may require up to
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30 seconds CPU time per step. For these problems, a good
practice is to allow only two or three steps for the initial
run, then stop and observe the results to determine if every-
thing is going all right. If so; then,itefation is continued

starting where the previous iteration left off.

There are two conditions for which intervention

should be made to change the starting data.

1; A stép causes the closed-loop system to be
unstable for the next iteration. In thisvcase the
procedure will be invalid theoretically for the
next step because equation (3.4) may not have a
constant solution for the covariance matrix P(t)
and even if it does, J is not meaningful if A is
unstable. It sometimes occurs that if'the pro-
cedure is continued anyway, the next and every
succeeding step resultsin a stable closed-loop
system. This is pure chance however, and cannot
be counted upon to occur. A reasonable procedure
is to check for stability at each iteration. When
a step causes instability at the next iteration,
then the step size is reduced by 1/2 and another
stability check is made. Repeated 1/2 step size
reductions are taken until a stable closed-loop
system results. Stability determination in general
involves finding the roots of the denominators of
each subsystem and checking to see that all have

negative real parts. Although this can be programmed,
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it turns out that most decoupled systems have
first and second order subsystems which are known
to be stable if all the coefficients 933 are
negative. This condition is easily checkéd man-
ually, particularly since instability is most
likely to occur on the first iteration; and man-

ually teducing the step size just once has always

been sufficient for all examples tried.

2, The cost J increases from its value at the
preceding iteration. This increase is known to be
a possibility for the Newton method if the initial
point is not sufficiently close to a local minimum.
If it occurs; then again the usual procedure is to
take steps of 1/2, 1/4, 1/8, ... size until a re-
duction in J is attained. TFor the examples des-
cribed later, an increase very rarely occurred, and
when it did it was always on the first step. Re-
ducing the initial step to 1/2 size by manual inter-
vention was sufficient in every case, so the con-
venience df a programmed step size reduction was not

found to be necessary.
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5.2 Numerical Methods for Solution of Lyapunov Equation

A = =A
Solution of the Lyapunov equation A'P + PA = -(Q

requires a longer computer time than any other step in Figure
3.1. Tor this reason, we shall go into some detail on just

how this solution is determined numerically.

Formation of ABIG - The direct method used by the author.

Although Fortran computer listings have appeared
by Chen and Shiek [Cl], and Bingulac [B2] which claim to be

efficient algorithms for the formation of A from A, the

BIG
direct method to be described here is superior to either.
The program coding is shorter, fewer interations are required,

and in the author's opinion, the direct method will execute

faster on practically any computer.

Consider the j, K th element of the Lyapunov matrix

equation.
A A
n A - n_ _ A
E [Al, _.[P] +E.: [P] .[A] = [-Q]. (5.1)
T=1 J»1 1,k 1=1 3,1 ky1 : Ik

In converting from double to single subscript, this
scalar equation will be represented by the s-th element of the
vector equation.

Agree ¥ 4

where we choose i_ = k (k - 1)/2 + j, that is o, = [P],
S s 15k

qS - [Q]jak
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A
1 [A]k,l 154 5 +eey N
will appear in the s—th‘row of ABIG' - The proper column is
A A
selected so that the elements [A]j 1 and [A]k"1 will be co-
9 9

efficients of [?]1 K and [%]j 1 respectively when the product
b} 3 -

th .. v , .
of the s- row of ABIG with the vector o 1s taken. Now

A
The coefficients [A]j

[P] and [P]. are the elements i and i. of the vector
1,k sl 1 P

2
where
ii=j<j'—1)/2+1if1<j
1(1 - 1)/2 + § if § < 1
(5.2)
i2 = 1(1 - 4)/2 + kx if k < 1
k(k - 1)/2 + 1if 1 < k
Matrix ABIG is initially set to zero.

