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CHAPTER 1

INTRODUCTION

The objective of microwave remote sensing observations of the earth is to obtain
information about the terrestrial environment from airborne and spaceborne plat-
forms. The use of synthetic aperture radars as active sensors in this type of work has
become increasingly important in the last few decades. The power and flexibility of
this tool has increased greatly with the development of radar polarimeters which allow
simultaneous measurement of amplitude and phase at four polarizations and several
frequencies for distributed targets. Along with this increase in ability to measure
such targets comes the need to be able to utilize the information so obtained. For
this reason it is essential to understand both the quantitative and qualitative aspects
of electromagnetic scattering from terrain. Because a large portion of the earth’s
surface is covered by vegetation having many different types of canopy configurations
it is necessary to understand the detailed aspects of microwave interaction with such
media. The overall purpose of modeling radar scatter from vegetation canopies is to
be better able to interpret and invert signals from the remote radar sensors used in
terrain mapping operations.

With this objective in mind, the goal of this thesis is to examine both the mod-

eling and inversion aspects of the interaction of electromagnetic waves with general



random media having structural properties closely related to those found in vegeta-
tion canopies. It is hoped that this investigation will make clear the areas in which
methods currently in use for the analysis of radar scattering data from vegetation
canopies have their limits of applicability. It is also hoped that this work will point
the way toward a solution to these problems.

Due to limitations of space and time it has been necessary to devote the greater
part of the volume of this thesis to the modeling aspects of the problem. In fact, five
chapters have been devoted to modeling the radar scattering properties of vegeta-
tion. Only Chapter 7 has been dedicated to the inversion of remotely sensed data. In
Chapter 7 no attempt has been made to investigate the most popular technique for
inverting sensor data which is based on the application of artificial neural networks.
Instead, the focus has been on developing a simple, model-based, iterative inversion
algorithm that permits the investigator to develop insight into the fundamental na-
ture of both the forward and inverse aspects of the problem under consideration.
Chapter 7 also attempts to provide a framework into which the modeling work fits
by considering the sensor dependent nature of the remote sensing problem in terms
of both sensor configuration and the usual experimental errors that are an integral
part of any measurement process.

The remaining chapters of this work are devoted to the various aspects of model-
ing radar scattering from vegetation canopies. In recent years considerable effort has
been invested in the development of theoretical scattering models for forest canopies.
This is because a large fraction of the global vegetation cover is in the form of forests
and other trunk dominated canopies. A forest canopy is considered to be an in-
homogeneous medium comprised of scattering elements with different sizes, shapes,

and electrical properties [95, 96, 40, 39]. Except for the analytical wave approach



[81,' 24, 44], which accounts for the particles in the medium through a fluctuating
permittivity function, all existing methods account for the particles through the sin-
gle scattering properties of the individual scatterers [45, 72, 42, 82]. The analytical
wave approach is appropriate for media in which the ratio of the fluctuating dielec-
tric function to the mean dielectric constant is small. Therefore, at microwave and
millimeter wave frequencies, where the dielectric constant of leaves and branches is
much larger than that of air, the analytical wave approach may not be appropriate.
The solution of the scattering problem for a canopy consisting of discrete scatterers
can be tackled in two ways: (1) the field approach [45] and (2) the intensity approach
[96]. Due to the complexity of the methodology the solution based on the field ap-
proach is limited to sparse distributions of weakly scattering particles. The intensity
approach, or the radiative transfer (RT) method, is very general, easily formulated
and mathematically convenient. These are precisely the characteristics that make it
a useful tool for application with inversion algorithms.

Because of its many favorable attributes, RT theory has gained wide acceptance
and usage in modeling electromagnetic scattering from vegetation. Radiative transfer
theory was initially developed by physicists for the analysis of electromagnetic wave
propagation in the interstellar medium and planetary atmospheres [9]. Because of its
usefulness in this capacity, RT was subsequently applied to other types of particulate
random media such as vegetation cover. When the medium consists of sparsely dis-
tributed scatterers that are small in comparison with the wavelength of the incident
radiation, the underlying assumptions on which RT theory is based are valid, and
the model can be expected to perform reasonably well. However, in constructing RT
models for forests and stalk dominated agricultural canopies some basic conditions

necessary to the validity of the method have been overlooked. The RT approach is



formulated in terms of the single scattering properties of the particles in the medium;
i.e., it is assumed that particles are in the far-field of each other and are illuminated,
locally, by plane waves. A tree canopy usually contains particles, such as trunks and
branches, which are much larger in dimension than a wavelength. In addition, the
forest medium consists of strong scatterers that may be quite densely distributed. In
this case both the far-field and local plane wave conditions are violated.

The purpose of the modeling chapters of this thesis is to investigate how the
limitations imposed on RT theory by its underlying assumptions affect the result of
its application in the analysis of radar scattering by vegetation canopies. In the initial
stages of this work it was discovered that the application of first-order RT theory to
the modeling of dense, stalk dominated agricultural canopies, such as corn, produced
results that were in sharp disagreement with the body of previously measured data.
Much of the previously acquired experimental data was obtained using the earlier
generation of radar scatterometers, and it was felt that with better equipment and
improved calibration techniques it would be possible to resolve the modeling problems.
An investigation of radar scattering from mature cornfields was then initiated that
used the improved equipment and methodology coupled with extensive and careful
collection of information about the physical characteristics of the canopy. It was
found that the newly acquired data confirmed the existence of a discrepancy between
the predictions of first-order RT theory and measurements.

As a result of these investigations it was felt that perhaps higher orders of iter-
ation of the radiative transfer equations, corresponding to higher levels of multiple
scattering, would provide the solution to modeling the radar return from this type of
dense canopy. Chapter 2 of this thesis presents the development of the second-order

RT model for the trunk layer of a general vegetation canopy and compares the results



of application of the first and second-order models with radar measurements of the
full corn canopy. This chapter shows that while second-order RT provides a dramatic
overall improvement in the estimate of the backscattering coefficient for both the
co-polarized and cross-polarized radar returns from this type of vegetation, it does
not reproduce the measured angular trend for either the vv or cross-polarized canopy
response. The conclusion drawn from this part of the work is that while multiple scat-
tering is indeed important for dense canopies of this sort, RT theory cannot correct
the modeling problem by higher levels of iteration since it cannot account for the true
nature of the local illuminating fields inside the canopy. Multiple scattering in ran-
dom media consisting of large scatterers causes non-uniformity of illumination of the
scatterers with respect to amplitude, phase and polarization of the local excitation. It
is apparent that the true phase and extinction matrices for the constituent particles
in the medium, which control the angular response of the radar return, are no longer
accurately represented by their simple single scattering characteristics based on the
assumption of local plane-wave illumination. In particular, the correlation distance
for local fields inside the medium may be smaller than the physical size of the scatter-
ers which causes overestimation of any quantity, such as the extinction matrix, that
depends on the phase matrix of these particles.

This situation provides the motivation for Chapter 3 of this work, which develops
a Monte Carlo scattering model for the trunk layer of a forest canopy. The model ac-
counts for near-field interactions between the cylinders composing the canopy trunk
layer up to second-order and provides a benchmark against which to evaluate the
performance of RT theory in a regime for which no other analytical models are satis-
factory. The interaction terms between pairs of cylinders are validated with measured

data. Monte Carlo simulations based on this model are presented for various repre-



sentative cylinder number densities, and the simulated results are compared with
radar measurements made on prepared ensembles of randomly positioned vertical
rods above a ground plane. First and second-order RT solutions for the same media
are also compared with the simulated data. This work verifies that the RT model
gives incorrect results for media in which there is a preponderance of scatterers that
have dimensions that are large compared to the excitation wavelength.

The natural extension of this investigation is to canopies having more than one
type of particle. The importance of the heterogeneous canopy problem is dependent
on the nature and significance of smaller particles distributed either above or within
the canopy volume occupied by the large vertical trunks. What is the effect of smaller
scatterers such as leaves and twigs on the radar response of the canopy as a whole?
Do these components couple significantly with the trunks, and in what ways does
their presence alter the performance of the RT model for similar canopies?

Chapter 4 of this thesis details a general technique based on the reciprocity the-
orem for deriving the secondary scattered field from a pair of adjacent objects. The
general formulation is then applied to obtain analytical expressions for the secondary
scattered field from a cylinder-sphere pair. The expressions are validated using the
method of moments. This development provides the basis for the construction of
Monte Carlo simulations for a heterogeneous canopy structure consisting of vertical
cylinders, representing trunks, and smaller spheres, representing components of the
canopy crown. This is the subject of Chapter 5 which applies the formulation of
the previous chapter to the case of spheres and cylinders distributed above a ground
plane, and which takes into account mutual coupling between cylinders and coupling
between spheres and cylinders in the ensemble. The results of these simulations are

compared with those obtained from RT theory for the same canopy configurations.



It ié shown that the radiative transfer models do not properly predict the scatter-
ing behavior of media composed of densely distributed scatterers having dimensions
large compared with the excitation wavelength. This is partly a result of the fact
that the extinction matrix for this type of medium as computed by RT theory is
overestimated, especially at angles of incidence far away from vertical. It is also
partly due to the incorrect treatment of the RT source function for volume scattering
in media consisting of particles having dimensions that are not small compared to
a bounding dimension of the medium. Chapter 5 also shows that RT models that
attempt to divide the canopy into an upper layer consisting of trunks and smaller
particles and a lower layer consisting of trunks alone can produce results that are
seriously in error. One further purpose of this chapter is to demonstrate that while
second-order interactions between cylinders in the trunk layer can cause significant
changes in the level of backscattered co-polarized radiation, the predominant effect
of the interaction of trunks with smaller particles is to produce a change in the an-
gular trend of the cross-polarized canopy radar response. Second-order interactions
between spheres and cylinders in the heterogeneous canopy structure are also shown
to result in distinct changes in the co-polarized phase statistics of the backscattered
wave.

In Chapter 6 of this work a hybrid model is presented for computing radar scat-
tering from layered vegetation media consisting of vertical trunks and small, weakly
scattering particles above a dielectric ground plane. The crown layer is modeled us-
ing radiative transfer theory, and the trunk layer is simulated using the Monte Carlo
method. The analytical derivation of the transmissivity matrix for the trunk layer is
presented, and some of its important features are investigated. The concept of the

effective scattering matrix for an average cylinder in the trunk medium is developed



and evidence is presented that it assumes limiting behavior as the effect of multiple
scattering in the medium becomes increasingly important. Evidence is also presented
to confirm that the exponential extinction model used in RT theory works fairly well
for sparse distributions of small particles and even for sparse distributions of extended
scatterers. However, it is shown that the RT extinction model breaks down for high
densities of strongly scattering particles that are large compared with the excitation
wavelength. It is demonstrated that the source function integration used in RT theory
to account for volume scattering leads to results that are severely in error for layers
of long cylinders, and it is concluded that this is true for distributions of other large
scatterers. Finally, several types of test canopies consisting of dielectric cylinders and
small metallic spheres are investigated. It is shown that the hybrid model developed
in this chapter can be an effective way to compute scattering from vegetation media

having this general structure.



CHAPTER II

THE SECOND-ORDER RADIATIVE
TRANSFER MODEL OF THE CANOPY
TRUNK LAYER

2.1 Introduction

Because most canopy cover is at least semi-random in character and because
much of it is statistically homogeneous and area extensive, the radiative transfer
(RT) method has been widely applied in modeling electromagnetic scattering from
vegetation. In formulating such models the most important features involve scattering
by canopy constituents such as leaves, branches, trunks and the ground. Inherent in
the radiative transfer approach is the ability, by iterative solution of the equations,
to elucidate the individual scattering interactions between the electromagnetic wave
and the canopy constituents. Such interactions may consist of direct scattering of
the incident wave by the individual leaves and branches in the crown layer or by the
underlying rough ground surface. In addition, depending on the degree of iteration,
RT theory accounts for mutual coupling between the canopy constituents by using
the single scattering properties of the constituent pgrticles and the local plane-wave
approximation.

The electromagnetic scattering behavior of the canopy constituents is clearly a
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function of their various geometries and electrical properties. In this regard, one
would like to use relatively simple approximations to the constituent geometries in
order to keep the model tractable. Cylinders may be used to model trunks or stalks
and branches. Circular or elliptical discs, with or without curvature, may be used
in modeling leaves. Simple rough surface scattering models such as the Kirchoff
model or the small perturbation model may be appropriate for the ground layer or,
alternatively, an empirical may be used.

Various models have been developed based on a first-order solution of the radiative
transfer equation and simple canopy geometries [16, 42, 45, 96]. Such models have
had some degree of success in predicting the co-polarized radar return from canopies
with relatively low densities of strong scatterers or in cases where there is limited
penetration by the wave into the medium (as exists, for example, in leaf dominated
canopies at high frequencies) [53]. In many circumstances, as for instance in agricul-
tural and dense forest canopies, the low-frequency microwave behavior is dominated
by strongly scattering stalks packed in high density. In a mature corn canopy, the
wavelength of L-band microwave radiation in the dielectric stalk medium is close to
the diameter of the stalk. Under these conditions resonant scattering from the stalks
is exceptionally strong; and it has been found that the leaves do not seem to play
an important role in determining the co-polarized backscatter response of the canopy
(94, 104].

