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Expressions are derived for the intermolecular contribution to the nuclear-spin relaxation rate 
in solutions containing dissolved paramagnetic ions with spin S;;;.I. The calculation assumes 
that the electron-spin Hamiltonian is dominated by a large axial zero-field splitting, and it 
accounts for effects of Zeeman interactions to first order. The expressions are used to analyze 
proton-spin relaxation of the acetone solvent in solutions of tris- (acetylacetonato) Mn (III) / 
acetone. The main objective was to measure electron-spin relaxation times ofMn(III), which 
in this complex is a high-spin, d 4 ion with integer spin S = 2. Spin-lattice relaxation 
measurements were conducted over a range of magnetic field strengths (0.28-1.1 T) where the 
zero-field splitting is large compared to the Zeeman energy. Electron-spin relaxation times of 
Mn(III) were found to be 8 ± 2 ps, with little dependence on temperature over the range 215-
303 K and on magnetic field strength up to 1.1 T. Use of the assumption that Zeeman 
splittings dominate zero-field splittings (Solomon-Bloembergen-Morgan theory) resulted in 
computed electron-spin relaxation times that are too short by a factor of 3-4. 

I. INTRODUCTION 

The electron-spin energy levels and relaxation proper­
ties of paramagnetic ions with integer spin (S = 1, 2, etc.) 
have, in general, been sparsely studied due to the fact that the 
ESR spectra of these ions are frequently unobservable ex­
perimentally. In part, this results from the fact that the zero­
field splittings are often larger than the Zeeman splittings at 
accessible magnetic field strengths. In addition, electron­
spin relaxation times tend to be very short for these ions, 
further adding difficulties to direct observation of the reso­
nance. Thus little direct information concerning spin relaxa­
tion times is available for these ions, particularly at noncryo­
genic temperatures. 

An alternative approach to the measurement of elec­
tron-spin relaxation phenomena is through studies of the 
paramagnetic increment of nuclear-spin relaxation of ligand 
or solvent nuclei in the solution phase. Relatively low con­
centrations of paramagnetic ions can produce a potent relax­
ation mechanism for solvent nuclei due to the high magnetic 
moment of the electron. The nuclear relaxation rate depends 
on the spectral density function of the nuclear-electron mag­
netic interaction. When the electron-spin relaxation is rapid, 
this spectral density function is determined largely by elec­
tron-spin relaxation time, 1"s' Analysis of nUclear-spin relax­
ation of solvent nuclei in this way provides a probe of the 
electronic relaxation phenomena of the solute. 

Nuclear relaxation in paramagnetic solutions is de­
scribed in the well-known theory of Solomon 1 and Bloem­
bergen and Morgan2 (SBM). This theory assumes that the 
spin levels are split only due to Zeeman interactions, i.e., 
zero-field splittings (ZFS's) are ignored. This is appropriate 
when JYZFS ~JYZeeman (the Zeeman limit), as well as in 
systems where the ZFS is effectively motion ally averaged by 
rapid molecular reorientation. SBM theory is notably suc­
cessful in applications involving Mn(n), where the ZFS 
tends to be small even in sites of noncubic symmetry. For 
most other ions with S;;;'I, the ZFS is much larger and is 

often not motion ally averaged even in low molecular weight 
solution-phase complexes. 

To analyze this latter situation, a suitable modification 
of the SBM theory is needed. Below, we derive appropriate 
expressions for the intermolecular relaxation contribution of 
nuclear spins due to dissolved paramagnetic ions of general 
spin S under the assumption that the ZFS is large compared 
to Zeeman splittings. In this case S is quantized along mole­
cule-fixed, rather than space-fixed axes. In addition, molecu­
lar reorientation is assumed to be rapid enough to average 
the molecular axes on the time scale of nuclear relaxation, 
but not sufficiently rapid to motionally average the ZFS: in 
other words, for a system with axial symmetry we assume 
D -I <1", < T1,nuc andD>cus , whereD = 21TCD' is the ZFS 
in rad s - 1 and CUs is the electronic Larmor frequency. These 
conditions frequently describe the situation for dissolved 
transition-metal complexes of moderate molecular weight at 
all but very high magnetic field strengths. Intramolecular 
relaxation in paramagnetic solutions under conditions of 
large ZFS and very slow molecular reorientation, 1", > T1,nuc' 

has been studied previously for S = 1 (Ref. 3) and S = 3/2 
(Ref. 4) ions. 

