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We present an exact solution of Einstein’s field equations in toroidal coordinates.
The solution has three regions: an interior with a string equation of state; an Israel
boundary layer; and an exterior with constant isotropic pressure and constant den-
sity, locally isometric to anti–de Sitter space–time. The exterior can be a cosmo-
logical vacuum with negative cosmological constant. The size and mass of the
toroidal loop depend on the size ofL. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1580999#

I. INTRODUCTION

There has been increasing interest in space–times with nonspherical topology and n
cosmological constant. Much of the discussion has focused on structures with horizons in a
Sitter ~AdS! space–times.1–5 Vanzo6 pointed out that, in AdS space, there are black hole soluti
with genusg horizons. Aminneborget al. ~ABHP!1 discussed space–times locally isometric
AdS with horizons of arbitrary genus. While many current models of the universe seem to in
that L is positive, there are some models withL,0.7 Aside from their physical relevance to th
actual structure of the Universe, solutions in AdS are very interesting as a comparison c
asymptotically flat solutions. For example, Hawking and Page8 have discussed the relevance of
negativeL to black hole thermal stability. The 211 Bañados–Teitelboim–Zanelli9 black hole
solution and its 311 black string10 lift have generated a large literature.11

In this work we discuss a toroidal fluid solution embedded in a locally AdS exterior. The
an overall metric scale factor which depends on the size ofL. The solution has three regions:

~i! an interior solution with an equation of state,r1pw50;
~ii ! an Israel12 boundary layer with surface stress energySi j and stringlike contentS001Sww

50; and
~iii ! an exterior with constant isotropic pressure, constant density, and a negative cosmo

constant. Just as in the ABHP study, the exterior metric is locally isometric to AdS.
solution models an extended loop with interior structure. The size of the loop and its
depend on the cosmological constant. The solution can be used to model both micro
or very large loop structures, depending on the size ofL.

There have been other discussions of circular string structures. Frolov, Israel and U13

started with an axially symmetric space–time and discussed the relation between interna
structure and angular deficit, then transformed the metric to toroidal coordinates to discu
mass structure of circular cosmic strings. Using toroidal coordinates, Hugheset al.14 studied weak
field loops. Sen and Banerjee15 have discussed a solution for a circular cosmic string loop
cylindrical coordinates. Because often a particular choice of surfaces can simplify the solut
the field equations, we begin with toroidal coordinates.

Cartesian toroids are discussed in the next section. In Sec. III we write the field equatio
the space–time and develop the interior and exterior solutions. Matching conditions are pre
in the fourth section. The Israel boundary layer is described in the fifth section. In Sec. V

a!Permanent address: Physics Department, University of Windsor, Ontario N9B 3P4, Canada. Electronic
englass@umich.edu
30460022-2488/2003/44(7)/3046/13/$20.00 © 2003 American Institute of Physics
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discuss the mass, and the final section concludes with a general discussion.

II. CARTESIAN TOROIDS

The relation between Cartesian coordinates (x,y,z) and toroidal coordinates~h,q,w! on R 3

is16

x5a
sinh~h!cos~w!

cosh~h!2cos~q!
, ~1a!

y5a
sinh~h!sin~w!

cosh~h!2cos~q!
, ~1b!

z5a
sin~q!

cosh~h!2cos~q!
, ~1c!

with 0<h,`, 0<q<2p, 0<w<2p. Here ‘‘a’’ is a constant scale factor.
In toroidal coordinates, the Euclidean metricdx21dy21dz2 becomes

dL25
a2

@cosh~h!2cos~q!#2 @dh21dq21sinh2~h!dw2#. ~2!

The torush5h0 described bydL2 has a circular cross section with circumference 2pa csch(h0),
and the center of the toroid circular cross section is a distancea coth(h0) from the origin. The
equation of thew50, y50 circles, Eq.~1b!, is17

@x2a coth~h0!#21z25a2 csch2~h0!.