Measurements made by this investigator [61], do not compare well with the first-
order RT model of corn canopies at low microwave frequencies. In addition, the
first-order RT backscatter model for a canopy consisting of primarily vertical trunks
does not generate any cross-polarized return at all, whereas experimental data on

scattering from corn shows that there is a significant level of depolarization that
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may not be accounted for by the natural orientational diversity of the stalks. It is
also observed that the first-order RT model severely underestimates the co-polarized
radar return from trunk dominated canopies and gives an incorrect angular trend for
the vv-polarized backscattering coefficient, falling off much more sharply at angles
of incidence away from vertical than is seen in measured data. These observations
have provided the motivation for an investigation of the second-order RT scattering
mechanisms in trunk dominated vegetation which is the subject of this chapter.

When plant stalk heights are large compared with the wavelength of the incident
radiation it can be shown for vertical trunks that scattering occurs primarily within
a narrow cone centered on the specular direction as illustrated in Figure 2.1. Within
this specular cone there may be other stalks present as well as the ground itself. If
reflections from the ground are considered to be mainly specular in nature, the cone of
scattered radiation from a particular stalk when inverted on reflection from the ground
surface may intersect other stalks depending on the density of the medium. The first-
order model consists then of wave interactions between a single stalk and the ground as
well as diffuse backscatter from the rough ground surface. These terms are referred to
as the ground-trunk, trunk-ground and direct ground interactions and are illustrated
in Figure 2.2. The second-order model includes an additional wave-stalk interaction
between pairs of stalks in the presence of a specular ground surface. The terms
generated by the second-order model are referred to as trunk-trunk-ground, ground-
trunk-trunk and trunk-ground-trunk interactions. Another kind of second-order effect
involves the interaction between single stalks and diffuse bistatic scatter from the
rough ground surface. These terms are called diffuse ground-trunk and diffuse trunk-
ground interactions. All the second-order terms are illustrated in Figure 2.3.

In the remainder of this chapter the radiative transfer model will be derived for
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Figure 2.1: Scattering into the Specular Cone

a layer of vertical trunks above a rough ground surface up to, and including, the
second-order terms. The first and second-order RT models will then be compared with
measured data to determine whether second-order RT theory provides a satisfactory
solution to the problem of reproducing the electromagnetic backscattering behavior

of trunk dominated vegetation canopies.
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Figure 2.2: First-Order Effects

2.2 The Radiative Transfer Model

2.2.1 Basic Equations and Definitions

We now consider the salient features of a general closed canopy. By closed canopy
it is meant a canopy that is continuous and statistically homogeneous in the hori-
zontal plane but that has significant variation from top to bottom. The top of the
canopy consists of a crown layer made up of leaves and branches. The leaves are
usually modeled as flat dielectric discs and the branches as dielectric cylinders. The
leaves and branches in the crown layer are described in terms of a number density

(number per unit volume). The dimensions and orientations of these components are
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Figure 2.3: Second-Order Effects

usually specified either as fixed values or in terms of probability density functions.
Underneath the crown layer is the trunk layer which is composed of dielectric cylin-
ders. Again these components are described in terms of the number density (number
per unit area), the diameter, the height and the orientation. The lower level of the
canopy is a rough dielectric surface that is used to represent the ground. It is usually
characterized by rms height and correlation length of the surface roughness scale.

One of the rough surface scattering models such as Kirchoff’s scalar approximation
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Figure 2.4: Closed Canopy Model

to physical optics, the small perturbation model, or, in the case of very large-scale
roughness, geometrical optics is often used depending on the roughness scale of the
ground surface under consideration [92, 95]. The general canopy geometry is shown
in Figure 2.4.

In a crown region made up of scatterers with small albedo the first-order radiative
transfer solution may be a sufficient approximation to the canopy behavior. However,
in a trunk region composed of strongly scattering stalks at high number densities
the first-order approximation may be a poor representation of reality and higher-
order terms should be included in the model. In this section the vector radiative
transfer solution will be derived for the trunk region of the canopy (for vertical trunks)

including the second-order terms.
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For an incident plane-wave, the electric field vector may be decomposed into a

vertical and horizontal linear polarization basis:

Ei = (Evﬁ,' + Ehil,') eik"fc"‘r

where k, is the free-space wavenumber, and

?; = cosb;cos ¢;T + cosb;sin ¢;j — sin ;2
h; = —sin@;z + cos ¢;y
k; = sin6;cos ¢;& + sin 0;sin ¢;y — cos 6,2

In (2.1) a time dependence of the form e™** is assumed and suppressed.

(2.1)

The vector specific intensity (W m~2 sr=! Hz"!) for the incident coherent wave

is defined through the modified Stokes parameters I,, I, U and V as follows:
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where 7, is the intrinsic impedance of free-space.

-

-

The scattered wave from the distributed target is of spherical character and is

partially coherent. If A is the illuminated target area and 6, is the angle between

the outward normal to A and the scattered wave-vector, then the scattered intensity

must be normalized by the solid angle A—c'f’;—oi, where r is the distance from the target

to the observation point. Thus the intensity of the scattered wave may be written in
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terms of the Stokes parameters as:
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and ( ) denotes the ensemble average.

The intensity of the plane wave incident on the upper diffuse boundary may be

written as:

I' = I,6(cos § — cos 0,)6(¢ — o)

(2.7)

Inside the trunk (stalk) layer the intensity I is separated into two components,

It (p,¢,z) and I;(u,¢,z) which represent the upward-going and downward-going

intensities respectively. The subscript t denotes the trunk layer, and u = cos § where

6 is defined with respect to the positive z-axis. The geometry of the trunk region

problem is shown in Figure 2.5.

The radiative transfer equations inside the trunk layer are:

0
5l n8) = =S 6,2) + (6,2
0 T
__6';1;(_”,¢’z) = “%I;(_/‘7¢12)+F;('—/‘a¢sz)

where we have defined:

uFt(p, é,2)

and

27 r1 , , ,
pFE(-md,2) = [ P-m bk, 6) T, ¢, 2)d0

27 pl
+ / P—p, ¢ —p', ¢ I (=4, ¢, 2)dY
0 Jo

L P, ) 1, 8, 210

27 pl
[ P b=, ) T, )
0 Jo

(2.10)

(2.11)
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Figure 2.5: Trunk Region Problem Geometry

d(Y' is the differential element of solid angle, dQ¥ = —du'd¢’ = sin §'df'd¢’ . The quan-
tity Py(u, d; ', ¢') is the phase-matrix of the trunk layer which accounts for scatter-
ing by the trunks of radiation incident from the direction (4',¢’) into the direction
(#,8) . In (2.8) and (2.9), k¥ is the extinction matrix for up-going or down-going
radiation in the trunk layer. Therefore, the first term in the radiative transfer equa-
tions accounts for extinction of radiation as it travels through the medium, while the
source terms F account for scattering by the trunks of radiation from all directions

at depth z into (g, ¢) . It has been assumed that the trunk layer is isotropic with
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respect to the azimuthal angle ¢ .

The solutions to the coupled radiative transfer equations are:
It (p, 6, 2) = e FLEHRTE (4, 6, —d) + / TRk (4, 8, 2') d2 (2.12)
-d

and

- 0 -
I (—p, ¢,2) = e ¥t /M7 (—p, 6,0) + f e~ Rt =V upr(—pu, ¢, 2') d2’ (2.13)
For the diffuse boundary at the air-trunk interface we have:

I;(_#a ¢, 0) = 106(/‘ - “0)5(¢ - ¢o) (214)

while at the lower solid boundary with the ground we write:

27l
I‘t'.(/"a ¢’ —d) = '/(; [) g(ﬂ’ ¢’ _/", ¢I)It.(—/", ¢I1 _d)dﬂld¢' (215)

where G is the scattering phase-matrix for the ground surface. Substituting these

into (2.12) and (2.13) we have:

27 1
If(u, ¢,z) = e—RT(z+d)/u/ / g(”, é: _/‘,’ ¢,)It-(—ll’, ¢/, —d)du’d¢'
o Jo

+f d Rl bp (4 6. 2Y ' (2.16)

and

It—(—ﬂ7 ¢’ Z) =
- 0 -,
TS~ po)6(8 = g + [ T RTEIIEG (g, 6, 2')
(2.17)
For the stalk dominated field under consideration we will use the scattering matrix

based on a modification of the matrix for infinite vertical cylinders. This is a good

approximation for cases of practical interest since the length of stalks for most of
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the growing season is equal to many wavelengths, even at L-band. The solution of
the radiative transfer equations is constructed in an iterative fashion. The zeroth-
order solution is obtained by neglecting the source terms. The zeroth-order source
terms are then formed from the zeroth-order solutions. The first-order solution may
then be constructed using these source terms. Proceeding in this way solutions can
be generated to as high an order as is desired. As a side benefit of this process,
the solution is cast in a form that elucidates the individual scattering mechanisms
present in the medium. It is now demonstrated how solutions up to second-order are

generated.

2.2.2 Zeroth-Order Solution

For the zeroth order solution scattering by the trunks is ignored. Setting the

phase-matrix for the trunks equal to zero, we effectively turn off the source terms.

Then:
Pe(u,bip',¢) =0 = Fi(n,6,2)=0, VYV (u,4,9,4,2)
Thus:
I~ (—p, ¢,2) = ™M L8(1 — po)6(6 — o) (2.18)
and
L% (u, 8, 2) = e FLEADIRG (1 6: —pi,, §o)e~ KTk, (2.19)

from which, following substitution, the zeroth-order source functions are found to be:

F%(u, 6,2) =

2r rl _
%/(; / Pt(/.t, ¢;#I, ¢I)6_K't(z+d)/p’g(”l, ¢I; — o, ¢a)e-n, d/uoIon;
0
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1 -
+;'pt(”‘7 ¢1 —Ho, ¢a)€nt Z/#oIo (220)
Ft(O)—(—,u, ¢a Z) =
1 27 pl , , .
—/ / Pu(—p, & ', ¢')e LA G ¢ —pg, §)e™ T4/ eT,dY
wJo Jo
1 _
+;'Pt(—lu’ ¢; —Ho, ¢o)ent z/uolo (221)

It is evident from (2.18) and (2.19) that the zeroth-order solution contains the

direct-ground term alone. The first-order solutions can now be derived.

2.2.3 First-Order Solution

Substituting these source terms back into the original equations we find:

IO (—n, ¢, 2) = eI L6(k ~ 1o)8(4 ~ o)

0 - '
n / e~ KT =) WpO=(_y. . 2') d2' (2.22)

27 1
1% (4, 6,2) = e [T G, 65—t U ~(— 1t 8, ~d)dy'ddf

+ [ e DIpO (6, ) d! (2.23)

To compute the first-order solution explicitly, several assumptions are made. We
simplify F{”* and F{”~ using the fact that the phase-function for the vertical cylin-
ders used to represent the trunks is such that there is no scatter from them back into

the hemisphere of incidence. Thus:

Pt(—ﬂa ¢1 ﬂ’v ¢’) = ’pt(“’ ¢; _l‘,a ¢') = 0 (224)

Therefore there is also no direct backscatter from the stalks themselves, except at
normal incidence.
Since it has been assumed that the stalks are much longer than a wavelength,

radiation scattered by the stalks is scattered into the forward cone with half-angle
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equal to the specular angle as was shown in Figure 2.1. This is a property of the

infinite cylinder scattering matrix. Then:

Pp, b1, 8") = P, b3 1, 8") (e — ') (2.25)

where 8x(p — p') is the Kroneker delta.

After utilizing these relations the source functions become:

1 -
Ft(O)_(—/" ¢7 z) = ;’Pi(—oua ¢; —Ho, ¢o)ent Z/#OIO (226)

and

F‘(0)+()u'a ¢7 2) =

1 r2r , _ 2 , e ,
p /0 Py ¢ ', @) LEHIInG (4 gt 8 )e KT dg (2.27)
Then we can write for the region above the stalk layer:
L% (po, ¢ + 7,0) = I3, + Iy + L, (2.28)

where the superscript ”b” means that the term is evaluated in the backscatter direc-
tion. The three terms correspond to direct-ground, trunk-ground and ground-trunk

interactions as shown in Figure 2.2 and are given by:

L, = e RlioG(uy, ¢, + 15 —p, o)e™ " F 01, (2.29)

1 2r
= ”—e-"“/“ |G her 80+ 73 —10, )
0 - / -/
: [ / de"“ (Vo Py (— i, ¢ — oy $0) et ”°Iodz’] d¢’ (2.30)
1 0 , 2
IZt = -I_l— _dentz /#D_/O Pt(ﬂo, ¢o + T foy ¢I) :

e KT heG (11, 81—, )6 RT /0T g (2:31)
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The extinction matrix is given by e *t*/# = Qy(u, ¢) Di(p, ¢; —z/p) Q7 (1, @)
where Q(p, #) is a matrix whose columns are eigenvectors of the extinction matrix

Ki(p, d) and Dy(p, ¢; —z/pn) is a diagonal matrix with elements:
[Dilp, 65 =2/ )]y = =M=l (2:32)

with X;(u, #) the " eigenvalue of w;(u,#). For trunks we have &t = Ki(p, ) =
K¢(—p,¢) = ki due to vertical symmetry of the trunks and specular forward scat-

tering in the trunk layer. We can then write:

1 2m ’
Ii’ﬁ,Te'n‘d/""/o G (Hos $o + T3 —Hoy 8') Ar(—Hoy &s —Hor d0) Ldg’  (2.33)

(2]

where:

AL(= oy 5 —tos $o) = Qi(—to, B) AL(—tor b — o, Bo) @7 (—Hor Bo)  (2.34)

and
o [e—xe(—um)d/uo - e—A,(—uo.¢o)a/ua]
—Xi(—tos 8) + Aj(—fto, bo)
[Q7 (o, 8) Pul =0y 83 —t1or 82) Qu(—11er 82)] . (2:35)

[ (= os &5 oy $0));; =

Similarly:

1 2r , , _
L= = [ Aaltor b + 7 110, 8) Glor = por 60) g e, (2.36)

where:

Az (Ko, o + T3 phoy 8) = Qo o + ) Ag(Hoy b0 + T oy ¢) Q7 (Hor @) (2.37)

and
o [e—A.-(uo,asow)d/uo — e~ ilkod)d/po]

-)‘i(,uoa ¢o + ‘R') + Aj(ﬂm ¢)
* [Q:l (ﬂo, ¢o + ‘K) Pt(ﬂo, ¢’o + 5 }l,o, ¢) Qt(ﬂ'o, ¢)] (238)

i

[ Aoy B0 + 75 10, )] =

These are the first-order terms.