The extended theory is used to analyze solvent proton 
relaxation in acetone solutions of the transition-metal com­
plex tris- (acetylacetonate) Mn (III). Mn (III) in this system 
is a high-spin, d 4 ion with spin S = 2. The complex, which is 
uncharged, has been well characterized structurally,5 and 
with respect to its static zero-field splitting.6 The molecular 
symmetry is illustrated in Fig. 1. Mn(III) (AcAc)3 is an oc­
tahedral tris-bidentate complex with nominal D3 symmetry, 
which is lowered to C2 by a Jahn-Teller distortion along a 
fourfold axis of the Mn (III) coordination sphere. The sym­
metry of the coordination sphere is dominated by the Jahn­
Teller distortion and is nearly tetragonal, with two long 
(2.11 A.) and four short (1.94 A.) Mn-O bonds. This struc­
ture results in a relatively large zero-field splitting of - 3,1 
cm - 1 ,

6 which is probably nearly isotropic in the perpendic-
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C2 

FIG. 1. Symmetry of the Mn(I1I) (AcAc), complex. The D, nominal sym­
metry of the complex is lowered to C2 by a tetragonal distortion of the 
Mn(I1I) coordination sphere. The axis ofthe Jahn-Teller distortion coin­
cides with a two-fold axis of the D, point group. 

ular plane. The measurements reported here characterize 
electronic and nuclear-spin relaxation in acetone solutions 
of Mn(III) (AcAc)3 as a function of temperature and mag­
netic field strength. 

A primary motivation for the present work, aside from 
the inherent physical interest, lies in its relevance to the 
NMR study of two important Mn(m)-containing redox­
active manganese enzymes. One ofthese is the tetramangailo 
metal center which functions as the active site of oxygen 
evolution in photosystem II of the photosynthetic mem­
brane. The other is the manganese-containing pseudocata­
lase of Lactobacillus Plantarum. These enzyme systems con­
tain polynuclear manganese centers, the redox chemistry of 
which is mirrored, in a specific and sensitive manner, in 
paramagnetic increments in the solvent IH relaxation rate 
(NMR-PRE).7.8 In a different context, interest in the 
NMR-PRE induced by Mn(m) has been stimulated by cur­
rent interest in the use of Mn(III) complexes as contrast 
agents in magnetic resonance imaging.9 While an adequate 
theoretical basis exists for analyzing NMR-PRE data from 
Mn (II) oxidation states, current theory is much less satisfac­
tory for Mn(III) and Mn(Iv). Similarly, the available ex­
perimental electron-spin relaxation data in model systems, 
while ample for Mn(II), is quite sparse for both Mn(III) and 
Mn(Iv). Two recent studies have examined the use of 
Mn(III) in this context, the present study provides a useful 
basis for evaluating data in the biological systems. 

II. EXPERIMENT 

Tris- (acetylacetonato) Mn (III) (Aldrich Chemical) 
was dissolved in benzene, filtered, and recrystallized by add­
ing petroleum ether to a concentration of 70% v Iv petrole­
um etherlbenzene. 10 Recrystallization required about 4 h at 
room temperature. Uniform dark brown crystals, 1-2 mm 
long, were precipitated and redissolved in acetone. The solu­
tions were transferred to 7 mm glass tubes, degassed by five 
freeze-thaw cycles, and sealed under vacuum. 

NMR spin-lattice relaxation times were measured at IH 
frequencies of 12.34, 20.63, 32.54, and 42.24 MHz using an 
apparatus described previously. I I Reported TI's, measured 
using the phase-shifted triplet sequence, II are the average of 
five determinations. Probe temperature was controlled with 
a stream of dry nitrogen and maintained within ± 1 ·C. 

III. THEORETICAL 

In this section we calculate the increment in the inter­
molecular spin-lattice relaxation rate (lITI.inter) =R IP ' of 
solvent nuclei due to dissolved paramagnetic ions of general 
spin S> 1. The ZFS is assumed to be large relative to the 
Zeeman energy, JY ZFS ~ JY z. In this situation, the electron 
spin is quantized along molecule-fixed, rather than along 
laboratory-fixed axes. 

Relaxation is assumed to result from magnetic dipole 
coupling between I and S. Intermolecular scalar coupling 
can also provide a relaxation pathway, in some cases quite 
efficient, but this contribution is neglected here. Whether 
scalar relaxation can be neglected in any practical situation 
must be considered carefully. For solutions of organic radi­
cals, scalar relaxation is frequently important, sometimes 
dominant over dipolar relaxation, as has been shown by elec­
tron-nuclear NOE experiments. 12 The main interest in the 
present study concerns solutions of transition-metal com­
plexes in which solvent is excluded from the first coordina­
tion sphere of the metal ion by the presence of strongly don­
ating ligands. In this case, only outer-sphere scalar coupling 
is possible, and we expect this to be small. A quantitative 
description of intermolecular scalar relaxation has been giv­
en by Hubbard. 13 

The electron-nuclear dipolar Hamiltonian can be writ­
ten as a scalar product of two first-rank spherical tensors, 14 

fl)Jf'. =!!... ~ 3- lI2 ( -l)l-qI I F I • 
dIp ~ ~ q -q 

q 

(1) 

The I! are the components of the first-rank spherical tensor 
formed by the nUclear-spin operators 

1~=+2-;::1121±, (2a) 

n =1.. (2b) 

and F 1 is a first-rank spherical tensor formed from the direct 
product of spherical tensors of the electron-spin and polar 
spatial variables, F 1 = {S 1 ® C 2p. 

