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A space—time in toroidal coordinates
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We present an exact solution of Einstein’s field equations in toroidal coordinates.

The solution has three regions: an interior with a string equation of state; an Israel
boundary layer; and an exterior with constant isotropic pressure and constant den-
sity, locally isometric to anti—de Sitter space—time. The exterior can be a cosmo-

logical vacuum with negative cosmological constant. The size and mass of the
toroidal loop depend on the size Af © 2003 American Institute of Physics.

[DOI: 10.1063/1.1580999

[. INTRODUCTION

There has been increasing interest in space—times with nonspherical topology and negative
cosmological constant. Much of the discussion has focused on structures with horizons in anti—de
Sitter (AdS) space—times-°® Vanzd pointed out that, in AdS space, there are black hole solutions
with genusg horizons. Aminneborget al. (ABHP)! discussed space—times locally isometric to
AdS with horizons of arbitrary genus. While many current models of the universe seem to indicate
that A is positive, there are some models with<0.” Aside from their physical relevance to the
actual structure of the Universe, solutions in AdS are very interesting as a comparison case to
asymptotically flat solutions. For example, Hawking and Bageve discussed the relevance of a
negativeA to black hole thermal stability. The-21 Barados—Teitelboim—Zanefliblack hole
solution and its 3-1 black strind lift have generated a large literatufe.

In this work we discuss a toroidal fluid solution embedded in a locally AdS exterior. There is
an overall metric scale factor which depends on the siz&.dFhe solution has three regions:

(i) an interior solution with an equation of stajet p,=0;

(i) an Israel® boundary layer with surface stress enefgy and stringlike conten§y,+ S,
=0; and

(i) an exterior with constant isotropic pressure, constant density, and a negative cosmological
constant. Just as in the ABHP study, the exterior metric is locally isometric to AdS. The
solution models an extended loop with interior structure. The size of the loop and its mass
depend on the cosmological constant. The solution can be used to model both micro loops
or very large loop structures, depending on the sizd of

There have been other discussions of circular string structures. Frolov, Israel and®Unruh
started with an axially symmetric space—time and discussed the relation between internal string
structure and angular deficit, then transformed the metric to toroidal coordinates to discuss the
mass structure of circular cosmic strings. Using toroidal coordinates, Heglas" studied weak
field loops. Sen and Banerf@ehave discussed a solution for a circular cosmic string loop in
cylindrical coordinates. Because often a particular choice of surfaces can simplify the solution of
the field equations, we begin with toroidal coordinates.

Cartesian toroids are discussed in the next section. In Sec. Il we write the field equations for
the space—time and develop the interior and exterior solutions. Matching conditions are presented
in the fourth section. The Israel boundary layer is described in the fifth section. In Sec. VI we
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discuss the mass, and the final section concludes with a general discussion.

II. CARTESIAN TOROIDS

The relation between Cartesian coordinateg/(z) and toroidal coordinategy,9,¢) on R 3
16

is
x=a%, (19
z=asm(—ﬁ) (1o

cosl{n)—cog M)’

with 0= <w, 0= 9=<2mw, O<¢=<2mw. Here “a” is a constant scale factor.
In toroidal coordinates, the Euclidean mettig®+ dy?+ dz? becomes

a2
2_ 2 2 i 2
dL [COSI’(?])—COS{ﬁ)]Z[dn +d 9%+ sint(7)de?]. (2
The torusy= 7, described bydL? has a circular cross section with circumfereneeaZsch(y),
and the center of the toroid circular cross section is a distaremh(r) from the origin. The
equation of thep=0, y=0 circles, Eq.(1b), is'’

[x—a coth( 770)]?+ z2=a? csch( 7).