Then for each 1 = 41..., n;k = 4, .05 ny = 1,

A A )
ceink [A]k‘1 and [A]j 1are added to [ABIG]S’ 11 and (A

, , BIG)S’iZ'
This procedure constitutes the direct algorithm used
by the author. The number of iteration steps required is
n?(n + 1)/2 each with two additions and the subscript arith-
metic (5.2). Also there are (n(n +<1.)/2)2 iterations required
to zero ABIG initially, but these are executed very fast. On
the other hand, Chen's algorithm requires (n(n + 1)/2)2 itera-
tions all with subscript arithmetic. Bingulac's approach

requires (n(n + 1)/2)2 iterations to zero A 3 jterations

BIG> "
with one addition and some subscript arithmetic, and nz(n +1)/2

iterations with one multiplication and some subscript arithmetic.
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I . : .
nversion of ABIG

Inversion of ABIG is handled as a straightforward
matrix inversion problem; BecéUse of the large size of
ABIG(gl x 91 for one example), a very fast inversion routine
must be used if the minimization procedure is to be numeri-
cally feasible. A routine INV written by Miss Sarah Lightfoot
of the Univefsity of Michigan Computer Science Staff in IBM
System/360 Asseﬁbly Language‘was selected. This routine is

considerably faster than the SSP subroutine MINV.

With this or any matrix inversion routine using
the Gaussian elimination method, the processing time t re-
quired increases as the cube of the dimension N of the matrix

[F31].

(5.3)

because the inner loop of the routine must be executed
approximately N3/33 times. TFor the routine INV executing on
the computer configuration described earlier a = 15.8 4 10
seconds. TFor example, less than four seconds of CPU time is

required to invert a 90 x 90 matrix.

Because of the good results using routine INV,
no attempt was made to determine whether there are any inversion
techniques available which can take advantage of the sparce
nature of ABIG' Perhaps some saving in computer time or

storage requirements is possible.
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The iterative techniques for solution of the
Lyapunov equation of Davidson and Man [Dl]; and Konar [K3]
suffer from a lack of any information on how the required
number of iterations increases with dimension ﬁ, or what a
reasonable stopping criteria might be; Both authors in-
dicate that the convergence rate of their algorithms is
strongly dependent upon the location of eigenvalﬁes of g.
Konar also proposes iterative'improvément [F3] which in-
volves additional iterationé. Fufther research into these
techniques may disclose a distinect computer time advantage
over inversion of ABIG for large systems. The reduction of
core storage requirements, although less important, is well

defined [D1].
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5.3 " Run’ Times

The actual CPU time required for the execution
of each step in Figure 3.1 was defermined by the use of a
timer subroutine. Two fairly large examples show the effect
of dimensionality on execution times. Example 6.3 has di-
mension n = 8, m = 3, v = 3, thus N = 66 whereas example 6.4
has n = 9, m = 4, v = u; N = 91. A summary of the times

required is shown in Table 5.1.
Table 5.1

Execution Time TFor Steps of Minimization Program

Distillation

Step Column Helicopter
1. Read data and print it .790 sec. | 1.010 sec.
2. Compute A and W .170 216
3. Solve Lyapunov equation 4.5 8.0
4. Compute cost J .241' L415
5. Compute one element of gradient vector 717 .870
6. Compute one element of Hessian matrix .975 1.429
7. Invert Hessian .05 .05

Total for one iteration 17.0 sec. 27.0 sec.

The time reported for calculation of the gradient
and Hessian is merely the time required for calculation of a
single term of either. Consequently, the total time required

to calculate the gradient is p times the figure shown, where D

is the number of variables. For examples 6?3‘and B;H; D = Y,

and 5 respectively.
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Because of its symmetry, Hessian calculation requires

p(p + 1)/2 times the figure shown for calculation of an
individual element. However if we can make use of the
separation results in Section 3.1.6, then oﬁly elements
of the non-zero blocks of H need to be calculated. Since

each of the blocks is symmetric, there are

m

ip., + 1 U4
%51 p.(p; + 1)/2 (5.1)
elements to calculate. For instance, with this simplification
only five elements of H rather than ten need to be calculated

at each iteration for example 6.3.

Inversion of H, although not a large contributor
to execution time, is somewhat faster if the individual blocks

are inverted, rather than the entire matrix.

A reduction in the time required to compute the
cost J may be possible if the following approach is used.

From (3.8) which is repeated here for reference,
J = tr[w'QOwﬁj,

the matrix product W'QOW is computed after each new step
because W is a function of the search variables 0. i=1,
..; p. Then the matrix inner product or trace of W'QdW&E
is taken. The alternative to formiﬁg W and then computing
the matrix product W'QOW is to compute the product from the

equivalent expression
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P
WQW = 22
1=1

GiO'Tij (5.5)
J

five

Where the constant Tij matfices would be determined just once
for each ekample; This same approach can also be used when
computing the gradient and Hessian elements. Whether or not
it requires less CPU time depends upon the integers m, n, v,
and p. The savings if any did ﬁot seem to jﬁstify the added
coding effort required to initially form Tij’ i= 1; cees P3

j = 1i..., p or the additional memory required to store them.