The S! are defined as 

SI±I=+2- 112S±, (3a) 

S~ =Sz' (3b) 

the C ~ (e,,p) are Racah's normalized spherical harmonics 
of spherical rank 2 and order m: 

C~ (e,,p) = ( 4; y/2 Y2.m ((},,p) , (4) 

and a = ( - 30112
) YIYsfz. [Note that the superscripts in 

Eqs. (2) - ( 4 ) are ranks, not powers, of the spherical tensors. 
To avoid confusion, powers of operators will be written with 
parentheses, e.g., (S ~ )n.] Using this form for the dipolar 
Hamiltonian, the nuclear relaxation rate can be written3 

(5) 
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FI± I (t)F~ 1(0) = H 6- IS I± I (1)S ~ I (O)C~ (t)C~ (0) + 2 -IS6 (t)S 6 (0)C 2± I (t)C~ 1(0) 

+ S ~ I (t)S ~ I (0)C 2± 2 (t)C~2 (0)]. (6) 
These expressions are all written in the laboratory coordinate frame, with Ho along z. They can be used directly, after 

taking appropriate ensemble averages, to calculate TI in the Zeeman limit. In the ZFS limit, S is quantized along molecule­
fixed axes, and it is necessary to transform from the laboratory frame to the molecular-axis system which diagonalizes S. 
Writing this transformation in terms of the Wigner rotation matrices gives S! = L S !,!Zl' !'q (a/3r), where S! and S! are 

q' 

tensor components along laboratory and molecular axes, respectively. This gives 

[
AI h I I I C

2
+ 2(t) C

2 2(0)] 
X + L L S q' (t)S q" (0)!Zl' q' _ I (t)!Zl' q" + 1(0) -. 

if ~ ~ ~ 
(7) 

(The Euler angles are omitted from the Wigner rotational matrix elements for brevity.) In calculating the required time 
correlation function (FI+ I (t)FI_ I (0», the averages over molecular orientations (!Zl'I, ,,(t)!Zl'I, ,,(0», over spin variables 

A A q.ql q2q2 

(S !, (t) S !. {O) ), and over diffusional motions (C; ( t) C 2_ q (0» are needed. When the Zeeman splitting is small, the 
variablesofS!, (t), !Zl'~q' (a/3r) , and C; (O,r/J) are uncorrelated and the averages can be taken separately. Using the orthogon­
ality relations of the Wigner rotation matrices and assuming an exponential form for the reorientational time correlation 
function gives 

( !Zl'I, ,,(t)!Zl'I, ,,(0» = (!Zl'I, ,,(0)!Zl'1, ,,(0»e-tITR=3-le-tITR{) , ,{)" ". 
q,q, q2q2 q,q, q2q2 q,- - q2 q, -- q2 (8) 

Substituting (8) in (7) contracts the double summation, giving 

3 e -tITR[ C02(t) C 0
2(0) C 2+ 1(t) C 2_ 1(0) 

( F (t)F 1(0» = (-1) --- 6- 1 ---- -2- 1 
+1 - 5 3 ~ r:. ~ r:. + o 0 

C
2
_ 2 (t) C

2
+ 2 (0) ] 

~ ~ 

X [(SI+ I (1)SI_1 (0» - (S6(1)S6(0» + (SI_I (1)SI+ .(0»]. (9) 

To compute the time correlation functions of the spin, (S! (1)S 1_ q (0», we write S! (t) in the Heisenberg representa­
tion, S! (t) = e'W'stS! (O)e - Wst. The electron-spin Hamiltonian (Hs = IiKs ) is a sum of Zeeman and ZFS interactions, 

Ks =KZFS +Kz =D«SZ)2- (1I3)S(S+ 1)+E«SX)2- (Sy)2)+g/3oHofl-
ISz ' (10) 

To simplify the calculation, the ZFS tensor is assumed to be diagonal and uniaxial in the molecular system (D # 0, E = 0), and 
the Zeeman energy is (for the moment) neglected, giving 

Ks~D (Sz)2 _ S(S: 1») = (~)1/2DS~ ={US~. 

Using the commutation relations 

[S I± I ,S~] = ( + 2) - leto (2S 6 + 1)S I± I' 

S I± I (t) can be evaluated directly in the Heisenberg representation to give 

Sh I (t) _ ;lUS6tSh I - ;lUS 6t _ ± ;wc,;o(2S!,Cf l)tl2
S
h I 

±I -e ±le -e ±I' 

The time correlation functions (S 1+ q (1)S ~ q (0» are then readily computed, 

(S6(1)S 6(0» =jS(S+ l)etirs, 

(S I± I (t)S ~ 1(0» = ( - 2 - 1)(2S + 1) -I L Ictm 1
2e± iD(2m+ I)e- tITs.m • 

(11) 

(12) 

(13 ) 

(14) 

e tm is the coefficient of the raising operator S + IS,m) = e tm IS,m + 1) and the sum is over transitions of the S spin system. 
For an integer spin, the transition frequencies of S can be written simply in terms of the ZFS parameter D, {Um = (2m + 1 )D. 
For a half-integer spin, the situation is somewhat more complex since in this case the central transition, Ams 
= ( + 112~ - 112), is not affected by the ZFS and occurs at the Zeeman frequency in lowest order. This situation is 

considered further below. 
1" S,m is the spin relaxation time of the transition at {U m' In general, an integer spin S possesses S distinct relaxation times. 

