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A gtationary flame is stabilized in a two-dimensional channel in such a way that it closely cor-
responds to the case of a flame propagating in a channel. The entire flow field of unburned and burned
gases is mapped by taking stroboscopic photographs of small particles suspended in the combustible
gases, The asymptotic flow field of the burned gases is analyzed in terms of flow conditions at the
flame. The possibility of obtaining an analytic flow field on the basis of constant flame speed is
examined. Tt appears that no solution exists unless the channel walls in the region of burned gases
are displaced inward. This investigation, together with the previous work on the flow field of a Bunsen
flame, leads to some general remarks about the structure and stability of laminar flames. The various
predictions are in agreement with experiments. In particular, the convex flames are possible and
concave ones impossible within the framework of the theory based on constant flame speed.

INTRODUCTION

T HAS long been recognized that the flow field
of a laminar flame affects its shape and stability.
Quite early Michelson' calculated the flame shape
of a Bunsen flame by assuming that fully developed
laminar flow in a pipe remains unchanged as it
approaches the flame. His calculations were based
entirely on the kinematics of the flow and no attempt
was made to show that the flow of unburned and
burned gases associated with the calculated flame
shape is dynamically possible. Until recently the
theoretical and experimental work has been limited
to flame shape and in some cases to kinematics of
the flow at the flame. Although the importance of
dynamics of the flow has been recognized, because
of the complexity of the problem not much work
has been done along this line.

In the present paper the emphasis is on the
dynamics rather than the kinematics of the flow.
In order to make the problem tractable, it is
pecessary to assume that (i) the zone of combustion
can be replaced by a surface of discontinuity across
which the density drops and correspondingly the
normal velocity increases and the tangential velocity
is continuous; (ii) the flow is inviscid on either side
of the flame; (iii) the velocity of the unburned gases
normal and relative to the flame is constant, i.e.,
the flame speed is constant; (iv) the flow on both
sides of the flame is incompressible and the density
bas a constant value of p, in the unburned and p.
in the burned gases. The inclusion of flame quench-
ing and viscous effects at the walls or the flame
holder raises serious problems and it is hoped that
useful information can be obtained within this
framework.

1W. Michelson, Ann. Physik. Chem. (Widemann) 37
(1889).

The simplest problem is the flow associated with
a flame propagating with a uniform velocity in a
two-dimensional channel. The unsteady problem
can be reduced to the steady case by superimposing
a uniform velocity in the opposite direction. There
is no satisfactory explanation for the fact that the
observed flame is always convexr toward the un-
burned gases. The curved flame shape is not entirely
due to viscous effects at the walls; if this were true
a shoek wave would also be curved. A straight flame
is not realized in a channel because it is unstable.
In fact, Landau® has shown that a density dis-
continuity moving with a uniform velocity is
unstable if the density across it decreases as in the
case of a flame and is stable if the density across it
increases as in the case of a shock wave.

The next, in order of increasing difficulty, is the
flow field of a Bunsen flame for which the free
streamlines of the burned gases as well as the flame
shape are unknown boundaries which have to be
determined along with the flow field. This case has
been studied experimentally and theoretically.’
Although a complete solution was not possible,
enough information was obtained to understand the
dynamies of the flow field of a Bunsen flame. Some
of the results are generally applicable and are
therefore summarized here. The vorticity generated
by a two-dimensional flame can be determined from
the flow conditions at the flame, thus
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where o is the vorticity, u,, the flame speed, u, the

2 L., Landau, Acta Physicochim. U. R. 8. 8. 19, 77 (1944).
¢ Uberoi, Kuethe, and Menkes, Phys. Fluids 1, 150 (1958).
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tangential velocity at the flame, s the distance
along the flame, and the subscripts 1 and 2 denote
the conditions in the unburned and burned gases,
respectively. The asymptotic velocity at ¢ = +
of a streamline in the burned gases is given terms
of its initial velocity at £ = — o in the unburned
gases and its condition at the flame front,