2.2.4 Second-Order Solution

The procedure for derivation of the second-order terms is the same as for the
first-order terms. The first-order source functions are obtained from the first-order
solutions and these source functions are used to compute the second-order solutions.
The second-order terms consist of the single stalk interactions with diffuse reflectance
from the ground and double stalk interactions with specular reflectance from the
ground. The terms are: diffuse ground-trunk, diffuse trunk-ground, trunk-trunk-
ground, trunk-ground-trunk and ground-trunk-trunk as shown in Figure 2.3. For the

diffuse ground-trunk term we find:

1 0 , 2m
I, == ntZ/uo/ P(o, $o S, @) -
gt2 Lo -de 0 t(/l ¢ + T p a¢)

R G4y, 8~ o, )G e, (2.39)

where G4 is the diffuse-ground phase matrix. Using the approach of the previous

section we have:

1 2w
s = = [ Asllor o + 73 s ) Giltor s ) 48 54T, (2.40)

o

where

A3(/‘0a bo + T; pho, ¢) = Qt(/‘oa ¢ + 7r) -A',_;(I‘o, bo + ;5 fo, ¢) Qt_l(uoa ¢) (2'41)

For vertical trunks Q; is independent of (6, ¢), so we will write simply Q; from now

on without including the angular dependence. Then:

0
Aé(/‘oa ¢0 + T35 Hoy ¢) = /_th(/‘o, ¢o + 5 z’/ﬂo) *

1 Q7 Piltor bo + T3 oy ¢) Qi Do, ¢'5 — (2" + d)/ p0) 42’ (2:42)
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Since ¢, is arbitrary it may be set equal to zero. Upon performing the z-integration

above we find:

[e-f\i(l‘Ov"r)d/I‘o —_ e"\J(l‘Ov¢)d/l"0]

' o
0y 5 Ko, 17 =
[As(ko, 75 0y B)];; By W P DR W Py
(97 Pilhor ™ 10y 8) Qi . (2.43)
Similarly, for the diffuse trunk-ground term we obtain:
1 2r , , -
L, = u—e'”‘d’“% Ga(Hor T3 — oy 8') Qi Ay(—to, 8’5 —10,0) Q7 d¢'L,  (2.44)
with
a ) o o [e-/\.‘(—uo.¢)d/uo - e—A,(-uo,O)d/uo]
—Hoy @3 —Ho, V)| =
o T e )+ A5 (s 0)
[Q5 Pul—tor 63 110, 0) Q. (245)
The trunk-ground-trunk term is computed as follows:
1 2 Y 0 " "
b - = Kz [po . N ,—Ki(z"+d)/po .
Itgt ﬂo*/o '/—d./—de Pt (um 5 Koy ¢ )6 gc(ﬂo)
e~ Rt D oy (s —pi,, 0)e 7 Mo d2' d2"dg T,
1 I / / -1 U
=k Qe As(po, 85 — o, ¢') Q7' do' L (2.46)

where G, is the specular (coherent) ground reflectivity matrix [84]. We also have:

A‘5(/‘0a ¢a = Mo, ¢) =

0 roO
S Mo by 852 R (10) M=ty 6, —io, 0 2) d'ds”  (247)

with

RH(/‘O) = Q;q Ge(o) Qu (2.48)
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and

Ml(:um T, Ko, ¢; Z”) =

Di(Ho, T3 2"/ 1) S1(to, T; oy 8') De(tto, ¢'s —(2" + d) /o) (2.49)

M'-’(_#Oa Qsa —Hos 01 Z,) =

Dt(—,uo’ ¢a _(zl + d)/ﬂo) 82('—,103 ¢7 —Ho,s O) Dt(—ﬂm 01 z,//‘to) (250)

The definitions of &; and S, are:

Sl(ﬂ'oa 5 Ko, ¢) = Qt_l Pt(ﬂo, ™5 Ko, ¢) Qt

82(_Iioa ¢; —HMo, 0) = Qt_l Pt(_ﬂo3 ¢7 —Ho, 0) Qt

We now evaluate the kernel of (2.47):

[Mi R" Malij = D (Ma)ik (R")u (Ma)i; (2.51)

ki

It may be easily verified that R” is diagonal. So we can write:
(Rt = ria b = [ Gepo) i)kt Ort
where 6y is the Kroneker delta. Thus:

MR Mali; = D (Mu)ik Tir (M2)i; (2.52)
k
Using the definitions (2.49) and (2.50):
(Ml)ik — e/\,-zu/”oe—,\k(zu-fd)/uo(sl)ik (253)

and

(Mg)kj = e'\jz,/”oe_'\k(z'-*-d)/uo(82)kj (254)
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where the directionality (u, #) of the eigenvalues A has been assumed and suppressed
for the sake of notational convenience. Combining (2.54) and (2.53) in equation (2.52)

gives:
[Ml R M2]ij — Z e—ZAkd/uo e(z\.'-)\k)z"/uo e(A_,—-)\k)Z'/uo (Sl )ik (82)kj Tk (255)
k
Producing the final result:

(Aﬁ)ij — Z 6-2Akd/uo (Sl)ik (32)1”, Tkk /i/ze(A;-Ak)zlr/uo e(’\’_'\")z'/“° dz' dz"
’ —dJ-

”o(e—’\kd/ﬂo _ e—A.-d/uo) . ’uo(e—'\kd/ﬂo _ e—f\jd/uo)
: (A — k) (A = M%)

(S1)ik (S2)kj Tkr

(2.56)

which is substituted back into equation (2.46) to give the trunk-ground-trunk term.

The trunk-trunk-ground term is derived as follows:

1 2r pO0 " w
Ly = ﬂ_/o /_d/:e_ntdl%gc(#o)e_n“’ Yy (—po, 5 — oy ¢')e "7 ke

Pi(—toy ¢'; — o, O)entz’/uodzl d2"dé'1,

= L eridliog () (["eaer ) L (2.57)

(4

After rewriting the exponentials as the similarity transformation of the eigenmatrix

D, we have:

Ag =

0
/ /(,],Dt(—ﬂo,r;—(z"’+d)/uo)M(—uo,qB’;2’,2”)17:(—#0,0; 2 [po) d2' d2"

-d

(2.58)
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where:

M(—p’m ¢; Z/, Z”) =

S ( Hoy T ﬂovphz) Dt( Ho, phi; (z” - ZI)/NO) 83( Koy &;

and

83(_/1'0a ¢; —Ho, 0) = Qt_l Pt(_ﬂo’ ¢; —Ho, 0) Qt

Sa(—tor T; —po, ®) = Q7 Pe(—tho, T; —pro, #) Qi
In addition, since D, is diagonal:
[D: M DJi; = e N+ ke A7'/ue (M),
Using these results in equation (2.58) we find:
(As)i; = /_(;/; e~ D o X o [ M(—p,, @' 2, 2")); d2' d2"
Expressing (2.59) in element form:

(M)ij = D (Sa)ik (De)ui (S3)i;

kl

but (Dt)kl = (D:)kk bk therefore:

(M)ij = Z 54 3k Dt)kk (Ss)kJ
k

= 3 (Sa)ik (Sa)rj e =7 we
k
We can now express (2.61) as the sum:

(As)ii = Y (Sa)ik (S3)ki (T )ik

k

—Ho, )

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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where

(T)ijk = /0 /0 e—,\i(z,1+d)/u° e"jzl/"" e’\" (z"=2")/ o dz' dz"
—dJz"

2 =XNd/po _ o= kd/po =Xid/uo __ o,=Ajd/po
[(e e ) (e e~ Ko (2.65)

Ko _
(A = ) (A = k) (A= A)

The elements of 7 may be evaluated in the degenerate case by using L’Hopital’s
rule.

For the ground-trunk-trunk term, the same method is applied and yields:
b 1 2n / -Kyd/
L= ([7 @it 7 dd') Gulpio) e edimer, (2.66)
where A7 is given by:
0 z'l
A; = /d/d Do, 752" [ 1to) Ma(pto, ¢'; 7', 2") De(pt0, 0; = (2" + d)/ po) dz' d2"(2.67)
with
MZ(/“’O) ¢1 Z’, Z”) = 86 Dt(/‘oaphi; (Z’ - z”)/ﬂo) 85 (268)

and

Ss = Q7 Pi(ptor T3 o, 8') Qs

SG = Qt—x Pt(uov ¢,1 Ho, O) Qt

Following a procedure exactly analogous to that for the trunk-trunk-ground term it

is found after lengthy but straightforward manipulation:

(Az)i; = Ek: (Se)ik (Ss5)kj (T )i (2.69)

where (7 );;x is the same as in equation (2.65).
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The derivation of the extinction matrix; its eigenvectors and eigenvalues as well as
the phase-matrix for the trunk layer is given in reference [95] and will not be repeated
here.

The first and second-order model results are now compared with experimental
data taken on mature cornfields at the end of the growing season. At this time
of year the dielectric constant of the leaves is much lower than that of the stalks,
therefore the effect of scattering by leaves in the canopy may be ignored relative to

scattering by the stalks.

2.3 Results and Comparison With Measurements

Figures 2.6 through 2.14 show the comparison between radar scatterometer data
taken at L-band frequencies on mature corn canopies and the first and second-order
radiative transfer models. The comparison is shown as a function of incidence an-
gle for several values of soil volumetric moisture (Mv) within the typical moisture
range. It can be seen that, in general, there is a 5 to 10 dB discrepancy between the
first-order model and the hh-polarized data. The first-order model also predicts no
depolarization for vertical trunks. The difference between the first-order model and
the vv-polarized data is, at best, around 10 dB at low angles of incidence and dete-
riorates rapidly with incidence angle. The agreement between first-order RT theory
and these experimental results is quite poor.

Inclusion of the second-order terms provides a marked improvement in the results
for all polarizations, atleast as far as the mean signal level is concerned. The predicted
hh-polarized return shows a 5-10 dB improvement in overall signal level as well as
improvement in the angular trend of the data. The vv-polarized RT results are in

much better general agreement with the measured data, however there are some
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Figure 2.7: Data/Model Comparison L-Band vh/hv Polarization (Mv=0.05)
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serious problems with the angular behavior of the model. The model also shows
resonant behavior for angles of incidence between 20° and 40° which is completely
absent from the measured data. This resonance behavior is actually a result of two
competing processes occurring within the RT model for the stalk medium. As the
angle of incidence increases away from the vertical direction, the vv-polarized phase
function of the vertical cylinders also increases rapidly. At the same time, the diagonal
extinction matrix element for the vv-polarized intensity is also becoming larger. Thus,
while the overall level of scattering in the medium is increasing with incidence angle,
the transmissivity of the cylinder layer is decreasing exponentially. Above 40° the
exponential decrease in the vv-polarized transmissivity is the dominant stalk related
effect to be observed in the RT model response. Also, coupling between the incident

wave and a single cylinder is a sensitive function of the cylinder diameter especially
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within the resonant scattering regime. This effect is not observed in measured radar
data because there is a random distribution of stalk diameters in real cornfields that
is not accounted for in this RT model.

Another problem with the vv-polarized response of the RT model is the presence
of the Brewster angle effect in the rough ground phase matrix. This effect seems
to be completely absent from the scatterometer data for agricultural fields and is
also conspicuously absent in the SAR data for all types of canopy covered terrain.
The model depends to a large extent on specular forward scatter from the ground
which provides the basis for the many ground-stalk type interactions. This specular
forward scatter is always coupled to the reflection coefficient of the ground surface
which produces a null in the model response at the Brewster angle. If physical optics
is used to compute the diffuse reflectance from a rough ground surface, it is also found
that the reflection coefficient dependent scattering terms disappear at the Brewster
angle.