As h0 increases, the radius of the loop decreases and the torus approaches the flat torus, a
‘‘ a’’ from the origin. Looking down thez-axis ~about whichw has range 0<w<2p) at the torus,
one sees two concentric circles. Theq5constant surfaces, 0<q<2p, are spheres centered on th
z-axis. From Eq.~1! these spheres have equation

~x21y21z22a2!/2az5cot~q!,

which defines the relation ofq to the torus.

III. SPACE–TIME

For the curved space torus, one must construct two different metrics, an exterior for<h
<h0 and an interior forh0<h<`. The metric that we use to describe the space–time is a sim
generalization of the flat space metric:

ds25
a2

@cosh~h!2cos~q!#2 @2h2~h!dt21e2m(h)dh21dq21h2~h!dw2#. ~3!

Note that metric~3! cannot reduce to the Minkowski metric.

A. Field equations

We write Einstein’s field equations using the conventions of Misner, Thorne, and Whe18

and Wald.19 The field equations are (G5c51)

Gab58pTab . ~4!

Using flow vector ûaûa521, the energy-momentum tensor for a fluid is given in terms
principal pressures as
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Tab5rûaûb1p1x̂ax̂b1p2ŷaŷb1p3ẑaẑb . ~5!

In the following development, we write the field equations allowing for fluid anisotropy.
do not includeL explicitly in the stress-energy tensor but will interpret the stress-energy as
ated with a metric solution in terms ofL if appropriate. Using metric~3! above with C
5cosh(h)2cos(q) andua]a5(C/ah)] t , the field equations are

8pra2e2m528ppwa2e2m

52cosh2~h!22 cosh~h!cos~q!1312 sinh~h!C~h8/h!2C2~h9/h!1C2m8~h8/h!

22Cm8 sinh~h!1e2m@231cos2~q!12 cosh~h!cos~q!#, ~6a!

8ppha2e2m53 cosh2~h!2324C sinh~h!~h8/h!1C2~h8/h!2

1e2m@322 cosh~h!cos~q!2cos2~q!#, ~6b!

8ppqa2e2m5cosh2~h!2312 cosh~h!cos~q!22C sinh~h!@2~h8/h!2m8#

1C2@2~h9/h!22m8~h8/h!1~h8/h!2#13e2m sin2~q!, ~6c!

where]h/]h and]m/]h are abbreviated byh8 andm8.

B. Interior solution

Let h25@d0 sinh(h)2b0#
2, e2m51. The interior metric is

gab
in dxadxb5~a/C!2@2h2dt21dh21dq21h2dw2#. ~7!

The energy-momentum components forgin are

8pa2r528pa2pw5~b0 /h!@cosh2~h!2cos2~q!#, ~8a!

8pa2ph5~C/h2!$~d0
21b0

2!C22b0h@cosh~h!1cos~q!#%, ~8b!

8pa2pq5~C/h2!@~d0
21b0

2!C24b0h cos~q!#. ~8c!

The equation of state is

r1pw50. ~9!

The interior metric has quadratic Weyl invariant

CabmnCabmn5
4

3
d0

2 C4

a4h4 @b0 sinh~h!1d0#2, ~10!

and Ricci scalar

Rabgin
ab52

2C

a2h2 $~d0
21b0

2!C22b0h@cosh~h!12 cos~q!#%. ~11!

C. Exterior solution

The solution to be used in the toroid exterior is

gab
ex dxadxb5

a2

@cosh~h!2cos~q!#2 @2h2~h!dt21e2m(h)dh21dq21h2~h!dw2#. ~12!
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In order to describe a cosmological vacuum,ph will have to be constant. The cosine terms shou
vanish. From the general field equations we writeph , grouping the terms:

8ppha2e2m53 cosh2~h!2324 sinh~h!cosh~h!~h8/h!13e2m1cosh2~h!~h8/h!2

1cos~q!@22 cosh~h!e2m14 sinh~h!~h8/h!22 cosh~h!~h8/h!2#

1cos2~q!@2e2m1~h8/h!2#.

To eliminate the cos2 term, take (h8/h)25e2m. The cosine term then becomes

4 cos~q!em@2cosh~h!em1sinh~h!#.

Requiring this term to vanish provides one nontrivial solution

em5sinh~h!/cosh~h!, h5cosh~h!. ~13!