For large ZFS ions these usually cannot be measured individually, and we will employ a single averaged parameter 1"s. 
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McLachlan l5 has derived a simple expression for an averaged relaxation time of this type. 
One further time correlation function is needed to compute (lITI.inter), namely that describing the relative motions of the 

nuclear and electronic spins due to molecular diffusion: 

(
411")G()_ C~(t) C

2
_ q (0) -ii C~(t) C

2
_ q (0)P(_I_) ( )-1'=-1'= 

- t t - -,-3-- - --_3- '0 ',t g '0 uro ur. 
5 ~ 1'1'" r ~ 

(15) 

(The factor 411"15 arises from the definition of the C ~ [Eq. (4)] and is written explicitly in Eq. (15) to maintain consistency 
with Abragam'sl6 notation.) Gt (t) has been derived previously in both open and closed form based on solutions of the 
classical diffusion equation13,16,17 or from random-flight models. 18 Hwang and Freedl9 have derived a convenient analytic 
expression for Gt (t) using the Smoluchowski equation with boundary conditions that account for effects of excluded volume 
of the diffusing pair. In the subsequent analysis we use their spectral density function, 

J(OJ) = 2 Re fO G(t)/w/t dt, (16) 

modified to account for effects of spin relaxation20 and for molecular reorientation of the solute: 

JF(OJ) =---XRe . 
8 N [ 1 +!(iOJ1'D + 1'DI1'C) 112 1 

27 dDt 1 + (iOJ1'D + 1'DI1'c) 112 + ~(iOJ1'D + 1'D!1'c) + ~(iOJ1'D + 1'D!1'c )3/2 
(17) 

In this expression, Dt is a sum of self-diffusion coefficients of solvent and solute, Dr = DI + D2, N is the number density of 
paramagnetic ions in solution, and d is the distance of closest approach of I and S. 1'D and 1'c are correlation times, defined as 

1'D = d 2lDt, 

1'c- 1 = 1',- 1+ 1'; I. 

(18a) 

( 18b) 

Writing (fl;) = gZ(PS(S + 1) for the squared magnetic moment of S, we have from Eq. (5), 

_1_ = J.Q.(r;(fl;) )(411")[3 -IJ(OJ/)] 
Tl,inter 3 5 

The limiting behavior of Eq. (19) can be evaluated in 
the extreme narrowing region, where J(OJ) -J(O), by using 
the relation 

m 

This gives 

1 811" ",2 ( 2) --= - fI fle J(O), 
Tl,inter 3 

which equals Abragam's result in the corresponding limit 
(Ref. 16, pp. 300-304). 

We particularize Eq. (19) to the situation of a high­
spin, d 4 ion (S = 2) in the ZFS limit, which describes the 
specific chemical situation of interest, Mn(III) (AcAch In 
the ZFS limit, there are four electronic spin transitions, two 
withOJ I = D, Ic+ 12 = 6, and twowithOJ2 = 3D, Ic+ 12 = 4. 
Writing J(OJ) = JF(OJ) and taking account that OJ/~OJm' 
Eq. (19) can be written as 

Rl,inter = (811"19) r; (fl; ){JF(OJ/) 

+ 10- 1 [12JF (D) + 8JF (3D)]}. (20) 

For Mn (III), 1 (fl; ) 1112 to a good approximation equals the 
spin-only value of the magnetic moment, which is 4.90 B.M. 

Effects of Zeeman couplings. To introduce effects of 
small Zeeman couplings into the analysis, the relevant spin 
Hamiltonian (11) is 

(19) 

7t's = 7t'ZFS + 7t' z 

= D«SZ)2 - jS(S + 1» + g(3oHoli-
ISz 

= (~r/2DS~ +g(3oHoli-
1 2:S!..@!o, 

q 

(21) 

with 7t' z ~7t' ZFS' 7t' z' and thus also the time correlation 
functions (S! (t)S 1_ q (0», depend explicitly on molecular 
orientation through ..@!O (a(3r) , which complicates the 
averaging process. However, the form ofEqs. ( 13) and ( 14) 
is fairly simple to lowest order in the Zeeman perturbation as 
long as molecular reorientation is slow compared to spin 
relaxation of S, l' r'~> 1's' In this situation the motion of the 
electron spin can be treated adiabatically. 