Actual experimental vv-polarized data show a gentle decreasing trend with angle
of incidence and is almost identical with the trend seen in the hh-polarized data. The
vv data are, however, a few dB lower in magnitude. This means that the effective
reflection coefficient for both polarizations is approximately the same in a real canopy
ground layer. Actual ground is composed of layers of dirt, stones, twigs and other de-
bris compacted in regions of varying density separated perhaps by pockets of air and
moisture in the volume just below the surface. Obviously, different soils make ground
layers with differing macroscopic properties. The point is, as far as electromagnetic
scattering is concerned, it is hard to imagine that real ground may be characterized in
terms of a simple, homogeneous medium with a well defined surface layer. It is more

reasonable to expect that volume scattering in the soil sub-surface region may play a
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significant role in scattering from the canopy ground layer; especially approaching the
Brewster angle where transmission into the underlying medium is of greater impor-
tance than reflection from the surface. It is consistent with this view to suppose that
the true scattering mechanism in real-world soil media is a mixture of surface and
volume scattering. The relative predominance of one mechanism over another would
be a function of polarization, frequency, angle of incidence, soil volumetric moisture
and the complexities of the ground structure itself in as far as both its surface and
sub-surface properties are concerned. The investigation of this aspect of the problem
is, however, outside the scope of this work and will not be treated in this thesis.
One important feature of the angular response exhibited by the RT model may
be seen in a comparison of Figures 2.8 and 2.14 for the vv-polarized backscattering
coefficient. In Figure 2.8 the volumetric moisture of the soil surface is 0.05. At
this moisture level, the model of El-Rayes and Ulaby [91] predicts a value of €, =
3410 for the relative dielectric constant of this soil type. For this dielectric constant,
the Brewster angle is at 60° and a null in the predicted vv-polarized backscattering
coefficient is quite apparent in the Figure. However, Figure 2.14 illustrates the case
for a soil volumetric moisture value of 0.32. At this moisture level, the Brewster
angle would be at around 80° for a specular surface. In addition, the soil now has
a loss factor near to unity which prevents the sharp null that would otherwise be
present at the Brewster angle. In this case the predicted angular response for the
backscattering coefficient is being produced almost entirely by the RT extinction
model. The measured data shows a decrease of approximately 5dB over the angular
range from 20° to 60° while the computed RT data falls off by over 10dB within the
same range. It is evident that even though we have ignored the effect of leaves in the

RT model which would, if anything, be expected to increase the attenuation of the
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incident wave, the RT model severely overestimates the extinction of the vv-polarized
wave by the canopy.

Examination of Figures 2.7, 2.10 and 2.13 shows that, with inclusion of second-
order effects, the overall level of depolarization predicted by the RT model is commen-
surate with the level indicated in the measured data. The model, however, exhibits
a much more pronounced decrease in the backscattering coefficient with angle of in-
cidence than does the data. This decrease is on the order of 10dB over the entire
angular range and is present for all values of the soil moisture. The measured data
also shows a decrease in crosspol level over the angular range, but the magnitude
of this variation is only about 3dB for all soil moisture conditions. It is likely that
there would be less extinction of the predicted canopy crosspol response if orders of
scattering higher than 2 were included in the model. This is because the amount
of depolarization produced by the canopy is directly related to the level of multiple
scattering present within it. As the angle of incidence increases, the level of multi-
ple scattering should also increase. However, it is by no means certain that the RT
solution will converge as the iteration level increases without bound since RT is an

incoherent approach.

2.4 Conclusions

In this chapter the second-order radiative transfer model for a layer of vertical
trunks above a dielectric ground surface has been presented. The first and second-
order models have been compared with experimental measurements made at L-band
frequencies on mature corn canopies. It has been shown that second-order RT theory
provides an overall improvement in the predicted backscattering coefficient for both

the co-polarized and cross-polarized radar returns. It has also been demonstrated that
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RT theory does not reproduce the correct angular trend for the vv-polarized or cross-
polarized canopy response. This may be attributed in part to the Brewster angle effect
which is absent from the measured data, but it is also partly a result of overestimation
of the extinction matrix by the RT canopy model for the vv-polarized coherent wave.
In the case of the cross-polarized backscattering coefficient, it is believed that the
inclusion of higher order scattering terms might improve the angular response of the
model, but there is no guarantee that this is correct because the addition of more
terms would increase the mean signal level that is already too high at the lower angles

of incidence.



CHAPTER III

MONTE CARLO SIMULATION OF
SCATTERING FROM A LAYER OF
VERTICAL CYLINDERS

3.1 Introduction

In applying radiative transfer theory to the modeling of a forest medium, some
basic conditions necessary to the validity of the method have been overlooked. This
model is based on the single scattering properties of the particles in the medium;
1.e., 1t 1s assumed that particles are in the far-field of each other and are illuminated,
locally, by plane waves. A tree canopy usually contains particles, such as trunks and
branches, which are much larger in dimension than a wavelength; therefore, the far-
field condition is not satisfied. Moreover, since these large particles are embedded in
a random medium, the magnitude and phase of the field distribution illuminating the
particles are non-uniform; thus, the plane wave illumination condition is violated.

It is the purpose of this chapter to demonstrate the shortcomings of the radiative
transfer technique for a medium containing particles that are large compared to the
wavelength of radiation in the medium. The trunk layer of a forest canopy consisting
of vertical dielectric cylinders over a dielectric surface is considered. A Monte Carlo

simulation of the scattering problem, which includes multiple scattering up to second

40
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order, is developed to provide a realistic solution for comparison. The second-order
scattering term in this solution allows the long cylinders to be in the near-field of
each other. The validity of the Monte Carlo simulation is verified with experimental
backscatter data collected from a random distribution of metallic cylinders over a
perfectly conducting ground plane.

3.2 Scattering from Two Adjacent Cylinders at Oblique In-
cidence

Exact analytical solutions to the electromagnetic scattering problem exist for only
a very limited number of geometries, including infinite cylinders. It has been shown
that for cylinders that are very long relative to the wavelength, an approximate
solution can be obtained based on the solution for the infinite length case provided
d/L < 1, where d and L are the cylinder diameter and length, respectively [100, 41].
Although more accurate solutions for the finite-length cylinder can be obtained using
numerical techniques, the solutions obtained in this way are not desirable since they
become very inefficient when the dimensions of the cylinder are large compared to
the wavelength. Similarly, for two finite-length cylinders adjacent to one another, an
exact solution does not exist and numerical solutions are even more inefficient. In
this chapter we resort to an approximate iterative scattering solution. We assume the
cylinders are much longer than the excitation wavelength, and that they are mutually
in the near-field with respect to their longitudinal dimensions but are in the far-field
with respect to their diameters.

The approach taken is to find the scattered field from the first cylinder as an iso-
lated body given a primary plane-wave excitation. The response of a second cylinder
to the cylindrical-wave excitation from the first cylinder is then found. The effect

of the second cylinder on the first is obtained by reciprocity. In this way an ap-
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proximate analytical solution may be obtained which accounts for multiple scattering
to second-order. In principle, this procedure can be continued to any desired order
of approximation; however, a price is paid in terms of the complexity of the final
solution.

By invoking the field equivalence principle, the cylinders can be replaced by equiv-

alent electric and magnetic surface current densities given by
Je(d,2) = x H (3.1)
and
Jn(¢,2)=—-nxE (3.2)

where E and H are the total electric and magnetic fields on the cylinder surface and
i is the outward surface normal. If the surface currents are known, the scattered

electric field may be obtained from
E*’(r) = V x V X IL(r) + ko ZoV x II,(r) (3.3)

where Il. and II,, are the electric and magnetic Hertz vector potentials respectively.

The electric Hertz vector potential is given by

iZ0 zkolr—rl g
I, 4k0/.1( —G (3.4)

In this chapter the e™** time convention has been assumed and will be suppressed
throughout. The magnetic Hertz vector potential has a similar form with Z, replaced
with Z;! and J. replaced with J,,.

The surface currents on a long cylinder are approximated by the surface currents
on a corresponding infinite cylinder of the same diameter. These surface currents

have also been separated into a travelling wave component along the cylinder’s axial
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direction and a circumferential component [70]. The expressions for these currents

are given by
J,:,(‘ZS,Z) = J;(qﬁ)e'iko cosfiz.

The circumferential components of surface current density are

Jo(¢) = Yo(sin ¢& — cos ¢§) ThZ_oo (—8)™ {hzJm(20) + Bm H (z0) }e™?
—°—,— Fo o {ko sin 3 [ez (z0) + An H(Y (xo)] (3.5)

tko sin

oo [thm(xo) + B H()(20)| } €

and

I (¢) = —(sin 92 — cos ¢§) Tr2__ (=i)™{e.Jm(x0) + A H{(z0)}e™*
mﬁp‘— m—-oo Z m {ko sin ﬁ [th,ln(xo) + BmH,(r}) ’((L‘o)] (36)
————-—é'"‘;:’s [ez (z0) + A HD ' o)]} e'me
where 3 is the angle of incidence (see Figure 3.1) and z¢ = koasin 3, with a being
the cylinder radius.

In this case, the expression for the electric Hertz vector potential simplifies to

. 2 L piko(Jr—r'|— cos Bz')
M= [T [ ¢ ads/d¢’ (3.7)
0

47kg Jo |r—r'|

If the observation point (x,y) satisfies the condition ko sin 3v/z% +y2 > 1, the 2’
integration can be evaluated using the stationary phase approximation. The condition

for the stationary phase is

d ' '
Ez—l(|r—r | —cosBz') =0

which, in this case, implies

, cosﬂ\fm—z +(y — y')?

Zsp =2+
sp sin
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Figure 3.1: Geometry of a long cylinder with equivalent electric and magnetic currents
on the surface.

and the stationary point is on the surface of a cone of half-angle 8 which contains the

observation point. Performing the integration with respect to 2’ yields

L eiko(ll'—l" |—cos B2'

b — )dzl = /ko :i;ﬁ[; ei(ko sinB5—7/4) e—iko cos 3z e—ikoa sin 8 cos(¢’—$) (38)

Applying the far-field condition in the x-y plane, the curl operator reduces to Vx =

ikoic, X where
k, = sin B(cos $& + sin §j) — cos B2
and the expression for the scattered field simplifies to
E°* = k2(k, x k, x T, — Zok, x I1,,)) (3.9)

Substituting (3.5) and (3.8) into (3.7) the remaining integration with respect to ¢’ is

accomplished with the aid of the following integral relations [90]

JET emikomBeos# 9 eimd’ = (i)™ ], (yo)e ™
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Figure 3.2: Geometry of dual cylinder configuration and second-order interaction.

0" gy Y Ron B e =Dt = 9 (—i) i { 1} T m(yo) + { _ on§ } 2 T (o)™
with B = {[(k, — k) - 2]2 + [(k, — k) - §]2}1/? and yo = koaB. The definitions of ¢ and
p are given in Figure 3.2. After lengthy algebraic manipulations the scattered field

from the first cylinder is found to be

E; = F(¢)HS (ko sin Bp)ekozcosh (3.10)
in which
~ -1 I . . . . x
F() = 75 S (=1)™[Am(ky x ky X 2) + Bn(k, x 2))e™ (3.11)

The coeflicients A,, and B,, are given in terms of components that are TE, and T'M,:

N>

An=CIM E'.34+:C, H.

B,=CXf H'.;-iC, E'. (3.12)

N>

and the expressions for CTZ CTM and C,, are given in [64].
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Figure 3.3: Integration contour in complex v-plane.

3.2.1 Second Order Interaction

Referring to (3.10), the Hankel function of the scattered cylindrical wave may now

be expressed as a continuous spectrum of plane waves

H(gl)(ko sin ﬂﬁ) = ; /1_‘ e:ko smﬁ(cos'ya:+sm‘y|y|)d,y (313)

where the contour of integration I' is shown in Figure 3.3.

Each scattered wave from the second cylinder as a result of the plane wave spec-
trum excitation from the first cylinder can be summed by superposition to obtain
the total scattered field from the second cylinder. In regard to the stationary phase
approximation, only a subset of stationary points on the surface of the first cylinder
act as sources of illumination for the second cylinder. Stationary points not located
on the cylinder surface give no contribution to the secondary scattered wave. We have
assumed that since the length L of the first cylinder is much greater than the exci-
tation wavelength, most of the primary scattered fields are contained in the forward
scattering cone. We now also assume that (L — pcos B) 3> Ao, so the scattered field

from each incident plane wave in the expansion is confined to the forward scattering
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cone. The total scattered field from the second cylinder is then given by
. ! : 3.14
E; = ;/Feg(v)d‘r (3.14)
in which the direction of each incident plane wave is
k; = sin B(cosy& + sinvyy) — cos B2
and the contour I' has been described previously.