%P2u+m2 = (p—w - p+«) + %Plu—m2
- %Pluxnz(Pl/Pz) - %plut2(]- - Pz/Pl)‘ 2

In Egs. (1) and (2) we have assumed inviscid flow
but the flame speed and the density jump can vary
along the flame. By considering the curvatures of
the flame, the streamlines going through the flame,
and the asymptotic velocities, it was possible to
show that no solution exists for a flame concave
toward the unburned gases (e.g., Bunsen flame tip)
within the framework of the theory based on constant
flame speed.

FLOW FIELD OF A FLAME PROPAGATING
IN A CHANNEL

We now discuss some details of the flow field of a
flame propagating in a channel when reduced to the
steady case by superimposing uniform flow in the
direction opposite that of propagation (see Fig. 1).
The flow of the unburned gases is uniform at
x = — @ and the flow of the burned gas at xt =+ =
is parallel but nonuniform due to the vorticity
generated by the flame. At the flame the normal
velocity has a constant value u,, in the unburned
and u,,p:/p; in the burned gases and the flow is
bent toward the normal through an angle

2
g = tan™" {-u—‘ <l - &)/<1 + Jk"%)} 3
Uy, 141 P1ly,

The central and the wall streamlines must not
suffer any deflection going through the flame.
Therefore the flame is either normal (u, = 0) or
tangent (u, = =), to the flow at these points.
Equation (2) shows that as long as there is a finite
density jump across the flame, neither the normal
nor the tangential velocity can become infinite
since this would make (p.. P+w) Infinite.
Consequently the flame cannot be tangent to the
wall. If the flame is normal to the wall then it has
concave curvature which is not possible within the
framework of the theory based on constant flame
speed. The net result is that no solution exists for a
flame of constant flame speed propagating in a
channel. However, under the same assumption as

CONCAVE
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Fic. 1. Flow field of a flame in a channel.

that used above, Ball® has obtained numerically
a solution for the case at hand. In fact he finds that,
within the accuracy of his numerical work, the
flame tends to be tangent to the wall and corre-
spondingly the velocity is becoming infinite. He
failed to notice that the flame cannot become tangent
to the wall. His numerical solution violates the
boundary conditions at the wall and he effectively
assumes that the flame meets the wall at a small
angle and therefore the wall streamline, after going
through the flame, becomes detached from the wall.

Fic. 2. The channel
wall shape effectively
assumed by Ball in
his numerical calcula-
tion of the flow field.

*G. Ball, “Two-dimensional flame in a laminar flow
?ilggln)el,’ " Harvard University Combustion Tunnel Lab. Rept.
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F1a. 3. Sketch of the burner assembly.

Fra. 4. Photographs of the
flow field.

The fact that he got parallel flow far downstream
means that he assumed effectively that the walls in
the burned gases are displaced inward from their
original position (see Fig. 2). The solution is no
longer unique and depends on the inward displace-
ment of the wall.

Next, we want to examine in detail the measured
flow field to find (i) how close the actual flow comes
to the ideal conditions considered above; (ii) the
effect of the boundary layer and quenching at the
walls; and (ili) a consistent set of assumptions
which can be used as a basis for theoretical in-
vestigation and the correlation of experimental data.