93

5.4 Core Storage Required and Numerical Accuracy

A large quantity of core storage is required by
the program written. Table 5.2 lists all of the arrays
which are stored along with the maximum dimensions specified
in this version of the program;

Table 5.2

Matrix Storage Requirements

Matrix Size Storage
A 10 x 10 400 bytes
B 10 x 5 200
C 5x 10 200
F 55 x 10 2200
G 5x 5 100
Av 10 x 10 400
BV 10 x 5 200
Cv 5x 10 200
Q 5x 5 100
R 5x 5 100
T 5 20
ovector 10 40
Avector 5 ' 20
g' 20 x 20 1600
W 10 x 20 800
P 20 x 20 1600
P i=1, «..,p 10(20 x 20) each 16000
Wep 121, o0usp 10(10 x 20) each 8000
Ay 1=, ...,p 10(20x 20) each 16000

Total L8,180 bytes
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In addition to all of these, must be stored.

Ap1g
If the inversion is done in double precision and ABIG is

for instance 90 x 90, then 64,800 bytes of storage will be
required, for this matrix alone. The inverse is developed

in the same storage locations.

With different coding, small reductions in storage
may be possible, some at the expense of longer computational
time, such as not storing the Pi’ Wi; and Ai matrices and
generating them when neceSsary; in general; these figures
accurately represent the large Quantity of storage required
by the minimization procedure design method for moderately

large control problems.

All of the computations except inversion of ABIG
are done with single precision accuracy. For the IBM System/
360 computers, six hexadecimal or about 7 decimal significant
figures are used. With this precision, no roundoff problems

were encountered on any of the examples run. The searching

nature of the minimization procedure has the ability to avoid
excessive accummulation of small errors. For example rather

than using data from previous steps, a new Hessian matrix is

computed at each step.

The inversion of Ap1g is done in double precision
simply because the inversion subroutine INV was written this
way and probably would not run any faster in single precision
anyway. For comparison, example 6.3 which has a 91 x 91 AB

IG

matrix was run using the single precision version of subroutine
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MINV to determine in a practical sense what differences
would show up. In addition to the greatly increased time
required by this subroutine, some elements of the inverse
matrix differed from that produced by INV, generally in

the last or last two significant digits for the larger

(in magnitude) elements. Elements with large negative
exponents representing what would be zero elements gen-
erally had more negative exponents for the double pre-
cision inverse. The overall effect of these differences

on the actual calculation of cost J, gradient vector, or
Hessian matrix was nevertheless very slight. Both approaches
reached the same minimum location to within five significant
figures in all search variables, in exactly the same number

of steps.
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5.5 An Efficient Program

The main concern in writing the computer program
has been to get some examples computed and demonstrate
feasibility of the technique. A well designed program re-
quires more effort and it may be asked what featurés a highly
efficient computer program would have if we assume minimal
computer time is our goal rather than minimal storége. In
order of decreasing importance, the following five changes

should result in a considerable reduction of overall time.

1. Separation into individual sub-problems
(Section 3.1.6). The savings depends on how the problem
separates. A tenth order problem withm = 2, p. = 1, py = 2,
1

Py = 7 separates into an Bth and a 9th

order problem and
there probably is no savings at all. On the other hand a
tenth order problem with m = 3, P; = Py = Py = 2, Py = 4

separates into three Gth order problems and there should be

considerable savings.

2, Improved method for solution of Lyapunov
equation. Because this is the most time consuming step, a
reduction here would be significant. For problems of order
10, even if this time were reduced to zero, the maximum
savings would be about 50%; The most likely prospects for
improvement are the results of Man [M3] and xonar [K31, and

the separation procedure of equation (3.23).

3. Re-organization of calculations. The
technique of (5.5) can be used to reduce the time required

by steps 2, 4, 5, 6 of Table 5.1.
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L4, Programming in assembly language. Although
Fortran is a convenient language'tO'use it generally does not
produce the most efficient machine code for array calculations.
Re—programmiﬁg some of the computation steps or the entire

program in assembly language can cause a significant reduction

in overall computer time.