Again each individual secondary scattered field can be described in terms of TE; and

T M, components. Then, in the far-zone, these fields may be written as

efoR (L — jcot B), sinV

s = ikol::.'-i"g
e:(7) ¢ R [ 7 sin? 3 ] Vv
+o0 . " R
S (=D)AL (ks x ks x 2) + B, (ks x 2)] (3.15)
with
7y = pcosdd + psingy + (—L————-,;C—Ot—ﬂ-)é
R = T - ];7_, . Fz
V = ko(L -—2p cot B) (cos Bs — cos ) (3.16)
k, = sin Bs(cos ¢, + sin @,3) — cos P2
and
+00 L
A= Y (-1)"[ACIM + iB.Cr)e™
oo .
B,= > (=1)"[B.CTE — {A,Cp)e™ (3.17)

where A, and B, are as given in (3.12) and cos 3, = k,- 3.
Substituting (3.15) into (3.14) and using the change of variable v/ = ¢ + v, an

analytical expression for the secondary scattered wave in the far-zone is found to
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be
tkor . ~ .
s _ e -ikosinﬂﬁcos(tb,—d;) —i(L - pCOt ﬁ) sinV iV
E; = r [ 7sin? B ] 1% ¢
+o0 . . R
S (1) [AL (b % by % 2) + Bl (ks x 2)] (3.18)

H,(,})(kg sin ) gim(¢a=9)

3.2.2 Effect of Ground Plane

The next step towards obtaining the scattered field from a layer of cylinders above
a dielectric half-space is to consider the problem of two adjacent cylinders above
a dielectric half-space. The level of difficulty involved in obtaining a solution for
this problem is greater than for the previous problem due to the complexity of the
Green’s function in this case. The Green’s function for this type of problem has an
integral form and obtaining an analytical expression for this solution is impossible.
A numerical solution with a great deal of complexity can be obtained by applying
exact image theory [50, 67]. Here again we are approximating the form of the Green’s
function by assuming that the image of the source point is a source point located
on the opposite side of the half-space interface (mirror-image point) and modified
by the appropriate reflection coefficient. This approximation is very accurate when
the source or observation point is not close to the interface and becomes exact when
the ground-plane is perfectly conducting. To apply this simple approximation we
decompose the incident and scattered fields into TE and TM components. The effect
of the ground-plane will then be accounted for by modifying these field components
by their appropriate reflection coefficients.

The first-order interactions are shown in Figure 3.4. In the trunk-ground (TG)
interaction, the primary scattered field is modified by interaction with the ground

plane. The reflected field for this interaction is obtained by multiplying the TE and
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Figure 3.4: First order interactions of a cylinder with the ground plane.

TM components of (3.10) by the appropriate reflection coefficient to produce

etkor ko L —L | sinU
s _ —iko % (cos B,—cos )
Ei r C [7r sin? ﬂ] U
400 R R R .
S (=1)™[Am Ry (ks % ky X 5) + BBy (k, x 2)]e™*:

(3.19)

where A,, and B,, are defined in (3.12), 8, and @, represent the direction of the

scattered wave and U = koL(cos Bs—cos 3)/2. The other type of first-order interaction

is ground-trunk (GT) and consists of modification of the primary scattered wave from

a cylinder by the ground plane reflection coefficients. It is found in the same manner

as above and is given by

etkor ko L —iL | sinU
s _ ~iko % (cos Bs—cos B)
Eg r ¢ [7r sin? ﬂ] U
400 R R .
S (=1)[AL (ky x ky x £) + BT (k, x 5)]emés

where

™

A, =CIMR/E-:+iC, R, H'-

N>

B, =CIFR H.5-iC, R E -

(3.20)

(3.21)
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Figure 3.5: Second order interactions of two cylinders with the ground plane.

The second-order interactions are trunk-trunk-ground (TTG), trunk-ground-trunk
(TGT) and ground-trunk-trunk (GTT). The mechanisms are illustrated in Figure 3.5.
The TTG interaction may be obtained simply by taking the two cylinder scattering
equation (3.18) and modifying the appropriate components by their respective ground

plane reflection coefficients to obtain

ek s oy —i(L— pcot B), sinV
E:. = —iko sin 5 cos(ps—¢) iV
ttg T ¢ [ 7sin? B ] % ¢
400 . . .
Z (2)™AL Ry (ks X ks x 2) + B! R, (k, x 2)] (3.22)

HO (ko sin Bp) e™(4+=9)

where A}, and B, are given in (3.17) and V in (3.16).
The TGT scattered wave is obtained by exciting a single cylinder with the expanded
field of the TG interaction over its lower pcot # portion in a manner completely

analagous to what has already been done. The result is

s etkor —iko sin B3 cos(6.—d) f—tpcot B, sin V'
Etgt — e ko Bb (¢a ¢) [ wsin2ﬂ ] V, e v
+0o0 . . .
S (™AL (ky x ky x 2) + Bl (ky x 2)] (3.23)

H,(,})(ko sin 3p) eim($:=9)
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where
VI — _@%ﬁ_ﬂ_ (COS ﬂs — COS ﬂ)
and
+00 . i
A" = Y (=1)"[A. Ry CIM +iB, Ry Cp)e™
—+—oo _ -
B = Y (=1)"[Ba Ry CIF —iA, R Cple™

Finally, the GTT field is obtained using the same approach

tkor

B =%

gtt r 7 sin’
+00

e—iko sin 85 cos(¢s—) [“i(L — pcot ﬂ)] Sil‘lfv =W

S @)™[AY (ky x ky x 2) + Bt (k, x 2)]

m=-—0oo

H (ko sin Bp) e™#=%)

with
W= ko(L +2ﬁ cot ) (o8 s — cos )
and
An = :io (=1)"[ATCTM 4 iB"C\)e™®
By = jf (=1)"(BLCTF — i A7 Cpmle™®

where A7 and B, are as given in (3.21) and V as in (3.16).

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The total far-zone scattered field to second-order is then the sum of the terms given

above:

E* = Ej, + E}, + Ej,, + Ej,, + Ej,,

(3.29)

The corresponding scattering matrix elements for each term are given in the appendix.
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Figure 3.6: Broadside and endfire cylinder configurations. Wave incident in X-Z plane
with incidence angle 5.

Measurements were performed at X-band (9.5 GHz) using a polarimetric scatter-
ometer to validate the expressions derived for two adjacent cylinders above a ground
plane. A pair of metallic rods 18cm in length and 0.56cm in diameter were arranged
above a large metallic ground plane with various separations and orientations rela-
tive to the illuminating beam. The cylinder positions relative to the incident wave
direction and the incidence angle for the cases of broadside and endfire illumination
are shown in Figure 3.6. Figure 3.7 compares the first and second order theoretical
predictions of the radar cross section for the two cylinders to the measured values in
the case of 2cm separation and broadside confguration. Figures 3.8 and 3.9 compare
the measured and predicted values of RCS for a separation of 4cm in the endfire
configuration. The experimental data agrees well with the second-order results. The
first-order approximation does not provide an adequate estimation of RCS for cylin-

der separations within this general range. It is seen that the first and second order
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Figure 3.7: RCS of two rods broadside on metal plate at 9.5 GHz: 2cm separation.

results do not differ significantly for o, because the cylinders are relatively thin and
therefore the horizontally polarized incident wave is only weakly scattered. Discrep-
ancies between the measured and computed values of RCS are observed at the lower
angles of incidence due to the effect of scattering by the cylinder end caps which is

ignored in the theoretical formulation.

3.3 Monte Carlo Simulation

Having validated the expressions derived for adjacent pairs of cylinders, we now
attempt to obtain the scattering properties of random collections of such cylinders
above a ground plane. For a given arrangement consisting of many cylinders, the
solution of the scattering problem can be obtained to second-order by computing
the single and pairwise interactions for every cylinder in the ensemble. The statis-

tical properties of a random medium comprised of such scatterers are simulated by
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Figure 3.8: RCS of two rods endfire on metal plate (vv-pol.) at 9.5 GHz: 4cm sepa-
ration.

application of the Monte Carlo method.
The principle of the Monte Carlo simulation based on the second-order algorithm

is as follows:

1 An ensemble of randomly positioned cylinders is generated using a ran-
dom number generator. In this case the cylinder positions are uniformly
distributed within a circular area. The number of cylinders used is depen-
dent on the specified number per unit area and the area of the circular

region.

2 The scattering is computed for all cylinders and between all pairs of cylin-

ders within the ensemble up to second-order.

3 The ensemble is re-randomized and the scattering recomputed as discussed
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Figure 3.9: RCS of two rods endfire on metal plate (hh-pol.) at 9.5 GHz: 4cm sepa-

ration.
above. The number of independent samples is chosen so as to make the

variance as small as possible within limits depending on the computing

time. For the cases analyzed in this work the sample number is greater

than one hundred.
of),) are found from the en-

4 The values of the scattering coefficients (o2,
semble average. The same is true for the co-polarized phase difference ¢

and the degree of co-polarized phase correlation a [66].

Measurements of radar backscatter were also made on random collections of cylin-
ders distributed within a circular area as described for the Monte Carlo simulation

as an experimental verification of the simulation. Identical metal cylinders 18cm in

length and 0.56cm in diameter were uniformly distributed within a 60cm diameter
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circular area with densities of 70, 100, 140 and 180 per square meter. Radar mea-
surements were made with an X-band scatterometer at incidence (elevation) angles
relative to the vertical axis ranging from 20 to 60 degrees in 5 degree increments.
Samples were generated by arranging the cylinders on four separate thin plastic disks
with independently generated holes for supporting the cylinders. The edge diffraction
contribution of the ground plane to the overall RCS of the cylinder/ground plane sys-
tem was removed by measuring the ground plane without the cylinders present and
coherently subtracting this measurement from that of the combined system. Each
disk was rotated in 10 degree increments to create distinct aspects for the radar. In
this way 144 independent samples were generated at each density level. The final
measurements were tested for correlation to ensure that the sampling was indepen-
dent. The experimental setup is illustrated in Figure 3.10. The correspondence of
the simulation to the measurements of ¢° as a function of incidence angle is shown
in Figures 3.11 through 3.14.

The first and second-order Monte Carlo simulations agree very well with the ex-
perimental data. Apparently, for the type of random medium considered in this
study, the effect of multiple scattering between cylinders is averaged out as far as
the magnitude of the radar backscatter is concerned. This is why the first-order re-
sults agree well with the co-polarized radar cross section measurements. Figures 3.15
through 3.22 illustrate the agreement between measurement and simulation for the
co-polarized phase statistics. It should be noted that for both o and (, inclusion
of the second-order terms provides the correct phase statistics while the first-order
scattering theory is significantly in error. Since a is a sensitive function of the degree
of multiple scattering within a medium, first-order theory incorrectly predicts a value

of unity independent of the number density of particles.
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Figure 3.10: The measurement of a random ensemble of vertical cylinders.

3.4 Comparison with Radiative Transfer

In a medium in which the individual particle scattering albedos are small and
the particles are in the far-zone with respect to each another, one would expect that
there would be little difference between the Monte Carlo simulation results and those
of radiative transfer. Because the scattered fields are added coherently in the Monte
Carlo simulation, the computed values of 0° by this method should be 3 dB above
those computed by the incoherent addition of power as in radiative transfer theory for
reciprocal scattering mechanisms such as GT and TG. The medium described above
in the experimental section of this article consists of metallic cylinders that are long
compared with the wavelength of radiation in the medium, however the diameters of

the cylinders are fairly small compared with the excitation wavelength. In this case the
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Figure 3.11: Backscattering coefficient of a layer of uniformly distributed metal cylin-
ders above perfectly conducting ground plane. The density of scatterers
is 7T0cyls/m?2.

far-field condition is satisfied for the wave polarized in the dimension transverse to the
cylinder length (hh Polarization) and propagation for this polarization is dominated
by single scattering. This effect can be seen in Figure 3.23 which represents hh-

polarized backscatter from a fairly dense medium with 140 rods per square meter.

A vertically polarized wave travelling in this cylinder medium encounters particles
that are both strong scatterers and that are in the near-field with respect to each other.
Because of these conditions the correlation distance for the vertically polarized field in
the medium is significantly smaller than the length of a cylinder, yet it is larger than
the distance between particles. Therefore the local plane-wave approximation is no
longer valid in this regime and, in addition, there is a significant degree of coupling

between particles. This would be expected to affect radiative transfer results in
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Figure 3.12: Backscattering coefficient of a layer of uniformly distributed metal cylin-
ders above perfectly conducting ground plane. The density of scatterers
is 100cyls/m?.
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Figure 3.13: Backscattering coefficient of a layer of uniformly distributed metal cylin-
ders above perfectly conducting ground plane. The density of scatterers
is 140cyls/m?.
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Figure 3.14: Backscattering coefficient of a layer of uniformly distributed metal cylin-
ders above perfectly conducting ground plane. The density of scatterers
is 180cyls/m?2.
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Figure 3.19: Co-polarized phase difference for a layer of uniformly distributed metallic

cylinders above a perfectly conducting ground plane. The density of
scatterers is 70cyls/m?2.