Substituting~13!, the energy-momentum components ofgex are

8pr523/a2, ~14a!

8pph58ppq58ppw53/a2. ~14b!

This can be a space–time with negative cosmological constantL523/a2. The metric is confor-
mally flat and has constant negative Ricci scalarR5212/a2. gex

ab is locally isometric to the AdS
metric.

IV. MATCHING INTERIOR TO EXTERIOR

The two metrics to be joined are

gab
in dxadxb5

a2

C2 $2@d0 sinh~h!2b0#2dt21dh21dq21@d0 sinh~h!2b0#2dw2%,

~15!

gab
ex dxadxb5

a2

C2 F2cosh2~h!dt21
sinh2~h!

cosh2~h!
dh21dq21cosh2~h!dw2G .

Matching the metrics one obtains

cosh~h0!5d0 sinh~h0!2b0 .

Matching the extrinsic curvature yields

d0 cosh~h0!5sinh~h0!.

The bounding surface is thus defined by

cosh~h0!5
b0

d0
221

, ~16a!

sinh~h0!5
d0b0

d0
221

, ~16b!

with
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b0
21d0

251. ~17!

This implies that bothb0 andd0 are less than 1. On the boundary the stresses are

8pa2r528pa2pw5@b0
2 cos2~q!21#, ~18a!

8pa2ph5Cb0@231b0 cos~q!#, ~18b!

8pa2pq5Cb0@2113b0 cos~q!#. ~18c!

A problem with the matching is thatph does not smoothly join to the exterior stress. Th
mismatch would lead to a dynamic boundary. Therefore, an Israel boundary layer will be d
oped.

V. THE BOUNDARY LAYER

A. Position of the layer

If the interior and exterior solutions do not match derivatives but join over an Israel su
layer,12 then the position of the boundary will be set by matching onlyh at h5h0 . For the
exterior we have

h5cosh~h!, em5sinh~h!/cosh~h!.

For the interior

h5d0 sinh~h!2b0 , e2m51.

Matching the interior and exterior ath5h0 provides

cosh~h0!5d0 sinh~h0!2b0 .

Note that thee2m term need not match, since it is the coefficient ofdh2 and the match is forh
constant surfaces. Rearranging, we have the bounding surface

cosh~h0!5
b01kd0~b0

21d0
221!1/2

d0
221

, k5~61!, ~19a!

sinh~h0!5
d0b01k~b0

21d0
221!1/2

d0
221

. ~19b!

B. Parameter constraints

Constraints can be set ond0 andb0 by requiring

sinh~h0!.0, cosh~h0!.0, r interior.0.

Both of the hyperbolic functions in Eq.~19! have a sign choice which is the same for bo
functions. There are eight possible parameter (k,d0 ,b0) combinations for bothd0

2.1 and d0
2

,1 for a total of 16 cases. The hyperbolic conditions eliminate eight and the density cons
five more. The three remaining allowed parameter combinations with their constraints are

~1! d0
2.1:@k511, d0.0, b0.0#, no constraints,
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~2! d0
2.1:@k521, d0.0, b0.0#, Ab0

21d0
221,Ub0

d0
U, Ab0

21d0
221,ud0b0u, ~20!

~3! d0
2,1:@k521, d0.0, b0.0#, Ab0

21d0
221.Ub0

d0
U, Ab0

21d0
221.ud0b0u.

The algebraic details are in the Appendix.

C. Extrinsic curvature

We are interested in a space–time that could describe a loop of matter with an energy d
equal to the loop tension over a bounding Israel surface layer ath5h0 . The stress-energy conten
of the surface layerSi j ~Ref. 12! is given by

8pSi j 5g i j 2ghi j
(b) ~21!

with hi j
(b) the metric of the bounding torus.g i j is the difference between the extrinsic curvatures

the exterior and interior metrics on the boundary

g i j 5Ki j
ex2Ki j

in5^Ki j &.

Calculating the general extrinsic curvature on the bounding torush5h0 with unit normalna we
have

Ki j 52na;bhi
ahj

b ,

Ki j 5naG i j
a 52~na/2!gabgi j ,b .