As 7, increases, the radius of the loop decreases and the torus approaches the flat torus, a distance
“a” from the origin. Looking down thez-axis (about whichg has range & ¢<2) at the torus,

one sees two concentric circles. The constant surfaces09=21r, are spheres centered on the
z-axis. From Eq(1) these spheres have equation

(X?+y?+ 72— a?)/2az=cot( ),

which defines the relation of to the torus.

lll. SPACE-TIME

For the curved space torus, one must construct two different metrics, an exteriosfpr 0
< 5o and an interior fomy=< p=<cc. The metric that we use to describe the space—time is a simple
generalization of the flat space metric:

a2

S Tcosh 7)—Cog9)

Note that metria3) cannot reduce to the Minkowski metric.

]2[—h2(n)dt2+e2“(”)dn2+d1‘)2+h2(n)dcpz]. ©)

A. Field equations

We write Einstein’s field equations using the conventions of Misner, Thorne, and Wieeler
and Wald® The field equations ared=c=1)

Using flow vector(“0,=—1, the energy-momentum tensor for a fluid is given in terms of
principal pressures as
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Ta,B: p0a0ﬁ+ pls\(as\(ﬁ—'— p29a9ﬁ+ p32a2ﬁ . (5)

In the following development, we write the field equations allowing for fluid anisotropy. We
do not includeA explicitly in the stress-energy tensor but will interpret the stress-energy associ-
ated with a metric solution in terms ok if appropriate. Using metrid3) above with &
=cosh()—cos@) andu“d,=(W¥/ah)d;, the field equations are

8mpa’e’ = —8mp,a‘e*
= —cost(7)— 2 costi y)cog 9)+3+2 sink( ) ¥ (h'/h)—¥2(h"/h)+¥2u' (h'/h)
—2W¥ ' sinh( )+ e?#[ — 3+ cog (V) + 2 coshi 7)cog I) ], (6a)
8mp,,a%e? =3 cosk(7)—3—4V sinh(n)(h'/h)+¥?(h'/h)?
+e?#[3—2 costf y)cog &) — co(9)], (6b)
8mpga2e’*=cosk(7n)—3+2 coslip)cog ¥) — 2V sinh 7)[2(h'/h)— u']
+W2(h"/h)—2u’(h'/h)+(h’/h)?]+ 3e?* sird( ), (60)

wheredh/dn and dul/dn are abbreviated bia’ and u'.

B. Interior solution

Let h2=[d, sinh(s)—bg], €2#=1. The interior metric is
gngdx“dxf=(a/W)? —h?dt*+dn’+d9?+h’d?]. (7)

The energy-momentum components &t are

8ma’p=—8ma’p,=(by/h)[cost(7n)—cod(9)], (8a)
8ma’p,=(W/h?){(dj+bj) W —2boh[ cosh 7) + cog 9) ]}, (8b)
8ma’py=(V/h?)[(d3+b3) W —4boh cog 9)]. (8¢)

The equation of state is

pFPp,=0. ©)
The interior metric has quadratic Weyl invariant

B 4 5 v : 2
CapunC4= 505 o sint ) + do 2, (10

and Ricci scalar
af 2w 2, w2
RapOin = — _azhz{(d0+ bg) W —2boh[cosh 7) +2 cog 9) ]}. (11

C. Exterior solution

The solution to be used in the toroid exterior is

2

a
‘;Xﬁdxadxﬂ:[cosh n)—cos(f})]Z[_hz( 7)dt2+e2#Nd p?+d 9%+ h?(9)de?]. (12
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In order to describe a cosmological vacuym,will have to be constant. The cosine terms should
vanish. From the general field equations we wgtg grouping the terms:

8mp,,a%e? =3 cosk(7) —3—4 sinh( 7)cosh 5)(h'/h) +3e?*+ cosi(7)(h'/h)?
+cog 9)[ —2 coshin)e?*+4 sinh(5)(h'/h)— 2 costi)(h'/h)?]
+cog(9)[ —e?*+(h'/h)?].
To eliminate the cdsterm, take b’/h)?=e?*. The cosine term then becomes
4 cog v)e”[ — cosh n)e* +sinh(7)].
Requiring this term to vanish provides one nontrivial solution
e*=sinh n)/cosi ), h=cosh 7). (13

Substituting(13), the energy-momentum componentsgst are
8mwp=—3la2, (14a

8mp,=8mpy=8mp,=3/a’. (14b)

This can be a space—time with negative cosmological conatant 3/a®. The metric is confor-
mally flat and has constant negative Ricci sc&lar —12/a2. g2 is locally isometric to the AdS
metric.