63

360.0 Y T r
o] Measured
--------- 2nd Order
2700 - 1st Order
o0
3
E 180.0F ]
0 ___ Q..
900F o o 0.2 T ]
0.0 L L 1

20.0 30,0 400 50.0 60.0
Incidence Angle (deg)
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Figure 3.22: Co-polarized phase difference for a layer of uniformly distributed metallic
cylinders above a perfectly conducting ground plane. The density of
scatterers is 180cyls/m?2.

two ways. The phase matrix is utilized by radiative transfer to generate the source
functions which drive the coupled set of differential equations for the upward and
downward travelling radiation intensities. This phase matrix is linearly dependent on
the height squared of the cylinders. If the mechanism of cylinder excitation is not
by a plane wave then field decorrelation in the medium can make the effective height
of the cylinders to be smaller than their actual length. This means that radiative
transfer theory would overestimate the phase matrix of the cylinder medium. On the
other hand, the computation of the extinction matrix, which accounts for attenuation
of the wave intensity as it propagates in the medium, is linearly dependent on the
height of the individual cylinders. If the effective scattering matrix for cylinders in
the medium is actually smaller than would be expected on the basis of the local plane-

wave approximation, the extinction matrix for the medium would also be smaller than
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Figure 3.23: Comparison of RT model with Monte Carlo simulation and measured
data for the cylinder layer with a density of 140cyls/m?.

that normally used in radiative transfer. Because extinction is an exponential process
it has a large effect on the computation of the vv-polarized radar cross section.
Figure 3.24 shows that while first and second-order Monte Carlo simulations agree
fairly well with measured data in the computation of 2, first-order radiative transfer
gives an estimate that is significantly low. This is also shown by the fact that the
first-order radiative transfer solution becomes worse as the angle of incidence increases
which is consistent with overestimation of the extinction and which more than com-
pensates for overestimation of the phase matrix. Even though second-order radiative
transfer provides a solution that is more in harmony with the measured results, it
would be expected that if the second-order theory were entirely correct this solution

should maintain a level consistently about 3 dB lower than the measurements and

Monte Carlo results. In addition, in light of the trend illustrated, it seems unlikely
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Figure 3.24: Comparison of RT model with Monte Carlo simulation and measured
data for the cylinder layer with a density of 140cyls/m?.

that the radiative transfer solution will converge to the correct level as successively
higher order terms are added since all further contributions to the net scattered in-
tensity are guaranteed to be positive and the second-order result is already too high.
It is also to be noted that in all cases evaluated by these authors the first-order
Monte Carlo simulation provides an excellent estimate of radar cross section. If the
radiative transfer approach is valid under these conditions one would wonder why the
first-order R.T. theory does not give results consistent with this finding.

The degree of correlation a for the phase distribution PDF is sensitive to multiple
scattering effects because it is the multiple scattering that produces phase decorrela-
tion in random media. Figure 3.25 shows that the second-order Monte Carlo simula-
tion gives good agreement with experimental measurements indicating that multiple

scattering to second-order is significant in the medium. The second-order radiative
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Figure 3.25: Comparison of RT model with Monte Carlo simulation and measured
data for the cylinder layer with a density of 70cyls/m?.

transfer theory gives an erroneously high degree of copolarized phase decorrelation.
This demonstrates the overestimation of the phase matrix previously mentioned. In
Figure 3.26 both the Monte Carlo simulation and radiative transfer are in agreement
with the measured data. It is evident that the co-polarized phase difference is not
significantly affected by parameters that reflect the differences between these two

methods of modeling the canopy.

3.5 Conclusions

In this chapter a Monte Carlo scattering model for the trunk layer of a forest
canopy has been developed which takes into account scattering effects up to second-
order. Experimental data have been presented for the purpose of validating the
two-cylinder scattering solution, and the results of a Monte Carlo simulation based

on this solution have also been presented and compared with measured results. First
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Figure 3.26: Comparison of RT model with Monte Carlo simulation and measured
data for the cylinder layer with a density of 70cyls/m?.

and second-order radiative transfer model solutions for the same medium have been
given and compared with those for the Monte Carlo simulation. It is verified that the
radiative transfer model provides incorrect results under conditions such that its basic
assumptions are violated. This occurs in media for which the size of the particles is
large compared to the wavelength in the medium which causes the illumination to
be non-uniform and/or the medium is dense and therefore the near-field interaction
becomes significant. The source of this problem is attributable to several factors:
(1) the extinction matrix computed by the radiative transfer model is overestimated
because multiple scattering reduces the actual coherence length for fields within the
medium making it less that the size of the scatterers, (2) the cross-coherence terms
that are accounted for in the Monte Carlo simulations are absent from the RT model,

(3) the source functions of RT theory do not properly describe the nature of the
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volume scattering that occurs within this type of medium.



CHAPTER IV

ELECTROMAGNETIC SCATTERING FROM
TWO ADJACENT OBJECTS

4.1 Introduction

Typical vegetation canopies consist of objects such as trunks, stems, branches and
leaves or needles and, in general, vegetation tends to have some complex structural
features. However, analytical solutions for the problem of scattering of electromag-
netic (EM) plane-waves by objects exist for only a limited number of canonical ge-
ometries. If the scattering body is inhomogeneous, or the polarization and phase
front of the illuminating field is non-uniform, analytical solutions of the vector wave
equation do not exist even for canonical geometries.

Almost all models that are currently being used for the analysis of EM scattering
from collections of discrete scatterers rely on the single scattering properties of the
constituent particles [45, 72, 42, 82]. However, when the sizes and /or number densities
of the scatterers become large enough that they are in the near-field of each other,
solutions based on their single scattering properties are no longer valid. Certain types
of vegetation canopies such as forest stands and some agricultural fields have high
number densities of strong scatterers [12, 105, 56]. In addition, the particle sizes in

these canopies are large enough so that adjacent scatterers are not in each others

70
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far-field zone, especially in the microwave region.

To model vegetation of this type, it is necessary to be able to treat electromagnetic
interactions between particles that are not only non-plane-wave in character but have
non-uniformities in amplitude, phase and polarization. As has been stated, it is
impossible to find exact anélytical solutions for this type of problem except in a small
number of cases [49, 5]. In some few circumstances it may be possible to obtain an
analytical solution by employing a plane-wave expansion technique [69] or some other
specialized approach. Even so, such solutions may yield results that are difficult to
evaluate or have tedious multiple integrations that must be done numerically. This
is obviously a distinct disadvantage when the desired end result is to simulate EM
scattering from a dense random medium.

EM modeling of vegetation canopies usually involves the construction of simplified
geometrical representations for the constituent scattering elements [95, 96, 40, 39].
When this is the case, it is a fairly simple matter to obtain expressions for the first-
order scattered field using the single-scattering properties of the isolated particles
when the primary excitation is a plane-wave. To obtain the secondary scattered field
from interacting particles it is necessary to account for illumination of the secondary
scatterer by the scattered field from the primary scatterer. This chapter presents a
technique for obtaining the secondary scattered field analytically by employing the
reciprocity theorem. The technique is then applied to obtain an analytical solution for
bistatic scattering from a cylinder-sphere pair. This cylinder-sphere interaction has
some importance because, along with the electromagnetic coupling between pairs of
cylinders, it provides a basic building block from which the EM scattering properties
of a heterogeneous two-component forest canopy may be simulated. The results of

analytical field calculations for the cylinder-sphere pairs are then compared with
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numerical computations based on the method of moments.

4.2 Secondary Scattered Field from Reciprocity

In this section, a procedure utilizing reciprocity for evaluation of the secondary
scattered field from a particle when illuminated by the primary scattered field of
another adjacent particle is outlined. The reciprocity theorem simplifies this evalua-
tion significantly when the observation point is in the far-field zone of both particles.
Derivation of the expression for the secondary scattered field of perfectly conduct-
ing particles is slightly different from that of dielectric particles. First we consider
perfectly conducting particles. Suppose the incident field induces a surface current
density J; on the surface of particle #1 in absence of particle #2. The objective is
evaluation of the scattered field from particle #2 with J; as the excitation source.
Suppose the electric and magnetic fields produced by J; (as an impressed source)
in the presence of particle #2 are denoted by E; and H, respectively as shown in
Figure 4.1. Obviously E; and H; satisfy Maxwell’s equations everywhere in the
medium. Now, let us consider another situation where the source J, is removed and

an infinitesimal current source J. given by:

Je=pé(r—ry)

is placed at observation point P as in Figure 4.2. The electric and magnetic fields
produced by the elementary current source are denoted by E., and H.; and also
satisfy Maxwell’s equations. Applying the reaction theorem [30] to fields E;, E.;, H;,

and H,, over the entire medium, it can be shown that

/ (B xHyy —Eey x Hy) - fids = — [ 3, -Eeds+p-E;  (4.1)
S2+soo Sl
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Figure 4.1: The current induced on particle #1 by the source produces a scattered
field from particle #2.
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Point‘/ Current Source
A /
P

E.
3 | /‘/;'

local plane
wave

Particle #2

Figure 4.2: Particle #1 is removed and an elementary current source is placed at the
observation point.



74

where S, represents a closed sphere at infinity. Since at distant points E; = ZoH; x 7,
where j = 1, €2, the surface integral over S,, vanishes. Also the surface integral over
the surface of particle #2 vanishes since 7 x E = 0 over a perfectly conducting surface.

Since the elementary current source J. is in the far field zone of particle #2, E.,
can be approximated by the scattered field of particle #2 when illuminated by a
plane-wave. Noting that J; is a function of the incident wave polarization (%;, k;) and
the polarization of the elementary source p can also be chosen to be either 9, or iz,,

the expression for the scattered field is given by

5-El= /S Ees(6s, hs) - 31 (83, hs) ds (4.2)

The scattered field from particle #1 when illuminated by the field generated by the

induced current on particle #2 can be obtained in a similar manner and is given by

a

e /S Ea1(6s, h) - Jo(8s, hi) ds. (4.3)
2

A

Here, E.1(9,, h,) is the sum of the radiated field from the elementary current source
and the scattered field of particle #1 when illuminated by this elementary source.
The source is characterized as possessing either a vertical or an horizontal polarization
state and is located at the point of observation. The primary induced currents J,
and J; are functions of the incident wave polarization, thus, by selecting the incident
polarization to be 9; or iz;, the scattering matrix elements can be computed. It should
be noted that Ej includes the first-order scattered field of particle #1 and secondary
scattered field of particle #2. Identically, E} includes the first-order scattered field
of particle #2 plus the secondary scattered field of particle #1. Therefore E] +E;]is

the total scattered field of both particles up to second-order.
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Now let us consider the case in which both particles are dielectric objects. The
incident wave induces a polarization current J; in particle #1 in the absence of particle
#2. When particle #2 is placed at its location with no incident wave present, the
volumetric current J; induces a volumetric current Jy, in particle #2. The total
fields in this case will be denoted by E; and H;. In a second experiment, we place
the elementary current source J. at the observation point as before and remove the
current source J; (particle #1). The elementary current then induces a volumetric
current J.; in particle #2 for which the electric and magnetic fields will be denoted
as E.; and H.,. The currents induced in particle #2 may be expressed in terms of
the total electric field and relative dielectric constant (e2) of particle #2. They are

given by

Ju(l‘) = —-Z'k‘o)/o (62 - 1) El(r), re ‘/2 (44)
Jea(r) = —tkoYo (e2 — 1) Ep(r), reV, (4.5)
where ky and Y, are the wave number and characteristic admittance of free space

respectively, and V; is the region occupied by particle #2. Application of the reaction

theorem over the entire medium results in

/(Eleeg—Eegxﬂl)-ﬁds= -LJI-Eezdv—[/Ju-Eezdv
Soo 1 2

+LJ26-E1dv+1'5~E1
2

The integral on the left-hand side vanishes as before, and, by substituting (4.4)
and (4.5) into the second and third integrals on the right-hand side, it can be shown
that the last two integrals in the expression given above cancel each other. Thus, the

sum of the primary scattered field of particle #1 and the second-order scattered field
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of particle #2 is given by

F-Ei= [ Ji-Eado (4.6)
1

Similarly, the sum of the scattered field of particle #2 and the second-order scattered

field of particle #1 is given by

p-Ex= L J2 - Eq do. (4.7)
2

In (4.7), J; is the volumetric current induced in particle #2 by the incident wave in
the absence of particle #1 and E.; is the total field of the elementary current located
at the observation point in the presence of particle #1.

When one of the particles is dielectric and the other one is metallic, the expressions
for the scattered fields can be obtained in a similar way. Let us say that particle #1
is metallic and particle #2 dielectric, then the expressions for the scattered fields
are given by (4.2) and (4.7) respectively. Conversely, if particle #1 is dielectric and

particle #2 metallic, expressions (4.6) and (4.3) give the scattered fields.

4.3 Electromagnetic Scattering by a Cylinder-Sphere Pair

The expressions for the scattered fields from the two particles as derived in the
previous section are very general and can be applied to any particle pair with known
geometries and dielectric properties. In this calculation only the scattered fields and
induced currents of isolated particles when illuminated by a plane-wave are required.
The sphere and cylinder are among the few geometries for which an exact analytical
scattering solution is known. Additionally, as mentioned previously, a collection of
randomly positioned spheres and vertical cylinders above a ground plane can be
used to simulate a heterogeneous forest medium which includes the effect of multiple

scattering between canopy components.
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Analytical evaluation of the integrals (4.2), (4.3), (4.6) and (4.7), even for the
cylinder-sphere pair, is not possible, and one must resort to numerical methods.
However, under some physical conditions, approximate analytical expressions may
be derived. In reality, a tree trunk is very long (L>> X) and, therefore, other tree
trunks and leaves will tend to fall within its near field region. In this section an
approximate analytical solution will be derived for a cylinder-sphere pair. The as-
sumption is made that the cylinder is in the far-field region of the sphere. However,
the sphere is assumed to be in the near-field of the cylinder with respect to the cylin-
der’s longitudinal dimension and in the far-field region of the cylinder’s transverse
dimension. If the radius of the cylinder and sphere are denoted by a. and a, respec-
tively, and the cylinder length is represented by L, then the conditions previously

specified may be stated mathematically as:

=S 2a?

p )
L? 2a?
— > < 4,
T2 P> (4.8)

where § is the distance between the cylinder axis and the sphere center.
Suppose a plane-wave, whose direction of propagation is denoted by 'I;:.-, is incident
on a cylinder-sphere pair and is given by:

E,‘ = é,’ eikol‘c."l'-

The cylinder axis coincides with the z-axis of the Cartesian coordinate system and the
sphere center is located at ¥ = j cos ¢+ jsin ¢jj+55. The observation point is located
at a distance rg in the direction k,. The geometry of the problem is given in Figure 4.3.