5. Improvements to the search algorithm itself.
There are many possibilities here, such as fixing the Hessian
after a reasonablé number of iterafion éteps. Since only about
ten iterations have been required for the eﬁamples of Chapter 6

improvements of greater than 50% probably are not possible.
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5.6 " Maximum Problem Size

The question of just how large a problem can be
solved usiﬁg the minimization procedure is best answered as
follows. Assume thé’problem is separated into m subproblems
then the question is what is the laréest subproblem which

can be solved?

Three basic limitations on problem size are com-
puter run time, storage size, and roundoff errors; Computer
time limitations are primarily a matfer of cost. Using the
most time consuming step in the iteratioh procedure; inver-
sion of Ap1g> as a guide in determining run time per itera-

tion we find that the cost increases as the Bth

power of the
number of states n in the subproblem. For n = 20 about two
minutes of time per iteration is required. Considering that

ten or more iterations may be necessary and that we might

wish to repeat the procedure a few times with differing weights,
several hours of computer time can easily be consumed. At

$7.00 per minute current rates, the cost may be prohibitive.

For n = 10, only 1/64 of this figure, or just a few seconds

i1s needed.

If the Lyapunov equation is solved by some other
faster techniqué; then larger problems may be solved. How-
ever no figures are available on computer time for any other
method, or indeed what is more important, how computer time

increases with dimension n.
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At the present time, unless one is willing to
spend a lot of money, computer time limitations appear to
impose a problem size limit somewhere between n=10 and

n=20.

In modern computers, core storage is large. Never-
theless it should be noted that a n=20 problem will require
on the order of half a million bytes. While this is easily
within the reach of today's large computers and time sharing

medium size computers, not everyone has such a system available.

The roundoff error limitation is difficult to deter-
mine because it depends in an extremely complex way on the
problem data itself and how it is scaled. As a comparison
even the effect of scaling on the solution of a linear system
of equations is poorly understood at this time, see [F3 p. 38].
Current practice is to scale the rows and columns of matrices
by powers of 10 so that the elements with largest absolute
value in each row and each column are about equal. Because
this problem is so complex, experience with example problems
probably gives the best answer. The examples of Chapter 6
with n=8 and n=9 were run successfully which indicates

that problems with subsystems of this order are possible.

To date these are the largest problems for which
decoupling feedback matrices have been calculated. Indeed
it may turn out that computing the solution of the decoupling
problem may be more difficult because of roundoff errors than

design of the closed-loop system itself.
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CHAPTER 6
EXAMPLE PROBLEMS

A variety of examples were studied and they are
discussed in this chapter. A second order example repre-
senting a motor-generator combination was used for a con-
siderable amount of investigation concerning effects of

filter and weighting parameter selection.

Also, to demonstrate versatility of the optimi-
zation procedure, it was applied to increasingly higher

order systems including:

1. A fourth order aircraft landing problem

with two inputs

2. An eighth order distillation column with

three inputs
3. A ninth order helicopter with four inputs

6.1 Motor Generator Example

Cruz, Perkins, and Gonzales [P1l] develop state
equations for a dec to ac rotary converter. The converter,
shown in Figure 6.1, consists of a dec motor driving an ac
generator. Their equations are linearized about a nominal
operating point yielding the linear system described by the

A, B, and C matrices shown below where
ul - dc motor field current

u, - ac generator field current
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Figure 6.1

Motor Generator Example
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yl =x - shaft angular velocity
Vg T X 5 = output voltage

TR -4 0 1 0
A = B = C =

-2 U -4 2 0 1

The control system is required to be decoupled.
It is known that the inputs will be unit step functions.
Furthermore, the static operating values are subject to
variation causing a change in the parameters of the linear-

i1zed model.

By use of the Gilbert and Pivnichny computer
program [G3], it is determined that this system can be de-
coupled into two first order subsystems with single input -

single output transfer functions.

Al
h =
l(s) P
1
A
2
hZ(S) = S - 02

The corresponding decoupling pair {F, G} of control

law (2.2) is chosen from the class.

For simplicity, we assume a unity static gain constraint as

described in Section 3.1jfhus xl = =015 A, x
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A number of minimizations were computed with
various filter and weighting parameters in order to get
a "feel" for their effect on the problem. This example
was used for these investigations because the order is
low and run times are short; less than 0.4 seconds of CPU

time is required per iteration.

As we expect, the number of iterations required
to reach optimum is strongly dependent on the starting
values selected for the search variables. Nevertheless
for this example the procedure converged (norm of gradient
< 10-5) in less than ten iterations for starting values
which lie within one or two orders of magnitude of the op-

timum.