With C5cosh(h)2cos(q) andha]a5]/]h, we have for the extrinsic curvatures on the bound

K005~naha!
C2

2e2m

]

]h
~h2/C2!, ~22a!

Kww52K00, ~22b!

Kqq5~naha!
C2

2e2m

]

]h
~1/C2!. ~22c!

Kqq will match across the boundary with the metrics we have found. Using Eq.~22a! and forming
K00 we have

K005
h

C
@Ch82h sinh~h!#. ~23!

Establishing the difference between inner and outer spaces and matchingh on the boundary, the
discontinuity in the extrinsic curvature is

^K00&5h@sinh~h0!2d0 cosh~h0!#.

Therefore the boundary layer has a stress energy content

8pS005cosh~h0!@d0 cosh~h0!2sinh~h0!#528pSww . ~24!

RequiringS00.0 and substituting for cosh(h0) and sinh(h0) from Eq.~19! impliesk51. Thus one
parameter set remains:
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d0
2.1:@k511, d0.0, b0.0#. ~25!

The stress energy content of the boundary layer represents a toroidal loop with a stri
equation of state.

VI. MASS

When the generator of time translations is Killing vectorjn, then the Einstein four-momentum
pm5A2gTn

mjn is conserved and a mass can be associated with three-volumedVm ,

M5E
3vol

A2gT n
m jndVm ,

wheredVm5t,mdhdqdw. Substituting we have the mass inside the torus:

M5
2pb0a2

8p E
h0

` E
0

2p h

C3 @cosh~h!1cos~q!#dqdh

5
pb0a2

8 sinh4~h0!
$4d0 sinh~h0!cosh2~h0!2b0@2 sinh2~h0!13#%. ~26!

A similar calculation can be repeated for the mass associated with the surface layer.
Israel formalism the surface stress energy is defined in geodesic coordinates as the thickn« of
the layer approaches zero:

Smn5 «→0
lim E

0

«

Tmndx. ~27!

Start with the definition of the mass in a three-volume and take the limit as the distance be
tori goes to zero:

M 85E
3vol

A2gT n
m jndVm5E

3vol
A2gT n

0 jndhdqdw.

In the limit of zero layer thickness

M 85 «→0
lim E E E

h02«

h0 A2gttgqqgwwghh T n
0 jndhdqdw. ~28!

Assume that the limit can be taken inside the integral and that over the range of theh2 integral
that A2gttgqqgww is approximately constant and takes its value onh0 :

M 85E E A2gtt~h0 ,q!gqq~h0 ,q!gww~h0 ,q! dqdw «→0
lim E

h02«

h0
~T n

0 jnAghhdh!,

M 85E E A2gttgqqgww S n
0 jndqdw.

Integration results in

M 85
ah2

4
@d02tanh~h0!#

2p

sinh~h0!
. ~29!
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VII. DISCUSSION

In summary, we have obtained a fluid solution to the field equations that describes a p
density torus with a boundary layer, embedded in a locally AdS exterior. The solution ha
parameters,d0 andb0 with a restricted range. The fluid and boundary layers both have a strin
equation of state. The solution can describe a variety of structures, depending on the par
value chosen. First consider the size of the loop,Rq5a csch(h0). For the allowed parameter se
we have, in the limitb0

2@ud0
221u,

Rq@k511, d0
2.1#

a
;

d021

b0
.

Rq /a can become very small and the torus will approach the flat torus a distance ‘‘a’’ from the
center of the torus loop. The size of the loop depends on the scale parameter, ‘‘a. ’’ The size of the
scale factor is determined by the cosmological constant. From the field equations we have

8pG

c2 rexterior52
3

a2 , uLu5
3

a2 . ~30!

For example, if this density is roughly the same order as the critical density, we would havuru
;10227 kg/m3 and one finds thata;1028 m. If the solution is used to describe a primordi
universe with a large negativeL, the scale factor could be much smaller and micro loops could
possible.

The mass description is also dependent on the size of the scale factor. We have from E~26!
for the fluid interior

M5
pb0a2

8 F 4d0

sinh~h0!
1

4d0

sinh3~h0!
2

2b0

sinh2~h0!
2

3b0

sinh4~h0!G .
For the surface layer we have Eq.~29!,

M 85
p

2
ah2@d02tanh~h0!#

1

sinh~h0!
.