A general expansion of the time correlation functions 
(S! (t)S 1_ q (0» can be obtained3 from an iterative solution 
of the equation of motion for S! (t), 

dS! (t) . A I A --'--- = - I [S q,7t's] , 
dt 

(22) 

using a suitable interaction representation. For this purpose 
we set ~s = ~o + V, where ~o is the diagonal part of 
~s, 

~0=D(~)1I2S~ +g(3oHoli-ISb..@~ (23) 

and 

V = gf3oHoli-
I (S 1+ I..@~ 10 + S I_I..@~ 10)' (24) 
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To lowest order in gfJoHr/ft.D, 

(S 1+ 1 (t)S 1_ 1 ) = (ei;,v~,t§l+ 1 e - i;,v"tS 1_ 1 ) 

= L (miS 1+ 1 S 1_ 1 Im)/"'mte - tiTS.m 
m 

X "I + 12 ± icoemt - tlrs.m 
.::.. CS,m e e , 
m 

(25) 

where the O)m are transition frequencies of JYo. For a general 
spin S, Eqs, (13), (14), and (19) remain valid in the pres­
ence of small Zeeman splittings, but the electronic transition 
frequencies are modified by inclusion of the z component of 
the Zeeman energy: 

(26) 

Lindner3 has solved Eq. (22) to second order in gfJoHr/ft.D 
for a spin S = 1, using an iterative approach. Her result to 
first order is equivalent to Eq. (26). 

With the inclusion of Zeeman interactions, the O)m de­
pend on iiJ 60 = cos (fJ) , where fJ is the polar angle between 
the laboratory and molecular frames. The average over mo­
lecular orientations is straightforward when 1', is long rela­
tive to 1's, in which case the time correlation function 
(S 1+ 1 (t)S 1_ 1(0» can be calculated with respect to fixed 
molecular axes. For integer spin, the Zeeman term produces 
a spread of electronic transition frequencies O)m about the 
central value determined by the ZFS, O)m = D(2m + 1). 
The transition at 0) I is unaffected. We have not attempted to 
carry out this average explicitly in Eq. (16), since the exact 
form of J( 0) in this case is complicated and is likely to be of 
little practical utility. Qualitatively, the first-order effects of 
Zeeman splittings on Eq. (19) are simple; namely, the elec­
tronic transitions at O)m are broadened, while the transition 
at 0)1 is unaffected. 

IV. RESULTS AND DISCUSSION 

A. Relaxation in the ZFS and Zeeman limits 

Figure 2 illustrates certain quantitative aspects of the 
spectral density function J(O) ofEq. (17) and some charac­
teristic differences between the ZFS and Zeeman limits. 
J(O) is specified by two parameters, one describing transla­
tional diffusion 1'D' the other, 1'0 describing fluctuations in 
the local dipolar field of S. In the Zeeman limit, the dipolar 
fluctuation results solely from spin relaxation, 1'e = 1'S' In 
the ZFS limit, S is quantized along molecule-fixed axes, and 
1'e contains contributions from both spin relaxation and mo­
lecular reorientation [Eq. (I8b)]. Figure 2 shows plots of 
the reduced spectral density function,j(O) =.J(O)/ J(O), vs 
0)1' D' Individual curves correspond to specific values of the 
ratio 1'J1'D' The purely translational part of J(O), corre­
sponding to 1'e/1'D > 1, consists of a very broad dispersion, 
the width of which reflects the spectrum of dipolar couplings 
due to translational motions. For translational diffusion, the 
effective dipolar correlation time of a pair of spins increases 
as the square of their separation,21 thus producing a broad 

1.0 1000 

100 

10 

S- 0.5 
...... 

tc ItD=l -
00, 

0.1 

0.0 
.001 .01 .1 10 100 

Cll't D 

FIG. 2. Plots of the reduced spectral density function,j(w) -=Jf'(w)IJr(O), 

VSWTD whereJF(aI) is given by Eq. (17). Theoretical curves corresponding 

to specific TjTD ratios are shown. Arrows show the nuclear (all) and elec­
tronic transition frequencies at 0.48 T, based on a parameters appropriate to 
Mn(III)(AcAc)" als is the electronic Larmor frequency at 0.48 T, and 
ai, = D and W 2 = 3D are zero-field splittings for an S = 2 ion with an axial 
ZFS of ID' I = 3.1 cm- , . Positions of the transition frequencies are based on 
a valueofTD = 33 ps (see text). 

dispersion in the spectral density function. As 1'e becomes 
comparable to or less than 1'D' the dispersion sharpens and 
its midpoint moves to higher frequency. In the limit 1'J1'D 

< I,JF(O) = (213 )N1'Jd 3 (Ref. 18) and is independent of 
translational motion. 

The nuclear relaxation rate depends on the spectral den­
sity function at the nuclear and electronic transitions, J(O)I) 
and J(O)m ). The positions of these transitions are indicated 
in Fig. 2 for the system of specific experimental interest here, 
namely Mn (III) (AcAc) 3/acetone studied at a I H frequency 
of20.5 MHz (0.48 T). 1'D in this system is taken to be 33 ps, 
corresponding to a temperature of 25 DC (see below). 

A principal difference between the ZFS and Zeeman 
limits is that 1'e is usually much shorter in the former (ZFS 
limit) than in the latter, thereby reducing J( 0) ) and R Ip rela­
tive to the value given by SBM theory. In part, this results 
from the effects of molecular reorientation, which contrib­
utes to 1'e only in the ZFS limit as described above. In addi­
tion, electron-spin relaxation is typically very rapid for large 
ZFS ions, resulting in a further shortening of 1'e. For ions 
with 8';.1, 1's I generally results from thermal modulation of 
the ZFS splittings and scales with the square of the ZFS 
tensor, D2 =X2 + y2 + Z2 =(2I3)D 2 + 2E2y Thus 1's 
is expected to be very short for large ZFS ions, and the l' e /1' D 

ratio is expected to be of order unity or less. Under these 
conditions (1'J1'D<1), SBM theory severely overestimates 
J(O) (see Fig. 2). 