The current induced on the sphere when illuminated by a plane-wave can be easily
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Figure 4.3: Geometry and coordinates of the cylinder-sphere pair.

computed by the standard method of separation of variables [4]. Since the cylinder
is assumed to be much longer than the excitation wavelength, the current induced in
this finite length cylinder can be approximated by that in an infinitely long cylinder
of the same radius and electrical properties [100, 41]. The field generated by the
elementary current source located at the observation point, over the volume (surface)
of each scatterer when the other one is absent is calculated as follows. Let us first
consider the case where the sphere is absent. The field generated by the elementary
current J. = pé(r —r,) is composed of two components. The first component is the
direct contribution of the current source and is given in the far zone by
—tkoZy

Ee(r) = m— gikoro g=ikoks T Z:, X Z:,, X P. (4.9)

The second component is the scattered field from the cylinder when illuminated by
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the radiated field of the elementary current source. This illuminating field can be
approximated locally by a plane-wave propagating along the —k, direction. Since the
point r is in the near field of the cylinder which satisfies condition (4.8), the scattered

field is given by [69]

. tkoT
—lkoZoC' 070
_——F

47y

E..(r) = (¢ — ¢s)HY (ko sin §,p) e~ ko o802 (4.10)

where (p, ¢, z) is the cylindrical coordinate of position vector r, H(()l) is the Hankel
function of the first kind and zeroth order, and 6, and @, are the spherical angles
specifying the unit vector K‘,, that is

~

k, = sin 0, cos ¢,Z + sin 0, sin ¢,y + cos 0,2 (4.11)

The expression for the vector quantity F(¢ — ¢s) in (4.10) is given by

—_ +o0 N R R .
F(¢—¢,) = ;l—n_glé" > (-ym [A:,l(k’ x k' x 2) + B2 (k' x ;)] eim($=¢s)

$ m=-—o0

where

~

k' = sinf, [cos §T + sin ¢ §] — cos 0, Z

and

~

A = CzME, X (E, X ﬁ) -Z4 zb-m(k, Xp)-z

By = CIE(k, % p)-2—iCmk, x (ks x §) - 2

The expressions for CIM CTE and C,, are given in [64].
The direct scattered field from the sphere and the secondary scattered field from
the cylinder can be obtained from (4.2) or (4.6) depending on whether the sphere is

perfectly conducting or dielectric. The first component of this scattered field is due
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to the excitation E.4(r) which yields the direct contribution from the sphere. This is
specified by

p-Ei = Js(r) - Eca(r) dv
sph.
Using the far-field expression for E.4(r), it can be shown that

R eikoro - ~ ZZ i » N
PoEu = S (R x (ko o [0 T )] p

ikoro

= e~ihoks TS (B &) - B (4.12)
7‘0

where S,(’k\:,-, Es) is the bistatic scattering amplitude of the isolated sphere. The far-
field amplitude of a sphere is given by

S.(ki, k) = (4.13)
1 R a~ al o~ - ~ -
T 6y S1(03) (ks x Bi) x Fy + &1 - (Ra x ) S2(6) (R x B:)]
where
2n +1 PM)(cos 0') 0
0' I n 3 /
51(6,) iy (1) Y {A Snd + "ge n (cos 8’)

2n + 1 PM(cos b
$8) = iy (1)t ZL){ a?a (cos6') + B, ——(%S——)}

In these expressions P{!) is the associated Legendre polynomial, A, and B, are given

in [90] and

cos, = —k;- k,.

The second component of the scattered field is referred to here as the sphere-cylinder

interaction and is given by

5-Eip = / 3,(r) - Euo(r) do. (4.14)
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Integral (4.14) can be evaluated analytically, keeping in mind the conditions on the
dimensions of, and distance between, the particles as specified in (4.8). Under these
conditions the angle subtended by the sphere is small, therefore the following approx-

imation is made

F(¢— ¢s) ~ F(& — ¢s)
which is a constant vector and comes out of the integral. Also the Hankel function is

approximated by its large argument expansion, and we have

HY (kosin 0,p) e~thocoslez ~ /m—s?nme-i”“ exp[—iko(—sin0,p + cos 0,%) - r]

(4.15)
Again, by approximating p and p in the amplitude and argument of (4.13) by p and

p respectively, (4.5) can be written as

Hgl) (kosin 6,p) e—tkocosboz ~, Hgl)(ko sin osﬁ)e-iko cosﬂ.;exp [—ikoz‘ . I"]

where

k = —sin 0,;3 + cos b,z

r = r—¥¢F

Thus, the sphere-cylinder interaction term is obtained from

__1 eikoTo
p- Elac =

. -~ +°° . it
H{ (ko sin o,ﬁ)e-'km"ﬂ{[ > A:ne’"‘(""“")}

sin?8, ro e

~ 2 I s 3 ~ 3
By(k, F) 2+ [ > B:,e""“-“’-*’] (kx B2 B) -2}

m=-—00
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where E:(E;, i) is the bistatic scattered field amplitude of the isolated sphere.

Now we consider the case for which the cylinder is absent and evaluate the field
generated by the elementary current source. As previously, the total field generated
by the elementary current consists of two components. The first component is the
direct field given by (4.9), and the second component is the scattered field from the
sphere when illuminated by the direct field of the elementary current source. Noting
that this current source is in the far-field of the cylinder-sphere pair, the sphere
illumination appears locally as a plane-wave. Since the cylinder is in the far-field of

the sphere, the second component, in the vicinity of the cylinder axis, is given by

—_—a ikoro o o~ t'kor'
ZkoZo € e"ikoks‘r . €

47 To r!

Ees(r) = Ss(_}k\:safl’)

where r' is the distance between the sphere center and the point at r, that is 7' =| r—F |
and 7' = =t

The direct scattered field from the cylinder and the secondary scattered field from
the sphere can be obtained from (4.3) or (4.7) depending on whether the cylinder

is perfectly conducting or dielectric. The first component of this field is the direct

contribution from the cylinder alone and is given by

5-Ba= [ J(r)-Eea(r)dv
cyl.

As in (4.12) it can easily be shown that

eikoro

A

p'E2c=

Sc(ki, k) - p (4.16)

To

where S.(k;, k,) is given by
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. . ) +o0 N - .o~ : .
_ 22La SlI(lertU Z {A:nk, % (k, X E) + B:n(ks x E)}G'm(¢’_¢l)
7 sin” 0; e oo
with
k
U= ——;L (cosb; — cos ;).

In this expression 6; is defined by

cosl; = k; - z.

Also, the expressions for A® and B! are given by

Al = CITMg . 34iCm(ki x &) -2

B:, CTE(k; x &) -2 —iCm(&i - %)

For analytical evaluation of the cylinder-sphere interaction, it is noted that the
current induced in the cylinder has a progressive phase factor along the cylinder axis,

that 1s

Jc(r) — j(P, ¢) eikgcos&gz

The second term in (4.7) is given by

-~ —ikQZO el'koro ikok. T L . . ' ~ eikoll‘-—f']
-E s = = =tkoksT // iko cosb;z S (—k.. —dzds (4.1
p- L 1 © ), A(8:p)e s ”T)Ir——rl zds (4.17)

where the first integral is over the cylinder cross-section. By rewriting | r — F | in

cylindrical coordinates, i.e.
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[r—Fl=VIp-p [+~
and noting that k, | p — p |> 1, the stationary phase approximation can be used to
evaluate the z integration. The stationary point of the function
F(z)=|r—T|+cosb;z
is at
Zy=z—cosb; | p—p|
and (4.17) simplifies to

—_a ikoro P
'lkoZo € e—kokrl'

PEzs = /Hgl)(ko sind; | p—p I)JC(r)'SS(_Eu;’s)Pd/’d(ﬁ (4.18)

4z To
where 7 is the unit vector #' evaluated at the stationary point. Noting that | p | is

much smaller than | p |

7 = —sinb; il

: lp—p|

Under this approximation S,(—E,,rt’,) is not a function of the integration variables.

—cosb;z~ —sinb; p—cosb; z

Therefore (4.18) can be written as

B B, = =ihoZe %000 p—ikobi ¥ . (k) 5in 0,5) S, (=, 7) - [, Io(r)e~ o057 pdpds

4 ro

Note that with values of z for which Z, > L or Z, < 0 (stationary point outside the
cylinder surface) the scattered field E,., is negligible and can be ignored.

Using (4.13), the far field amplitude of the sphere takes the following form

Si(=ku, 7)) = ————— [ Su(cos™ (K, - 7)) 7, x () x k) = p- (, x 7)

S, (cos'1 (K, - 7*',)) 7y X E_,] (4.19)
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Substituting (4.19) into (4.18), after some algebraic manipulation it is found that

—ieikoro e—ikoks ¥
= p—r
Tro | ks X 7|

—p - (ks x 7)Sa(cos™ (ky - 7)), x E2(ki, —7)] - &,

p-Epe = H{V (ko sin 0:3) [ - 7, S1(cos™ (ks - 7)) E2(ki, —7%)

where E?(k;, —#) is the bistatic scattered field amplitude of an infinitely long cylinder

with the same radius and dielectric constant as those of the finite cylinder. That is,

-~ 1 1 . - . 2T . ‘
Bl ) = — 5 [A:n(—cos 0.3+ sin 6:5) + B;n¢] ¢im(#a=)

where qQS =% % p.

The derivation of the scattered field for a cylinder-sphere pair can be easily generalized
to a cylinder and an arbitrary scatterer so long as the expression for the scattered
field of the isolated scatterer is known and the dimensions of the scatterer satisfy the

conditions specified in (4.8).

4.4 Numerical Results

The theoretical development presented in the previous section for second-order
scattering from the cylinder-sphere pair has been validated using the Numerical Elec-
tromagnetics Code (NEC) [6] which is a computational package based on the method
of moments. This approach was chosen because we were interested in the bistatic
scattering behavior of the pair, particularly in the forward specular cone, which is
quite difficult to obtain experimentally. The forward specular cone is referred to as
the set of azimuthal angles for which the scattered wave-vector lies on the conical sur-

face of revolution generated by rotating the incident wave-vector around the z-axis as
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Figure 4.4: Scattering geometry and angles for forward specular cone scattering.

shown in Figure 4.4. This sub-domain of the scattering pattern is particularly impor-
tant for simulating the interaction of electromagnetic waves with vertical structures
above smooth surfaces. In this case, the radar return is dominated by the scattered
field in the specular cone.

The validation for the vv and vh polarization states were made with a model con-
sisting of a cylinder 18.0 cm in length and 0.1 cm in diameter with a finite conductivity
of 100 mhos/m, and a perfectly conducting sphere with ka = 1.69 at an excitation
frequency of 9.25 GHz. The cylinder was chosen to be of finite conductivity because
this damps the axial standing wave pattern that exists on a finite length perfectly
conducting cylinder. Our finite length cylinder model does not need to account for
this standing wave behavior because in all real vegetation, cylindrical structures are

composed of lossy dielectric material and do not support standing waves of signifi-
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Figure 4.5: The vv-polarized bistatic scattering cross section of a cylinder-sphere pair.
The sphere is at j=18cm, ¢ = 180° and 5=9cm relative to the cylinder
base. The incidence and scattering angles are 143° relative to vertical.
The frequency is 9.25 GHz.

cant amplitude. A cylinder having a small diameter as compared with the excitation
wavelength was used because the version of NEC we have only provides for finite
conductivity in thin wire structures. The number of unknowns for the thin cylinders
was on the order of 10 per wavelength or a total of about 60 for the 18cm length.
The sphere was composed of variable segmented perfectly conducting rectangular
patches as described in [7]. In general, the relative configurations of the cylinder-
sphere pair and the scattering patterns were chosen so as to present as great a contrast
as possible between the first and second-order scattering behaviors. The angle of
elevation and the azimuthal angle are defined in Figure 4.4. The plane of incidence
is the x-z plane and the azimuthal incidence angle is 180 degrees. The cylinder is

always located at the origin and the relative cylindrical coordinates of the sphere are
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Figure 4.6: The vv-polarized bistatic scattering cross section of a cylinder-sphere pair.
The sphere is at j=2.0cm, ¢ = 45° and 3=9cm relative to the cylinder
base. The incidence and scattering angles are 145° relative to vertical.
The frequency is 9.25 GHz.
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Figure 4.7: The vv-polarized bistatic scattering cross section of a cylinder-sphere pair.
The sphere is at p=2.5cm, ¢ = 45° and Z=9cm relative to the cylinder
base. The incident wave azimuth angle is 180° and the scattered wave
azimuth angle is 130°. The frequency is 9.25 GHz.
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presented.