IV. MATCHING INTERIOR TO EXTERIOR
The two metrics to be joined are

2
; a
ggﬁdxadxﬁ=w{— [do Sinh 7) —bg]2dt?+ d %+ d 9%+ dg sinh( ) — by ]?d 2},

(15
a® sint?( )
ex adyB— _ 2 2 2 2
apdxdxP = cost(7)dt?+ cosﬁ(n)dn +d 9%+ cost( 7)de?|.
Matching the metrics one obtains
cosh 770) =do sinf(770) — .
Matching the extrinsic curvature yields
do cost 7o) = sinh( 770).
The bounding surface is thus defined by
by
cosh 770) = d(z)——l’ (163
. dobo
sinh(7g) = -1 (16b)

with
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bj+d3=1. 17

This implies that bottby andd, are less than 1. On the boundary the stresses are

8ma’p=—8ma’p,=[bjco(¥) —1], (189
8ma’p,=Who[ —3+bgcog 9)], (18b)
8ma’py="Yhy[ —1+3bycog 9)]. (180

A problem with the matching is thap, does not smoothly join to the exterior stress. This
mismatch would lead to a dynamic boundary. Therefore, an Israel boundary layer will be devel-
oped.

V. THE BOUNDARY LAYER

A. Position of the layer

If the interior and exterior solutions do not match derivatives but join over an Israel surface
layer!? then the position of the boundary will be set by matching onlwat 7= 7,. For the
exterior we have

h=cosh ), e*=sinh n)/cosHi 7).
For the interior
h=d,sinh ) —b,, e**=1.
Matching the interior and exterior aj= 7, provides

coshi 770) = dg sinh( 70) — by

Note that thee?* term need not match, since it is the coefficientdof® and the match is for
constant surfaces. Rearranging, we have the bounding surface

bo-+ kdo(bZ+d3—1)*2
ds—1

cosh 7)) = , k=(x1), (199

dobo+ k(b§+d§—1)2
ds—1

sinh 7g) = (190

B. Parameter constraints

Constraints can be set aly andbg by requiring

sinh(79)>0, costing) >0, pinterior0.

Both of the hyperbolic functions in Eq19) have a sign choice which is the same for both
functions. There are eight possible parameterdg,b,) combinations for bothj(z)>1 and d(z)

<1 for a total of 16 cases. The hyperbolic conditions eliminate eight and the density constraint
five more. The three remaining allowed parameter combinations with their constraints are

(1) d2>1:[k=+1, dy>0, by>0], no constraints,
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. VbZrdZ—1<|dgbo|, (20)

b
(2) d2>1:[k=—1, dy>0, by>0], \/b02+d02—1<d—°
0

b
(3) d2<1:[k=-1, dy>0, by>0], Vb3+d2—1> d—°, b2+ dZ—1>|dgb|.
0

The algebraic details are in the Appendix.

C. Extrinsic curvature

We are interested in a space—time that could describe a loop of matter with an energy density
equal to the loop tension over a bounding Israel surface laygeap,. The stress-energy content
of the surface laye§;; (Ref. 12 is given by

87S;=y;—vh{ (21)

with hi(jb) the metric of the bounding toruy;; is the difference between the extrinsic curvatures of
the exterior and interior metrics on the boundary

¥i = K=K =(K;)).

Calculating the general extrinsic curvature on the bounding tgrasy, with unit normaln, we
have

Kij = —na;ﬁhi‘"hjﬁ,
Kij=n.I'f=—(n./2)9*’g;j 5.