Further error results from misassignment of the elec­
tronic transition frequencies, i.e., the use of J(O)s) as op­
posed to J(O)m)' When the 1'J1'D ratio is large, this may 
produce only modest effects, at least at moderate to high 
magnetic field strengths, because the electronic transitions 
under these conditions make only a minor contribution to 
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lITI ,inter' At low 7J7D ratios (which are characteristic of 
large ZFS ions), the error becomes much more serious be­
cause of the increasing relative importance of the J(ws ) 
term. Figure 2 illustrates these points in the specific case of 
Mn(III)(AcAch For this system, SBM theory overesti­
mates J(ws ) severalfold, resulting in an underestimate of 7 s 
by a factor of 3-4 (see below). In the large ZFS limit, the 
results are not very sensitive to the specific value of the ZFS 
parameter D, since the contribution of J(wm ) to lITl,inter is 
relatively small. 

B. Spin relaxation in the Mn(m)(AcAch/acetone system 

Spin-lattice relaxation times ofthe methyl resonance of 
the acetone solvent were measured in a 5.1 mM Mn(III)/ 
(AcAch solution. Figure 3 shows paramagnetic enhance­
ments of the solvent relaxation rate, RIP = RI,obs - RI,solv' 

plotted as a function of temperature at magnetic field 
strengths of 20.63 and 12.34 MHz. Data were also obtained 
at field strengths of 32.54 and 42.24 MHz. These data were 
used with Eqs. (17)-( 19) to measure electron-spin relaxa­
tion times ofMn(III). 

Calculation of the spectral density function [Eq. (17)] 
required dynamical information appropriate to 
Mn(AcAch For the self-diffusion coefficient DI for the 
acetone solvent at 25°C, a value based on IH spin-echo stud­
ies was used. 22 The temperature dependence of DI from 0-
70°C has been measured.22 Rather than extrapolate these 
values down to 217 K, we assumed the temperature depend­
ence to be that of T /7], as given by the Stokes-Einstein equa­
tion, and used literature values23 for 7] ( T). The self-diffu­
sion coefficient D2 of the solute was calculated from the 
Stokes-Einstein equation, Dt = kT /61T7]a, using a radius 
a = 5 A estimated from molecular models. This gave a value 
of D2 = 1.6 X 10 - 9 m2 s - I at 25°C, which is reasonable in 
light of the measured value for the acetone solvent 

A. ... 
a: 

0.7 r-----------------, 

0.6 

0.5 

12.34 MHz 

OA~~~~--~~~_r~~,_~~~~~ 
200 220 240 280 280 300 320 

T(K) 

FIG. 3. RIP for the acetone methyl protons in a 5.1 mM solution of 
Mn(I1I) (AcAch in acetone. Data are shown as a function of temperature 
at proton frequencies of 12.34 MHz (I!l) and 20.63 MHz (e). 

DI = 4.5 X 10- 9 m2 s -I, at the same temperature. 
Also required is a distance of closest approach, d. An 

examination of molecular models suggested that appropriate 
values lie in the range 4.0-4.5 A. This parameter enters rath­
er sensitively in the theory (as d- 3 in the limit where 7e/7D 

~ 1) and is probably the dominant source of uncertainty in 
the analysis. A value of 4.3 A was used for most of the calcu­
lations. The effect of varying d was explored, with results 
that are described below. 

Figure 4 shows values of the correlation time 7e calcu­
lated from Eqs. (17 )-( 19) using the data in Fig. 3. Values 
were nearly temperature independent, varying from 8 to 10 
ps over the observed temperature range (215-303 K). To 
extract 7; I from 7; I, the reorientational correlation time 7, 
was needed. This was estimated from Debye's expression for 
the reorientational diffusion time of a second-rank tensor, 
7~2) = (41Ta37]/3kT). The temperature dependences of 7 e, 

7 S, 7" and 7 D are shown in Fig. 4. Clearly, 7 s is substantially 
shorter than both 7, and 7D and effectively controls the be­
havior of 7e as well as of J(w). 

For the sake of comparison, parallel calculations of rf, 
the electronic relaxation time in the Zeeman limit, were un­
dertaken using SBM theory with the spectral density func­
tion ofEq. (17). rf is consistently shorter, by a factor of 3 to 
4, than the corresponding result in the ZFS limit. 