It is not difficult to select starting values
within these limits. If the open loop poles are known,
then it may be assumed for most designs that the closed-
loop poles will not lie many orders of magnitude away.
For if they did, then it is likely that the design would
have unreasonably large control or error magnitudes and

in either case would be an unacceptable design.

While there may be exceptions, for instance in
poorly scaled problems, (see Section 5.6), "this rule of
thumb" of selecting starting values so that the closed-loop
poles are within 10 *2 magnitude of the open loop poles has

worked well for all examples tried.
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If starting values happen to be selected close
to the optimum, such as using the optimal values of I
from a previous entry in Table 6.1 as the starting values

for the next entry, then convergence is very rapid requiring

only two or three iterations.

Table 6.1 shows the effect of increasing weights
on the controls while maintaining the weight on error var-
iances fixed. Identical first order filters are used for
these designs with break frequency w, Of one radian per

second. That is

The factor of two in the elements of B is used
v
to normalize the filter gain so that its output variances
are unity when driven by zero mean Gaussian white noise

with unit variance, I = diag (1,1), E(vi)2 = 1.0, i =1, 2.

Notice the tradeoff which can be made between con-
trol variances and error variances by suitable adjustment
of the weighting parameters. Because the closed-loop system
is being asked to follow input signals with a bandwidth
similar to the bandwidth of the open loop system_(open loop
poles are located at s = -2, -6), both error variances and

control variances cannot be made small simultaneously.

For Table 6.2, the weighting matrices are held

constant and w, is varied thus changing the bandwidth of the

signals which the system is asked to follow. Here we see
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the error variances decrease as the filter bandwidth is
decreased without any significant increase in control var-

lance.

Some minimizations were run with second order
filters to see what effect their more rapid falloff of high
frequency gain would have. The results are shown in Table 6.3.
Identical second order filters with no zeros, and poles as
indicated were used for each input element. As with the first
order filter case, filter gains were normalized so that
)2

= 2 _ ¢ -
E(vy)? = E(v,)" = 1.0.

It appears that the error variances are sensitive
to high frequency components in the input. Use of the under-
damped filters requires considerably more control effort for
a similar error variance when compared to the critically
damped filters, probably because its output has a greater
proportion of high frequency components. In general, the
second order filter designs have much less error variance
than the first order design with comparable bandwidths.

This is not surprising since first order filters put much

more energy into very high frequencies.
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Table 6.1

Effect of Weighting Parameters on Error and Control Variances
Motor Generator Example, First Order Filters
Break Frequency of 1.0 Radian/Second

Control Control Total -
R Matrix Errors Effort Effort Control Variables
with v2=0 with Vl:O Effort

,/E(vl-yl)2 /Ekul)z /Ekul)Q /E(ul)z o]

\/E(vz-yz)sz(u;z JECu)? JE<u2>2 oy

.10 Jul 1.01 458 1.12 -4,158
[0 .1 409 1.28 1.37 1.88 -5.0

L2 0] 475 .97 .456 1.07 -3.435
|0 .2 .399 1.20 1.36 1.82 -4.916
L5 0] .680 .76 430 .87 -1.166
[0 .2 .512 .835 1.12 1.40 -2.808

Table 6.2

Effect of Filter Bandwidth on Error and Control Variances
Motor Generator Example, First Order Filters

Break -

2 = 2 = 2 = 2
Frequency E(v,-y.)° E(v,-y,)” E(u,)® E(u,) o o
Rad/Sec 171 272 1 2 1 2
1.0 .1939 .1667 1.2239 3.5190 -4.,1575 -5.0
.5 .098L 0842 1.2598 2.9565 -4.5843 -5.4371
.2 .0395 .0338 1.2602 2.4366 -4.8636 -5.7194
.1 .0198 .0170 1.2564 2.2278 -4.,9606 ~-5.8170
1 0 .1 0
Note: Q = R = for all cases above
0 1 0 .1

Filter gains are selected so that E(vl)2 = E(vz)2 = 1.0
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Table 6.3