With ¥ = cosh() —cos@®) and »“d,= d/ dn, we have for the extrinsic curvatures on the boundary

V2 5 s
Koo=(Ma7) 525 5, (1Y), (229
quqo: - K001 (22b)
2 9
Kﬂa:(naﬂa)%mﬁ—n(l/‘l’z)- (2209

K 3¢ Will match across the boundary with the metrics we have found. Using22q. and forming
Koo We have

h
Koo=rg; [Wh' —hsint()]. (23)

Establishing the difference between inner and outer spaces and matichimghe boundary, the
discontinuity in the extrinsic curvature is

(Koo = h[sinh( 70) —dg coshi 770) .
Therefore the boundary layer has a stress energy content
87 Spo= COSH 70)[ dg COSH 770) —sinh(70) | = —87S,,, . (24)

RequiringSy>0 and substituting for coshyg) and sinhfy) from Eq.(19) impliesk=1. Thus one
parameter set remains:



3052 J. Math. Phys., Vol. 44, No. 7, July 2003 J. P. Krisch and E. N. Glass

d3>1:[k=+1,dy>0, by>0]. (25)

The stress energy content of the boundary layer represents a toroidal loop with a stringlike
equation of state.

VI. MASS

When the generator of time translations is Killing veciéy then the Einstein four-momentum
pt=+\—gT,&" is conserved and a mass can be associated with three-val\ipe

M= V—gT#,8"dV,,,
3vol

wheredV,=t, ,dnddde. Substituting we have the mass inside the torus:

2wboa2f°° FW : K 7) +cog ¥)]d9d
—=| COS Cco
87 o \I,s[ Ui ] ]

’ﬂ'boaz

= m{mo sinh( 77) cost( 770) — bo[ 2 sinkf( 7o) + 31} (26)

A similar calculation can be repeated for the mass associated with the surface layer. In the
Israel formalism the surface stress energy is defined in geodesic coordinates as the tiBickness
the layer approaches zero:

lim e
S,,= €0 fo T,,dx. (27)

Start with the definition of the mass in a three-volume and take the limit as the distance between
tori goes to zero:

M'=| -gTt¢dv,= L l\/—_gToyg”dndﬁd(p.
vO

3vol
In the limit of zero layer thickness
lim 70 0
M'= 8_)Of j f V_gttg'ﬁf}gqupgr]r] T ngd’r]dﬁd(P (28)
N~ €
Assume that the limit can be taken inside the integral and that over the range pf-thetegral

that V—010499,, is approximately constant and takes its valuegn

lim

M’=J J V=0u(170, M Gs5( 70,9 (170, 9) ddde SHOJWO (TO”gv\/g_’”dn)'
/o

M’=f f V=0u0999,, S°,E"d0de.

Integration results in

L ah? T
M’ = ——[do—tanhi( no)]m- (29
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VIl. DISCUSSION

In summary, we have obtained a fluid solution to the field equations that describes a positive
density torus with a boundary layer, embedded in a locally AdS exterior. The solution has two
parametersd, andbg with a restricted range. The fluid and boundary layers both have a stringlike
equation of state. The solution can describe a variety of structures, depending on the parameter
value chosen. First consider the size of the lodRp=a cschy). For the allowed parameter set
we have, in the limib3>|d3— 1

3

Ry[k=+1,d3>1] d,—1
a N by

Rg/a can become very small and the torus will approach the flat torus a distaideom the
center of the torus loop. The size of the loop depends on the scale paranaetémeé size of the
scale factor is determined by the cosmological constant. From the field equations we have

87G 3
_C2_Pexterior: YA |A| = a2z (30

For example, if this density is roughly the same order as the critical density, we would dave
~10 2" kg/m® and one finds thaa~10°® m. If the solution is used to describe a primordial
universe with a large negativg, the scale factor could be much smaller and micro loops could be
possible.