To better estimate the accuracy of calculated 7s values, 
we have plotted in Fig. 5 grids of theoretical curves of RiP vs 
temperature, each computed at a fixed value of 7 s . These 
curves were calculated using values of 7, and 7D computed 
as described above. Experimental RiP values are superim­
posed on this grid as open circles. Examination of the figure 
shows that 7 s is determined most sensitively at low tempera­
ture (-215 K). In the low-temperature regime, Eq. (17) is 
determined largely by 7 sand d, and is nearly independent of 

10·' r------------------., 

'tD 

.. , " • • e 'i II ::::::;~ 

T(K) 

FIG. 4. Calculated correlation times for the Mn (Ill) (AcAc h/acetone sys­
tem. (+), 'Tc calculated for the data in Fig. 3 using Eqs. (17), (18), and 
(20) of the text. (I!l), 'Ts ' calculated from 'Tc and Eq. (18b). (.) 'TD , calcu­
lated from the Stokes-Einstein equation; and <+) 'T" calculated from the 
Debyeequationasdescribed in the text. Dashed lines are 'Tc (0) and'Ts (.) 
calculated from SBM theory in the Zeeman limit. 
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2r-----~~~------------------~ 

Go -a:: 

o 

T(K) 

FIG. 5. Determination of 1"s from the proton relaxation increment, RIP' 

Circles are measured Rip values at 0.48 T eH frequency of 20.63 MHz). 
Theoretical curves, in order from bottom to top, correspond to 1"s values in 
ps of 1, 1.78, 3, 5.63, 10, 17.8, 30, 56.3, 100, 178,300, 563, 1000, and 1780. 
Calculated curves are based on values of 1" D and 1", as described in the text. 

parameters describing molecular diffusion and reorientation 
(see above). 

The greatest uncertainty in J(OJ) at low temperature 
arises from the parameter d. The effect of varying d between 
4.0 and 4.5 A on the calculated T5 is shown in Fig. 6. The 
overall uncertainty in T5 is estimated to be ± 25%, increas­
ing somewhat with rising temperature. 

Figure 7 shows the magnetic field dependence of T 5 , 

measured at temperatures of 215 and 298 K. T 5 is essentially 
field independent between 0.34 and 1.09 T. 

v. CONCLUSIONS 

Measured values of T 5 lie in the range 8-10 ps, with little 
dependence on temperature over the liquid range of acetone 
and on magnetic field strength up to 1.1 T. 

1.0 

0.8 

0.8 

!" 
a: 

0.4 
._--­

-----------------
0.2 

0.0 ~~ ........ -~__r--,~_r_-...-T_....,....__.-...-_l 
200 220 240 260 280 300 320 

T(K) 

FIG. 6. Effect of variations of d, the distance of closest approach, on calcu­
lated 1"s values. 0, experimental data; solid curves, d = 4.3 A.; short dashes, 
d = 4.0 A.; long dashes, d = 4.5 A.. For each value of d, two curves are plot­
ted, the upper for 1"s = 10 ps, the lower for 1's = 5.63 ps. 

~11~---------------------------~ 

2.11 

1.11 

t I I 1 

~+--...--~.-...-~-...-~-...--~----~--~ 
0.0 0.2 0.4 0.8 0.8 1.0 1.2 

Ho (T) 

FIG. 7. Magnetic field dependence of 1"s at two temperatures, 215 K (iii) 

and 298 K (.). Also shown (dashed curve) is the field dependence of 1's 
predicted in the Zeeman limit [Eq. (27)), where the Wi are electronic Zee­

man splittings at Ho and 1'v = 5 ps. 

The accuracy with which T 5 can be measured for large 
ZFS ions depends upon the magnitudes of T, and T D , as 
shown in Figs. 4 and 5. The sensitivity of the NMR-PRE 
experiment to T 5 can be increased by selecting experimental 
conditions which lengthen these two parameters. The 
Stokes-Einstein and Debye equations suggest three vari­
ables of potential utility in this regard, namely, temperature, 
molar volume of the solute, and solution viscosity. The bene­
ficial effect of low temperature on the determination of T 5 is 
evident in Fig. 5. RIP is more sensitive to variations in T5 at 
213 K than at 298 K by a factor of about 3, primarily because 
of the temperature dependence of TD and T" which vary as 
77IT. The results are not very sensitive to uncertainty in the 
ZFS parameter D, for which a value measured in the solid 
state was used. This is because relaxation contributions at 
the electronic transitions are small relative to those at OJ1 

(Fig. 2). 
From Fig. 4, the temperature dependence of computed 

T 5 values is small, with T 5 increasing slightly, by about 15 %, 
between 213 and 303 K. Al'tshuler and Valiev,24 in their 
theory of paramagnetic salt solutions, have discussed the 
temperature dependence of T5 , which they give as 

_ I QT"" Tv 
T5 ~ ~ • 

i 1 + OJ;~ 
(27) 

In this theory, relaxation of S results from vibrational modu­

lation of the zero-field levels. QT is the mean-squared vibra­
tional amplitude of modes which modulate the ZFS, Tv is a 
mean damping time for those modes, and the sum is over 
t:.m5 = ± 1, ± 2 transitions. For damping times the order 
of a few ps and with OJ; dominated by zero-field splittings, 
Eq. (27) reduces to 

Al'tshuler and Valiev take QT ~coth(muol2kn for the 
mean-squared amplitude of a quantum-mechanical oscilla­
tor, with OJo a mean frequency of the relevant vibrational 
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modes, and they assume 7 v a: T - 112 for the temperature de­
pendence of the damping time. This gives a temperature de­
pendence of 7 S 1 a: T 112 coth ( wo/2k T). Taking Wo to be of 
the order of 200--400 cm - 1 , the predicted temperature de­
pendence of 7 s in this model is very small, with 7 s shorten­
ing slightly with increasing temperature (Ea:::::2 kJ). The 
observed temperature dependence in Fig. 4 is likewise very 
small, as predicted, although in the opposite direction. This 
disagreement is minor in view of the small magnitude of the 
temperature dependence, and it is not surprising considering 
uncertainties in the experimental measurement and crude­
ness in the theoretical model. 