One thing that is immediately obvious is the different dependence on the scale parameter
largeb0 limit taken above we have

M 8;
p

2
ab0 ,

M;
p

4
a2~d0

221!.

The fluid inside the torus does not depend onb0 in this limit. In the current universe, ifa@1 and
if b0!a, the fluid inside the torus can dominate the mass because of the scale factor. Ifb0;a and
d0→1, the mass in the surface layer could dominate the loop structure. While the size
thin-loop torus depends on ‘‘a, ’’ the ‘‘fat’’ torus can extend much closer in to the origin. As abov
if, in the primordial universe, the cosmological constant was negative and much larger, the
factor, ‘‘a, ’’ could be quite small. The solution could then describe micro loops with the sur
layer the dominant mass contribution.

Several extensions of this solution might be possible. Adding time dependence to gene
oscillating loop for a Casimir calculation would be quite interesting. Time dependence could
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be used to check the evolution and stability over time of a primordial loop. This solution c
also be regarded as a step toward generating multi segment Brevik–Nielson20 loops with metric
dependent tensions.

APPENDIX: MATCHING CONSTRAINTS

The hyperbolic functions are, withS(b0 ,d0)ª(b0
21d0

221)1/2,

cosh~h0!5
b01kd0S

d0
221

, k5~61!, ~A1a!

sinh~h0!5
d0b01kS

d0
221

. ~A1b!

The conditions to be satisfied are

sinh~h0!.0,

cosh~h0!.0.

The cosh function is always positive and sinh(h0) is positive because the range for the inter
metric ish0,h,`. The parameters must always satisfy the condition

b0
21d0

2.1.

The equal sign withS50 is not a possibility since that would imply an exact match of interior a
exterior.

1. sinh „h0…Ì0

d0b01kS

d0
221

.0

A: d0
2.1, k511, 0,d0b01S
~1! (d0.0, b0.0) condition satisfied
~2! (d0,0, b0,0) condition satisfied
~3! (d0.0, b0,0) condition satisfied ifud0b0u,S
~4! (d0,0, b0.0) condition satisfied ifud0b0u,S

B: d0
2.1, k521, 0,d0b02S
~5! (d0.0, b0.0) condition satisfied ifS,ud0b0u
~6! (d0,0, b0,0) condition satisfied ifS,ud0b0u
~7! (d0.0, b0,0) condition excluded
~8! (d0,0, b0.0) condition excluded

C: d0
2,1, k511, 0,2d0b02S
~9! (d0.0, b0.0) condition excluded
~10! (d0,0, b0,0) condition excluded
~11! (d0.0, b0,0) condition satisfied ifS,ud0b0u
~12! (d0,0, b0.0) condition satisfied ifS,ud0b0u

D: d0
2,1, k521, 0,2d0b01S
~13! (d0.0, b0.0) condition satisfied ifud0b0u,S
~14! (d0,0, b0,0) condition satisfied ifud0b0u,S
~15! (d0.0, b0,0) condition satisfied
~16! (d0,0, b0.0) condition satisfied

Summary of Condition 1
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d0
2.1, k521, (d0.0,b0,0) and (d0,0,b0.0) are excluded

d0
2,1, k511, (d0.0,b0.0) and (d0,0,b0,0) are excluded

2. cosh „h0…Ì0

b01d0kS

d0
221

.0

A: d0
2.1, k511, 0,b01d0S
~1! (d0.0, b0.0) condition satisfied
~2! (d0,0, b0,0) condition excluded
~3! (d0.0, b0,0) condition satisfied ifub0u,d0S
~4! (d0,0, b0.0) condition satisfied ifub0u.ud0uS

B: d0
2.1, k521, 0,b02d0S
~5! (d0.0, b0.0) condition satisfied ifd0S,b0

~6! (d0,0, b0,0) condition satisfied ifud0uS.ub0u
~7! (d0,0, b0.0) condition satisfied
~8! (d0.0, b0,0) condition excluded