Designs Using Second Order Filters
Motor Generator Example

2nd Order Filter Poles at -1, -1

S 2 o 2 = 2 = 2
R Matrix E(vl yl) E(v2 y2) E(ul) E(uz) oy o,
.1 0]
- .00071 .00039 .65314 1.2329 -25.545 -34,557
L0 .1
2 0]
.00L4L6 .00196 6457 1.2060 -9.,595 -14.969
[0 .2]
.3 0]
.08743 .02583 .54168 1.0037 =-1.391 -3..400
| 0 .5
2nd Order Filter Poles at -.707 * 3j.707
2 0
.0056 0021 1.2997 2.4495 -13.002 -20.770
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6.2 Aircraft Example

Another application of this technique arises
in the design of an aircraft system for decoupled control
of pitch motion and airspeed during approach to landing.
This problem is considered by Smith [S3] for a typical KC
135 making use of the independent elevator and engine thrust
variables. The linearized model is a fourth order system

described by the matrices

0 1.0 0 0
-.00162 -1.2358 -1.1179 .07281
A = .00550 - .,95810 -.64900 -.24630
-.12736 0 .07280 -.03323
0 0
-1.00800 6.72000 1 0 0 0
B = -.03419 0 C =
0 .79210 0 0 0 1
with
yl = X - pitch angle in radians
Y2 T ®p
Xy = angle of attack, radians
y2 = X, = perturbation velocity, fraction of nominal
ul - elevator angle, radians
U, - engine thrust, 10% 1b.

The aircraft is assumed to be on a 2.5 degree glide path, at
an airspeed of 253 ft./sec., with its gear down and 40 degree

flaps.

From the decoupling program [G3], it is determined
that the system can be decoupled by state variable feedback

into the subsystems with transfer functions:
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h = Ay
l(s) 1
32 - 0..5 -
11° 7 %12
A
= 2
hz(s)
5T %1
there is one fixed root at s = -.59. The corresponding class

of decoupling pairs - {F, G} are given by:

19 -1.2259¢ --.99206011 -1.72175

.16078 0 .09191

F =11.07031 - .992060¢

.3 + 8.416uL5
5191 8.4164 51

04195 + 1.2624o

21 |

G =1.992061 8.416L5) W
1 2

0 1.262473,

Because of this structure, any disturbance inputs
which enter only the unobservable "part" of the closed-loop
system will have no effect on the output. From the results

of Section 3.2.1 we find for the CD system

» Vgq @ scalar is free

o>
1]
< OO0 O

31
. . . -0
and transforming back to the original system v = T2 v where
Tz'l is given by the decoupling program.
0
vV = 0

Vi3]
0
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In addition, from Section 3.3.1 we can state that

any parameter variation of the form:

A = 0 0 0 0 s §a.» 1 = 1y +..y 4 free
i

Gal 6a2 <Sa3 Ga%
will also have no effect on the output. One must however,
check the poles of the closed-loop system for such a variation,
to determine that the "fixed" root at s = -.590 has not moved

into the right half complex plane, indicating an unstable sys-

tem.

Smith does not give information concerning the type
of inputs the aircraft will be expected to follow. We expect
pilot inputs to contain significant high frequency components
and arbitrarily selected first order filters with 0.2 radian
per second break frequencies. Although this may seem very
low, recall that first order filters put a significant amount
of energy at frequencies well above the break frequency. The
open loop system has poles located at s = -.944 * 3j ,993,
-.0144 £ 3 147, Filter gains are selected so that E(vi)2 =
E(vz)2 = 1.0. These input amplitudes are chosen merely for
convenience in comparing error and control amplitudes to input
amplitudes rather than to represent the actual signal ampli-
tudes anticipated. As we have shown in Section 3.1.6, the

problem can be separated, with the effect of each input con-

sidered individually. From linearity, the amplitudes scale.
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With inputs characterized by these filters, and

weighting matrices given by:

e
1
)
n

. . . . o= o \ = .
a unity static gain constraint 1 012, 9 021 is
imposed. The minimization procedure converged in eight

iterations of 1.9 seconds CPU time each, yielding:

E(v1 - yl) = L2475

n

L4876

4.10u5

it
~
o
=
~
N
L]

sl
~
[
N
Nt
N
"

.0569

-4,24913

= -3.34053

Q
=
N

i

-.21015

It appears that large elevator deviations will be
required to follow such inputs with this design. Separating
the control variances by input, we find both inputs contribute

strongly to the u,; variance.

due to vy d,u.e,to._v2

E(ul)2 2.0573 2.0472

'E<u2)2 .0199 .0370



118

If these are unacceptably large, then the design of course

can be repeated with a stronger weight on the uy variance.