Figure 7 shows the measured 7 s values to be essentially 
magnetic field independent at field strengths up to 1.1 T. 
This is in marked contrast to the behavior often observed for 
the + II oxidation state of manganese, for which 7 s is nor­
mally found to be strongly field dependent over the same 
range.25

-
27 This difference clearly reflects characteristic dif­

ferences of the Zeeman and ZFS limits. In the Zeeman limit, 
according to Eq. (27), 7s is field dependent when 2ws 7 v ;;;' 1. 
Quantitatively, the dashed curve in Fig. 7 illustrates the pre­
dicted field variation of 7s that arises when 7 v = 5 ps and 
when the Wi are Zeeman splittings. In contrast, in the ZFS 
limit the Wi' as well as 7 s , remain field independent at field 
strengths Ho~DfI/g/3o, which includes the range of field 
variation studied here. The observed field independence of 
7 s provides experimental confirmation of the applicability of 
the ZFS limit 

ACKNOWLEDGMENTS 

This work was supported by the U. S. Department of 
Agriculture in the form of research grants (No. 87 CRCR-l-
2344 and No. C/89-CRCR-2344). R.R.S. acknowledges 
stimulating discussions with Professor Lawrence Lohr. 

II. Solomon, Phys. Rev. 99, 559 (1955). 
2N. Bloembergen and L. O. Morgan, J. Chern. Phys. 34, 842 (1961). 
3U. Lindner, Ann. Phys. (Leipzig) 16,319 (1965). 
41. Bertini, C. Luchinat, M. Mancini, andG. Spina,J. Magn. Reson. 59, 213 
(1984). 

'B. R. Stults, R. S. Marianelli, and V. W. Day, Inorg, Chern. 18, 1853 
(1979). 

6A. K. Greason, D. M. Doddrell, and P. Healy, Inorg. Chern. 17, 1216 
(1978). 

7A. N. Srinivasan and R. R. Sharp, Biochim. Biophys. Acta 850, 211 
( 1986). 

"A. N. Srinivasan and R. R. Sharp, Biochim. Biophys. Acta 851, 369 
(1986). 

9S. H. Koenig, R. D. Brown III, and M. Spiller, Magn. Reson. Med. 4, 252 
(1987). 

10 R. G. Charles, in Inorganic Syntheses, edited by J. Kleinberg (McGraw­
Hill, New York, 1963), Vol. 7, Chap. VIIB, p. 183. 

11 A. E. Haddy, W. D. Frasch, and R. R. Sharp, Biochemistry 24, 7926 
(1985). 

12R. E. Richards and J. w. White, Proc. R. Soc. London, Ser. A 283, 459 
(1965). 

13p. S. Hubbard, Proc. R. Soc. London, Ser. A 291,537 (1966). 
14B. L. Silver, Irreducible Tensor Methods (Academic, New York, 1976). 
15 A. D. McLachlan, Mol. Phys. 7, 271 (1964). 
16 A. Abragam, The Principles of Nuclear Magnetism (Oxford University, 

Oxford, 1961), Chap. VIII. 
17 H. Pfeifer, Ann. Phys. (Leipzig) 8, I (1961). 
ISH. C. Torrey, Phys. Rev. 92, 962 (1953). 
19 L.-P. Hwang and J. H. Freed, J. Chern. Phys. 63,4017 (1975). 
20J. H. Freed, J. Chern. Phys. 68, 4034 (1978). 
21 H. L. Friedman, M. Holz, and H. G. Hertz, J. Chern. Phys. 70, 3369 

(1979). 
22 A. I. Toryanik and V. N. Taranenko, Zh. Strukt. Khim. (English transla­

tion) 28, 94 (1987). 
23 Handbook of Chemistry and Physics, 53rd ed., edited by R. C. Weast 

(Chemical Rubber, Cleveland, Ohio, 1972), p. F37. 
24S. A. AI'tshuler and K. A. Valiev, Sov. Phys. JETP 35, 661 (1959). 
25 S. Koenig, R. D. Brown, and J. Studebaker, Cold Spring Harbor Symp. 

Quant. BioI. 36, 551 (1971). 
26S. Koenig, R. D. Brown, and C. F. Brewer, Proc. Natl. Acad. Sci. U.S.A. 

70,475 (1973). 
27 E. Haddy and R. R. Sharp, Biochemistry 28, 3656 (1989); 28, 3664 

(1989). 

J. Chem. Phys., Vol. 92, No. 10, 15 May 1990 