C: d0
2,1, k511, 0,2b02d0S
~9! (d0.0, b0.0) condition excluded
~10! (d0,0, b0,0) condition satisfied
~11! (d0.0, b0,0) condition satisfied ifub0u.d0S
~12! (d0,0, b0.0) condition satisfied ifb0,ud0uS

D: d0
2,1, k521, 0,2b01d0S
~13! (d0.0, b0.0) condition satisfied ifub0u,d0S
~14! (d0,0, b0,0) condition satisfied ifub0u.ud0uS
~15! (d0,0, b0.0) condition excluded
~16! (d0.0, b0,0) condition satisfied

Summary of Condition 2
d0

2.1, k511, (d0,0, b0,0) is excluded
d0

2.1, k521, (d0.0, b0,0) is excluded
d0

2,1, k511, (d0.0, b0.0) is excluded
d0

2,1, k521, (d0,0, b0.0) is excluded
When the constraints for the two conditions are put together, the cases

k511, d0,0, b0.0, are eliminated for bothd0
2.1 andd0

2,1.
Summary of existing cases after hyperbolic conditions are imposed

d0
2.1:k511 ~A2!

~d0.0, b0.0!

~d0.0, b0,0!: ud0b0u,S, Ub0

d0
U,S

d0
2.1:k521 ~A3!

~d0.0, b0.0!:S,ud0b0u, S,Ub0

d0
U

~d0,0, b0,0!: S,ud0b0u, S.Ub0

d0
U

d0
2,1:k511 ~A4!
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~d0.0, b0,0!:S,ud0b0u, S,Ub0

d0
U

d0
2,1:k521 ~A5!

~d0.0, b0.0!: S.ud0b0u, S.Ub0

d0
U

~d0,0, b0,0!: S.ud0b0u, S,Ub0

d0
U

~d0.0, b0,0!.

Now we require the fluid density inside the torus to be positive:

8pa2r5~b0 /h!@cosh2~h0!2cos2~q!#.0.

cosh(h0) will always be greater than 1 since it equals 1 ath50, which is outside of the torus
interior. In the interiorh0<h<`. We have

b0

d0 sinh~h0!2b0
.0,

1

d0

b0
sinh~h0!21

.0,

d0

b0

b0d01kS

d0
221

.1.

3. d 0
2Ì1

d0
21k

d0

b0
S.d0

221

2k
d0

b0
S,1

k511, ~b0.0, d0.0! and ~b0,0, d0,0!. No constraints

k521, ~b0.0, d0.0! and ~b0,0, d0,0! with constraint Ud0

b0
US,1

4. d 0
2Ë1

2d0
22k

d0

b0
S.12d0

2

2k
d0

b0
S.1
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k511, ~b0,0, d0.0! with constraint S.Ub0

d0
U ~A6!

k521, ~b0.0, d0.0! and ~b0,0, d0,0! with constraint S.Ub0

d0
U

Summarizing all constraints provides

d0
2.1:k511 ~A7!

~d0.0, b0.0!

~d0.0, b0,0!: ud0b0u,S, Ub0

d0
U,S, S,Ub0

d0
U is excluded

d0
2.1:k521 ~A8!

~d0.0, b0.0!:S,ud0b0u, S,Ub0

d0
U

~d0,0, b0,0!: S,ud0b0u, S.Ub0

d0
U, S,Ub0

d0
U is excluded

d0
2,1:k511 ~A9!

~d0.0, b0,0!:S,ud0b0u, S,Ub0

d0
U, S.Ub0

d0
U is excluded

d0
2,1:k521 ~A10!

~d0.0, b0.0!: S.ud0b0u, S.Ub0

d0
U

~d0,0, b0,0!: S.ud0b0u, S,Ub0

d0
U, S.Ub0

d0
U is excluded

~d0.0,b0,0! is excluded

The three allowed parameter combinations are

d0
2.1:k511 ~d0.0, b0.0!

d0
2.1:k521 ~d0.0, b0.0!:S,ud0b0u, S,U b0

d0
U

d0
2,1:k521 ~d0.0, b0.0!: S.ud0b0u, S.U b0

d0
U
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