OBSERVED FLOW FIELD OF A
FLAME IN A CHANNEL

A two-dimensional lean acetylene-air flame was
stabilized on 0.003-in. diameter chromium-nichrome
alloy wire in a 1 X 3 in. rectangular quartz channel
(see Fig. 3). The flow upstream of the flame was
made uniform by using a number of very fine
screens. Five- to ten-u titanium oxide particles
were introduced in the combustible gases through
a tube. The wake of the tube is suppressed by
screens placed immediately downstream of it so
that all the particles are confined to a narrow sheet.
The particle tracks were photographed with an
f2.3 7-in. focal length lens using flash bulb illumi-
nation and a rotating disk with uniformly spaced
openings as the camera shutter. The photograph
used to measure the detailed flow field and an
enlargement showing in greater details the flow
near the flame are shown in Fig. 4. The length of
the particle track is proportional to the velocity
at this point. The effect of particle inertia is quite
small and over-all experimental error is + 39.
There is a definite distinetion between a propagating
flame and that stabilized in a channel. The former
has a rounded shape whereas the latter appears
more like a vee. In the present case, the flame
holder was made so small that it introduced
minimum disturbance and the flame has the rounded
appearance and corresponds very closely to a propa-
gating flame. A reduction of the flame holder
diameter had no effect on the flame shape but the
flame flashed back occasionally. Perfect two-
dimensional flame with no variation in flame shape
along its depth was not obtained immediately on
all attempts, but after a few trials and some care
perfect flame could be obtained.

The location of the surface of discontinuity which
in the analysis replaces the actual zone of com-
bustion is determined in the following way. Instead
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F16. 5. Procedure for determining the position of the effective
flame front.

of following the actual particle path we extend the
particle tracks from either side into the combustion
zone as continuation of the paths outside this zone.
The point at which the extended tracks from two
sides meet is taken as the position of the effective
flame front. This procedure is indicated in Fig. 5.
The visible flame and the ideal flame front are
shown in Fig. 6 and the latter is nearly parabolic
and quite symmetrical with respect to the x axis.
This indicates that flow field in the plane of particles
is symmetrical. This is one of the advantages of
introducing dust particles in one plane. The visible
flame is determined by the total flame brightness
along its depth and angle between the camera axis
and the perpendicular to x — y plane. The asym-
metry of the visible flame is probably due to mis-
alignment of the camera and slight asymmetry of
the flame along its depth which is not present in
the plane of the dust particles. This asymmetry was
not detectable by eye.

The velocity ahead of the flame at z/a = 0.7 is
shown in Fig. 7, where 2a is the channel width and

VISIBLE
FLAME

EFFECTIVE
FLAME FRONT

\
PARABOLA N

LR TN

Fic. 6. Shape of the visible flame and effective flame front.
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Fic. 7. Velocity profile at z/a = —0.7.

z is the distance along the channel length measured
from the foot of the flame. The average velocity is
taken to be the effective uniform u_, at = —
and all velocities are given in terms of this velocity.
The flame has already had some effect on the flow,
the velocity has decreased in the center and in-
creased near the wall, and close to the wall the
boundary layer is noticeable. If the last screen is
too far from the flame then the viscous boundary
layer becomes large; on the other hand, if the screen
is placed too close to the flame then we cannot
assume that the velocity is uniform in front of the
flame. A compromise position of x/a = —1.5 was
chosen for the last screen. We define a mass stream
function ¢ such that d¢ = pvdn where v is the
velocity along the streamline and dn the increment
in distance normal to the streamline. The ¥/p, au_.
versus y/a at x/a = —0.7 was obtained by inte-
grating the velocity profile and is shown in Fig. 8.
We can assign a value of the nondimensional stream
function to every particle at this station and from
the photograph we can determine its velocity and
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Fic. 8. Stream function at z/a = —0.7.
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Fia. 9. Stream function at the flame.

position at every point. In other words, the measure-
ments give the velocity and the stream function at
every point.

The measured ¢/p, au_., versus s/a curve 1is
shown in TFig. 9, since it is a straight line the normal
velocity

W, _ A/ 8au-.)
T o(s/a)

Uow
has a constant value of 0.67 everywhere except
possibly near the wall. The normal and tangential
velocities on both sides of the flame can be de-
termined from the photograph. The results are shown
in Fig. 10 and for the flame speed u,, the results
agree with that obtained from the y versus s curve
within a few percent and we will take 0.67 as the
flame speed for use in further work. The average
ratio of normal velocities u,,/4:, = p1/ps 1S approxi-
mately 5.0. The tangential velocity is, of course,
continuous across the flame and the difference in
the measured tangential velocities on the two sides
is due to experimental scatter. We will take their
average value as the tangential velocity.