The mass description is also dependent on the size of the scale factor. We have fi@®) Eq.
for the fluid interior

o Wboaz 4do N 4do 2b0 3b0
~ 8 |sinh(ng) sink(7no) sinkf(7o)  sint( 7))

For the surface layer we have E9),

' 2 _
M =5 ah7dg tanf(no)]sinl 70

One thing that is immediately obvious is the different dependence on the scale parameter. In the
largebg limit taken above we have

, a
M -~ Eabo,

7T
M ~ Za2(o|§—1).

The fluid inside the torus does not dependbgrin this limit. In the current universe, #>1 and
if bg<<a, the fluid inside the torus can dominate the mass because of the scale fdzgeralfaind
do—1, the mass in the surface layer could dominate the loop structure. While the size of the
thin-loop torus depends org;” the “fat” torus can extend much closer in to the origin. As above,
if, in the primordial universe, the cosmological constant was negative and much larger, the scale
factor, “a,” could be quite small. The solution could then describe micro loops with the surface
layer the dominant mass contribution.

Several extensions of this solution might be possible. Adding time dependence to generate an
oscillating loop for a Casimir calculation would be quite interesting. Time dependence could also
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be used to check the evolution and stability over time of a primordial loop. This solution could
also be regarded as a step toward generating multi segment Brevik—Nidsops with metric
dependent tensions.

APPENDIX: MATCHING CONSTRAINTS
The hyperbolic functions are, witB(bg,do) :=(b3+d3— 1),

bo + kdos

cosh 7g) = =1 k=(%1), (Ala)
0
] dobo+kS
smf‘( 770): ﬁ (Alb)
0
The conditions to be satisfied are
sinh( 79)>0,
cosh{ 7g)>0.

The cosh function is always positive and sin§)(is positive because the range for the interior
metric is ny< p<<oo. The parameters must always satisfy the condition

b3+ d3>1.

The equal sign witts=0 is not a possibility since that would imply an exact match of interior and
exterior.

1. sinh (75)>0

dobo+ kS
ds—1

A: d5>1, k=+1, 0<dgby+S

(1) (dg>0, bg>0) condition satisfied

(2) (dg<0, bg<<0) condition satisfied

(3) (dp>0, by<<0) condition satisfied ifdgby|<S

(4) (dy<0, by>0) condition satisfied ifdyhg|<S
B: d3>1, k=—1, 0<dgho—S

(5) (dp>0, by>0) condition satisfied i5<|dgby

(6) (dp<0, by<<0) condition satisfied i5<|dgby

(7) (dg>0, bg<<0) condition excluded

(8) (dg<<0, bg>0) condition excluded
C:d2<1,k=+1, 0<—doby—S

(9) (dp>0, bg>0) condition excluded

(10) (dy<0, by<0) condition excluded

(11) (do>0, by<0) condition satisfied i5<|dybg|

(12) (dy<0, bg>0) condition satisfied i5<|dybg|
D: d3<1,k=—1, 0<—doby+S

(13) (dy>0, by>0) condition satisfied ifdybg| <S

(14) (dy<0, by<0) condition satisfied ifdybg| <S

(15 (dg>0, by<0) condition satisfied

(16) (dg<0, by>0) condition satisfied
Summary of Condition 1
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d§> 1, k=—1, (dy>0by<0) and @y<0,b,>0) are excluded
do<1, k=+1, (dy>0by>0) and dy<0,by<0) are excluded