Some typical amplitudes as used by Smith are £1°

elevator angles = *.0175 radian and £2000 1b. thrust = *.002
2

for Uy If we assume Evl = ,0175 then the following error
and controls results.

= 2 _ o

E(v1 - yl) = .5

= 2 _ o)

E(ul) = 1.4

- ’ i

E(uz) = 2460 1b.

which seem to be acceptable values.



6.3 Distillation Column Example
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A design for the binary distillation column

originally described in Gilbert and Pivnichny [G3] was

computed using the minimization program. This

eighth

order system with three inputs in shown in Figure 6.2.

Equations describing the column operation are linearized

about an operating point and the resulting system of lin-

ear differential equations are represented by the matrices

shown in Table 6.4 where:

yl=><l

concentration
concentration
concentration
concentration
concentration
overflow rate
overflow rate
overflow rate
reflux ratio

feed rate

of
of
of
of
of
of
of
of

liquid on
liquid on
liquid on
liquid on
liquid in
tray 3

feed tray

tray 1

reboiler evaporation rate

top tray
tray 3
feed tray
tray 1

reboiler

As reported [G3] the system can be decoupled into

two first order and one second order subsystems with the

control law matrices shown in Table 6.5.

hl(s) = Al

S

-0
11
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Binary Distillation Column
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Table 6.4

Distillation Column A and B Matrices

-.09 . .12 0 0 0 0 0 0
06 -.18 .12 0 0 -.134 0 0
0 06 -.28 .12 0  .134 -.096 O
0 0 .16 -.28 .12 0  .096 -.08Y4
0 0 0 .16 -.2 0 0 .08y
0 0 0 0 0 -.2 0 0
0 0 0 0 0 .2 -.2 0
| o 0 0 0 0 0 .2 -.2
[ .077 0 -.067
154 0 -.033
0 1 -.018
0 0 -.025
0 0 -.099
2 0 0
0 .2 0
I 0 0 o
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Table 6.5

Decoupling F and G Matrices for Distillation Column

H

[1.17 + 13¢

11

-1.56 0
0 0
0 0
0
2 + 5032
0
-8.8X
2
0
-10.1x

1.41 -1.76 - 8.8021
0 0
1.62 -2.02 - 10.1021
.738 '

-1 + 25031 + 50

32
.8L8
.
25,
0
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hz(s) = 72
S"'Uzl
n(s) = Y3
3 7
S - 031 S —032
Four "fixed" poles, all sfable, are lecated at s = -.08,

-.14, -.5¢ j .0336.

For this problem, first order filters with fairly
low break frequencies (.02 rad/sec) were selected because
it is known the usual inputs do not have a considerable high
frequency content. TFilter parameters also were constrained
to produce unity output variances when driven by unity var-
iance Gaussian white noise. Unity gain was assumed for each
subsystem, Ay = -077, Ay ¥ =021, A3 = =03, and weighting para-
meters were selected for overall acceptable control and error

variances.

With Q = diag (1.0 1.0 1.0), R = diag (0.1 0.1 0.1)
the optimization procedure yields the following results which

are listed along with the arbitrary choice previously reported

in [G3].

Minimization Gilbert € Pivnichny
Variables 011 = -.24388 -.08

0pq7 = -.17286 -.08

031 = —.88988 ‘008

0gp = =-.13632 -.02
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Minimization Gilbert & Pivnichny
Control variances f(u%) = 2.,58078 2.09422

f(u%) = 2.27182 2.12783

f(ug) = 2.05858 1.9691L
Error variances f(vl - yl)2 = ,97579 .2

v, - y,)2 = .10371 2

2 y2 = . .
E(v, - y3)2 = .13759 .31818

Both designs appear to have reasonable control
and error amplitudes. The design produced by the minimiza-
tion procedure has less than half the error variance with
slightly larger control magnitudes required. The sources
of control effort requirements Vi,Vgs Vg3 Were introduced

individually and the results found to be.

. due to vl due to v2 due to v3
E(ul) 77191 1.29396 .51490
E(uz)2 144937 1.16841 65402
E(us)2 .02682 1.30868 72311

Nene of the inputs requires an unusually large
control.

A source of variation in performance for distilla-
tion columns is non-uniformity of the feed composition. Such
changes occur slowly compared to the column dynamics and thus

fall into the category of parameter variations as discussed
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