At z/a = 2.8 the streamlines have become
parallel so that we may consider the velocity profile
at this station as the profile at z = . The measured
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Fra. 10. Normal and tangential velocities at the flame.

Fra. 11. Velocity profile of the burned gases at z/a = 2.8.
Dashed line is the parabolic velocity distribution for the
same volume flow. Dotted line is the average value of % /%
which equals p,/pq.

velocity profile is shown in Fig. 11. An average
value of 5.1 for p,/p, was obtained by comparing
the volume flow at this station with that z/a = —0.7.
We can determine the variation of the stream
function with y, dy/pau_, = pUtse dy/piaU_o, by
integrating the u,./u_.. versus y/a curve and
assuming that p,/p, = 5.1. The same result can be
obtained from the photograph by locating the
asymptotic post-flame position of a stream line
whose asymptotic pre-flame location is known. The
results obtained by these two methods agree as
shown in Fig. 12, indicating that the density ratio
p1/ps 18 the same for all stream lines. The density is,
of course, somewhat higher near the walls but this
makes negligible contribution to the total mass
flow. A more direct procedure would be to compute
the density drop for each stream tube by using the
relation (p1UAY):/e=—0.7 = (P2UAY)s/a-2.s Where Ay
is the stream tube width. This was done and within
the experimental scatter gave p,/p, = 5.1 for every
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Fi1a. 12, 8tream function at x/a = 2.8. Circles correspond
to the value obtained by integrating the velocity profile

using p1/ps = 5.1 and triangles to the direct measurement
of the stream line position.
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streamline. This value of p,/p, will be used for
further work.

Using the y versus ¢ curve of Fig. 12 we can plot
U+0/U_o a8 a function of ¢ and this is shown in Fig.
13. Equation (2) shows that assuming inviscid flow
the asymptotic velocity of a streamline can be deter-
mined from the normal and tangential velocities
at the flame and the pressure drop (Pp_. — P.).
We have not measured (p-. — p,.) but it can be
computed by considering the change in the mo-
mentum of either the entire flow or the central
streamline. The latter procedure gives a value of
10.76 for (p-o — Piw)/ipu_.’. Using this pressure
drop and the measured value of other quantities
appearing in Eq. (2), the predicted values of 4, ./% _«
are compared with those measured in Fig. 13. The
agreement gets worse as we approach the walls
where the effect of viscosity becomes quite im-
portant.

The flame generated vorticity is conserved along
a stream line if we neglect viscosity and assume
that p, 1s constant. The best place to measure
vorticity is at x/a = 2.8 where w = — (du/dy). The
vorticity was measured as a function of y and
expressed as a function of ¢, using the ¢ versus y
curve of Fig. 12. The vorticity can be computed
from Eq. (1) by using the measured tangential
velocities at the flame, the ratio p;/p,, and assuming
constant flame speed. The vorticity thus computed
is compared with that measured in Fig. 14. Near
the walls the viscosity has a dominant effect on the
flow and the vorticity exceeds the values predicted
on the basis of inviscid theory.