2. cosh (5y)>0
b0+ dokS
ds—1

A: d5>1, k=+1, 0<by+d,S
(1) (dy>0, by>0) condition satisfied
(2) (dp<0, by<0) condition excluded
(3) (dg>0, by<<0) condition satisfied ifby|<dyS
(4) (dg<<0, by>0) condition satisfied ifby|>|do|S
B: d3>1, k=—1, 0<by—d,S
(5) (dy>0, bp>0) condition satisfied itl;S<b,
(6) (dg<<0, by<<0) condition satisfied ifdy|S>|by|
(7) (dp<0, by>0) condition satisfied
(8) (dp>0, by<<0) condition excluded
C:d3<1,k=+1, 0<—by—dgS
(9) (dp>0, bg>0) condition excluded
(10) (dg<0, bg<0) condition satisfied
(11) (dp>0, by<0) condition satisfied ifbg|>dyS
(12) (dg<0, bg>0) condition satisfied iby<|dy|S
D: d3<1, k=—1, 0<—by+d,S
(13) (dg>0, by>0) condition satisfied ifby|<dS
(14) (dy<0, bg<<0) condition satisfied ifbg|>|do|S
(15) (dg<0, bg>0) condition excluded
(16) (dg>0, by<0) condition satisfied
Summary of Condition 2
d§> 1, k=+1, (dy<0, by<0) is excluded
do>1, k=—1, (dg>0, by<<0) is excluded
d§< 1, k=+1, (dy>0, by>0) is excluded
do<1, k=-—1, (dg<0, by>0) is excluded
When the constraints for the two conditions are put together, the cases
k=+1, dy<<0, by>0, are eliminated for botd3>1 andd3<1.
Summary of existing cases after hyperbolic conditions are imposed

d2>1:k=+1
(dg>0, by>0)

bo

d—0<S

(dp>0, bp<<0): |dohg|<S,
di>1:k=-1

b
(do>0, by>0):S<|dobo|, S< d—o
0

b
(dy<0, by<0): S<|dgbo|, S> d—°
0

d3<1l:k=+1

3055

(A2)

(A3)

(A4)



3056 J. Math. Phys., Vol. 44, No. 7, July 2003 J. P. Krisch and E. N. Glass

b
(dy>0, by<0):S<|dgbo|, S< d—°
0
di<1l:k=-1 (A5)
bo
(do>0, by>0): S>|dgb,|, S> i
0
bo
(d0<0, b0<0) S>|dobo|, S< d_
0

(dg>0, by<0).
Now we require the fluid density inside the torus to be positive:
8ma’p=(bg/h)[cosH(7y)—cog(9)]>0.

cosh(yy) will always be greater than 1 since it equals 17&t0, which is outside of the torus
interior. In the interiorpy=< n<%«. We have

o >0
dosinh(7g) —by~ ™

1
>0

do . '
—sinh(7o)—1

bo

do bodo+ kS

Pl

by d2-1

3. d5>1

do

2
dgt+k by

S>di—1

ud°s<1
&bo

k=+1, (by>0, dy>0) and (by<0, dy<0). No constraints

do

b S<1

k=-—1, (by>0, dy>0) and (by<0, dy<0) with constraint

4. di<1

d
— 2k 2S>1—d?
0

b

ud°s>1
&bo
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b
k=+1, (by<0, dy>0) with constraint S> d—o (AB)
0
. . bo
k=-1, (by>0, dy>0) and (by<0, dy<0) with constraint S> a4
0
Summarizing all constraints provides
dz>1:k=+1 (A7)
(dg>0, by>0)
bo bo| .
(do>0, bp<<0): |dghg|<S, d—<S, S< q. s excluded
0 0
d3>1:k=-1 (A8)
bo
(dp>0, bp>0):S<|dyhg|, S< i
0
bo bo| .
(dp<0, be<<0): S<|dgbg|, S> al S< al s excluded
0 0
di<1l:k=+1 (A9)
bo bo| .
(dp>0, bp<<0):S<|dghg|, S< R S> a s excluded
0 0
di<1l:k=-1 (A10)
bo
(dp>0, by>0): S>|dgb,|, S> T
0
bo bo| .
(dp<0, bp<<0): S>|dghbg|, S< al S> q. s excluded
0 0

(dp>0,bp<0) is excluded

The three allowed parameter combinations are

di>1:k=+1 (dg>0, by>0)

b

d2>1:k=—1 (dg>0, by>0):S<|dgby|, S<‘ d_o
0
2 bO
dg<1:k=—1 (do>0, by>0): S>|dobo|, S>| =
0
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