DISCUSSION

The measurement of the flow field of a flame in a
channel shows that except near the walls the flame
speed is constant. In the theoretical analysis we
neglected flame quenching and the flame exists
right up to the wall where it must be either tangent
(u, = ») or normal (u, = 0) to the wall. Neither
one of these conditions is possible within the frame-
work of theory based on constant flame speed and
inviseid flow. Since a ilame can be realized ex-
perimentally in the theory, we must have neglected
some important effects at the walls. These are: (i)
quenching of the flame at the wall; (ii) decrease in
flame speed at the wall; (iii) density gradient at the
wall due to heat conduction; and (iv) viscous effect
or the boundary layer at the wall. We could dispose
of the question of boundary conditions at the wall
simply by assuming that the flame is quenched at
the wall, but the photographs of the present flame

ARPU. o

Fia. 13. Velocity profile as a function of ¢ at z/a = 2.8.
Dashed line is computed from Eq. (2).

stabilized in a channel show that the flame exists
right up to the wall and the quenching is confined
to an extremely narrow region at the wall. Further-
more, from a theoretical point of view, the assump-
tion of quenching means that we relax the boundary
conditions at the flame instead of the wall.

Equation (2) shows that the flame cannot be
tangent to the wall as long as there is a density
jump across it. If the flame is normal to the wall
then it is concave towards the unburned gases and
it has been shown that such a flame cannot exist
unless the flame speed increases at the wall. There-
fore, the second of the aforementioned effects is
also unfavorable.

The viscosity and heat conduction are both
diffusive in nature but the effect of the former is
more important for the following reason. In the
unburned gases the effect of the flame is to slow
down the central flow and accelerate the outer flow
which thins out the boundary layer. In the burned
gases the central flow accelerates and the outer flow

o
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Fre. 14. Vorticity distribution at z/a =

1s computed from Fq. (1).

2.8. Dashed line
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slows down which thickens the boundary layer.
All this is visible in the photograph of the flow
field (see Figs. 4 and 15), so that the third and
fourth effects mentioned above thicken the boundary
layer at the wall in the region of the burned gases.
As far as the main body of the flow is concerned, a
thick boundary layer has the same effect as dis-
placement of the solid wall into the fluid. This is
exactly what we have to do in order to make Ball's
numerieal solution dynamically possible (see Fig.
2). Now, the flame need not be either tangent or
normal to the wall; it can meet the wall at a grazing
angle.

In short, we have to relax the boundary con-
dition at the walls by inward displacement of the
walls in the region of burned gases or at the flame
by assuming that the flame is quenched before
reaching the walls. The above considerations show
that the former is more likely the case. It is possible
that the problem is overdetermined within the
framework of simplified theory and instead of
fixing the walls in the region of the burned gases we
should only require that the flow should be parallel

BURNED
CONCAVE

Fic. 16. Profile of
cellular flame.

UNBURNED
GASES

at infinity and the wall position is determined ac-
cordingly. This may not lead to a unique solution
and it would be more satisfactory to look for a
solution which gives the minimum inward displace-
ment of the wall. It may be possible to determine
the displacement by considering some over-all or
integral properties of the flow without solving for
the detailed flow field. The importance of the
boundary layer, relative to the over-all flow,
decreases as the Reynolds number or the channel
size is increased. Beyond a certain channel size a
steady flame with uniform speed of propagation is
not possible, which agrees with the experimental
facts.*

It is known that under some circumstances a flat
flame is unstable and may become corrugated. The
flow between the two streamlines passing through
the neighboring ridges may be taken as a flow
through a channel (see Fig. 16). The question
arises as to what we can say about this case in view
of the foregoing discussion. In the case of a Bunsen
flame a concave flame is possible if the flame speed
increases as we approach the tip of the flame. We
have a similar situation here. In fact, we can say
that whenever a cellular flame develops the radius
of curvature of the concave part of the flame will
always be comparable with the flame thickness in
order that the flame velocity may increase to make
the flow dynamically possible. There is no such
restriction on the convex part of the flame. These
predictions are in agreement with the observation
of cellular flames.
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* The reviewer of this paper points out that the concave
curvature of the flame occurs when it approaches the bound-
ary layer at the wall where the velocity is rapidly decreasing.
This is true from a kinematical point of view. However,
one has to show further that the associated flow field is
dynamically possible and is consistent with the rest of the
flow, which s not very much affected by viscosity. The
above discussion is relative to this point.