Figure 4.5 shows the vv-polarized azimuthal pattern for a cylinder-sphere pair. In
this case the cylinder and sphere are located far enough apart to be effectively isolated.
This figure demonstrates that the single scattering models for the sphere and cylinder
are in agreement with the moment method computation to within less than about 0.2
dB and establishes a baseline for comparison. Figures 4.6 and 4.7 illustrate the vv
scattering behavior for the case where the sphere is close to the cylinder. In Figure 4.6
the relative cylindrical coordinates of the sphere are (3, ¢, %) = (2cm,45°,9cm), while
in Figure 4.7 they are (j,¢,%) = (2.5cm,45°,9cm). It may be seen from these two
figures that the vv second-order result provides a reasonable approximation and is in
agreement with the moments method data to within about 0.4 dB over the angular
range.

The maximum difference between the first and second-order cross-polarized (vh)
response occurs in regions close to 0 and 180 degrees in azimuthal angle. At these
two points the first-order cross-polarized response disappears while the second-order
response is low but non-zero. Figure 4.8 illustrates the difference between the first and
second-order scattering behavior for the case having relative cylindrical coordinates
of (p,4,%) = (2cm,45°,9cm) and an azimuthal scattering angle of 350 degrees. This
provides good contrast between the scattering orders, and the scattering amplitude
is strong enough that the accuracy of the numerical computation is sufficient for
comparison. The agreement of the second-order analytical result with the moment
method computation has a mean deviation of about 1 dB or so over most of the
angular range.

For verification of the hh-polarized response, it was necessary to use a thicker

cylinder since the contrast between the first and second-order terms is insufficient
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Figure 4.8: The vh-polarized bistatic scattering cross section of a cylinder-sphere pair.
The sphere is at p=2.0cm, é = 45° and ?=9cm relative to the cylinder
base. The incident wave azimuth angle is 180° and the scattered wave
azimuth angle is 350°. The frequency is 9.25 GHz.
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Figure 4.9: The hh-polarized bistatic scattering cross section of a cylinder-sphere pair.

~

The sphere is at p=2.0cm, ¢ = 45° and Z=9cm relative to the cylinder
base. The incidence and scattering angles are 145° relative to vertical.
The frequency is 9.25 GHz.
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Figure 4.10: The hh-polarized bistatic scattering cross section of a cylinder-sphere
pair. The sphere is at p=2.0cm, é = 45° and 3=9cm relative to the
cylinder base. The incident wave azimuth angle is 180° and the scattered
wave azimuth angle is 90°. The frequency is 9.25 GHz.

with very thin cylinders. For cylinders with larger diameter to wavelength ratios
than the one used for verification of the vv polarization case, NEC requires the use
of a patch model. A patch model of a cylinder 18.0 cm in length and having a
diameter of 0.55 cm was constructed using perfectly conducting patches. The model
had 15 sides and consisted of over 800 rectangular patches. Because the patches
were perfectly conducting, the axial standing wave made the model inappropriate for
verification of the vv-polarized case. However, the standing wave seems to have a
much smaller effect as far as the hh response is concerned, becoming significant only
for elevation angles less than about 30°. Figures 4.9 and 4.10 present azimuth and

elevation patterns for the cylinder-sphere pair having relative cylindrical coordinates

(p, , %) = (2.0cm,45° 9cm).



4.5 Conclusions

In this chapter a general technique based on the reciprocity theorem has been
developed for deriving the secondary scattered fields from a pair of objects. The gen-
eral formulation has been applied to obtain approximate analytical expressions for
the secondary scattered fields from a cylinder-sphere pair. The validity of the analyt-
ical results were verified by comparison with method of moments computations, and
good agreement was obtained for both the co-polarized and cross-polarized bistatic
scattering cross sections in the forward specular scattering cone. This chapter pro-
vides the basis for the construction of computational simulations of electromagnetic
wave scattering from heterogeneous two-component vegetation canopies that include

the effect of multiple scattering up to second-order.



CHAPTER V

SIMULATION OF ELECTROMAGNETIC
SCATTERING FROM A HETEROGENEOUS
MEDIUM

5.1 Introduction

In the application of radiative transfer (RT) theory to the modeling of forests and
other dense vegetation cover, several fundamental conditions necessary to the valid-
ity of the model have been ignored. The RT model is based on the single scattering
properties of the particles that constitute the medium. That is, the assumption has
been made that particles are in the far field of each other and that they are illumi-
nated locally by plane-waves. A tree canopy usually contains particles such as trunks
and branches which are much larger in dimension than the excitation wavelength at
microwave frequencies and above. These large scatterers are usually in each other’s
near zones. Smaller particles such as leaves, needles and twigs are also in the near
zone of the larger canopy components. These smaller canopy constituents may be
present in large numbers and can have a significant effect on the electromagnetic
properties of the medium both as isolated scatterers and through multiple scattering
interactions. In addition, it is to be expected that scatterers with dimensions large

compared with the dimensions of the medium will be illuminated with a fairly high
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degree of amplitude, phase and polarization non-uniformity as a result of the finite
coherence distance for the mean field in this type of random medium.

Heterogeneous forest canopies consisting of predominantly vertical, cylindrical
trunks and large numbers of diverse smaller scatterers have traditionally been divided
into two main regions for modeling purposes. The upper region in which there is
usually a high density distribution of the smaller particles is referred to as the crown
layer, while the lower portion of the canopy is referred to as the trunk layer. In
general, RT modeling of forests is constrained by the constructs of RT theory to treat
the trunk and crown regions of the canopy as separate layers. This is not an accurate
representation of most canopies of this sort which have larger and smaller scatterers
co-existing to varying extents within the same volume. Some attempt has been made
to overlap the crown and trunk layers in RT modeling by creating a two layer medium
in which the lower story contains only trunks while the upper story contains both
trunks and smaller scatterers [43].

In this chapter a Monte Carlo simulation is constructed for a heterogeneous two-
component random medium consisting of large vertical cylinders and small spheres
above a ground plane. The second-order interactions between the cylinders and be-
tween spheres and cylinders have been taken into account in formulating the scat-
tering model, and all scattering terms used in the model have been validated using
the method of moments technique. The backscattering properties of the medium
have been obtained using the simulation and the results are compared with those of
the corresponding radiative transfer model. Second-order interaction effects in the

medium are examined, and the validity of the layered RT model is also investigated.
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5.2 Construction of Scattering Terms

The heterogeneous two-component medium under consideration consists of verti-
cal dielectric cylinders and small perfectly conducting spheres. Dielectric cylinders
are employed to represent the strongly scattering stalks and trunks that exist in a
typical vegetation canopy, and the spheres are representative of the smaller scatterers
that comprise the upper (crown) layer in such media. Spheres are used in this study
because their scattering matrix is independent of orientation, and one purpose of this
study is to determine what effect a distribution of such scatterers might have on the
overall response of the medium without regard to their orientational characteristics.
The spheres are chosen to be perfectly conducting because this reduces the complex-
ity of their scattering matrix and any such reduction will translate into less overall
computation time in the Monte Carlo simulations. Since spheres have relatively low
scattering cross-sections, it is also desirable to boost their albedo by making them
perfectly conducting in order to bring them on par with typical small scatterers that
might be found in the canopy.

The electromagnetic interaction between adjacent cylinders and between cylinders
and spheres is computed to second-order, while the interaction between spheres is
ignored. It is assumed that the coupling between spheres is significantly small in
comparison with the other terms so as to be negligible. Numerical studies indicate
that this should certainly be the case for the number densities of small particles
considered in this chapter. In any event, the cylinders are by far the stronger scatterers
in the medium and, in most circumstances, are the dominant component of the return.

The cylinder-cylinder interaction has been discussed in detail in Chapter 3 and
will not be considered here. It suffices to say that the scattering matrix for this

interaction has been derived using the plane-wave expansion technique and is appli-
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Figure 5.1: Geometry and coordinates for the sphere-cylinder interaction.

cable to cylinders that are electromagnetically close with respect to their longitudinal
dimension and, at the same time, are in each other’s far-zone with respect to the
transverse dimension. The sphere-cylinder interaction has been derived using an ana-
lytical technique based on the reciprocity principle. The details of this novel technique
are presented in Chapter 4 and will not be duplicated here. However, the application
of these results to the problem at hand requires extension due to the presence of a
dielectric half-space. In this section the results for the sphere-cylinder interaction in

the presence of a smooth dielectric ground are presented.

5.2.1 The Sphere-Cylinder Interaction
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Figure 5.1 shows the coordinate system for the sphere-cylinder interaction. It has
been assumed that the cylinders are electrically long. That is to say, their length
is much greater than the excitation wavelength. It has also been assumed that the
cylinder is in the far-field region of the sphere, but the sphere is in the near-field
region of the cylinder with respect to the cylinder’s longitudinal dimension and in the
far-field region of the cylinder’s transverse dimension. If we consider the analogy with
a tree canopy, it is reasonable to assume that the trunks are very long electrically at
microwave frequencies, therefore other trunks, branches and leaves will fall within the
near-zone of their longitudinal dimension. This is also the rationale for considering
adjacent cylinders to be within each other’s near-zone. If the radii of the cylinder and
sphere are denoted by a. and a, respectively, and the cylinder length is represented

by L, then the conditions previously specified may be stated mathematically as

=S 2a®

p )
L? 2a?
Z> 3 c .
2 P> (5.1)

As has been mentioned, it can be shown that the secondary scattered field from a
sphere-cylinder pair may be obtained by application of the reciprocity theorem. The
expression for the scattering matrix of the pair in the absence of the ground-plane is
given in terms of a sum of scattering matrices for the individual particles as if they

were isolated plus the second-order interaction terms. This may be expressed as

Stot — Sdc +8da +Ssc +Scs

In the above equation, ‘dc’ refers to the direct wave from the isolated cylinder, ‘ds’
refers to direct scattering from the sphere, ‘sc’ refers to the secondary scattered field

from the cylinder when illuminated by the primary scattered field from the sphere
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and ‘cs’ refers to the secondary scattered field from the sphere when illuminated by
the primary scattered field from the cylinder. The scattering matrices for the direct
terms are easily found and are not reproduced here. The scattering matrix for the

cylinder-sphere (cs) interaction is given by

Scs(’k‘:‘_, Es) — _e—iko(cosﬁ,’zs—l.c,-v’.) Hgl) (kO sin aiﬁ) .

~ ~

Sou(—ks,7) - E2(kiy—7)  Sau(—Fks,7.) - EF(ki, —7)

s

~ ~ (5.2)
Sn(—kss7y) - E(ki, —7,)  Son(—ks, 73) - B (ki, =)
with
E; = sin§; cos ¢;T + sin §; sin ¢;§ + cos ;2
E, = sin 0, cos ¢,Z + sin b, sin ¢,y + cos 0,z
7 = —sinb; cos ¢z — sin ; sin ¢ — cos 6;3
and

m[ﬁs 7 S1(0,) 7 x (By x 7)) — by - (ks x 7)) S3(6)) ks x 7)
0| Ks X Ty

In the last two expressions we have

~

Vs = cosb,cos@sT + cosb,sin @,y — sin 0,2

hy = sin@,T — cos ¢,
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and

51(9,)

2n +1 PM(cos ') 0 ,
— Z (n+1) { sin @’ + " 00! n (cost)

2n + 1 0 P (cos )
{ " 96, e) +Ba sin @,

S2(0,) = 121 —;+—1)

where P{!) is the associated Legendre polynomial, A, and B, are given in [90] and

cosf, = —k;- k,.

The other symbol, E., given in (5.2) is the scattered field from the cylinder and can
be written as

~

+w . 7 -~ ~
E2(k;,—7) - > CTM(9,) e™=4)(— cos §; cos 7 — cos §; sin ¢7j + sin ;)

m=-—00

+oo L. . .
Z CZE(G;) e""("’_"")(—— sin T + cos ¢y)

m=-~-00

Eg(zi, _F.,s)

and expressions for CIM CTE and C,, are given in [64].

The scattering matrix for the sphere-cylinder (sc) interaction is given by

S‘,C(Ei, ES) = e—iko cosf,zs H(()l) (ko sin asﬁ) .

(03800 (ki ') — TSno(Bi, B)] [T1Sun(ki, ) — TSun(ki, B (5.4
—[C2Sho(ki, &) + TSy (Bi )] —[T2Sn(kiy &) + T Sun(ki, B)]

for which

+00 e
M= 3 (=1)"CRM(r —6,) ™%
+oo i
F2= 3 (=1)"Cp¥(x - 0,) em(®=#)
oo

D= 3 (-1)"Con(r = 6,) ™=
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where the C,,’s are as defined previously. The S,;’s (p and q equal v or h) are
the scattering matrix elements for a sphere with an incident wave-vector k; and a

scattered wave-vector k,, and

k' = sin 0, cos(¢ + 7)Z + sin 0, sin(é + 7)) + cos 0,2

5.2.2 Effect of Ground Plane

To obtain the solution for a sphere-cylinder pair above a smooth dielectric half-
space we use exact image theory [50, 67]. The form of the Green’s function for the
problem is approximated by assuming that the image of a source point is the mirror
image of that point on the opposite side of the half-space interface and modified by
the appropriate reflection coefficient. This approximation is very accurate when the
source or field point is not close to the interface and becomes exact when the ground
plane is perfectly conducting. When this approach is applied, ten interaction terms
are obtained to account for the second-order scattered field from the sphere-cylinder

pair above the ground plane. The terms are as follows:
i cylinder-sphere-ground
ii ground-cylinder-sphere
iii cylinder-ground-sphere
iv ground-cylinder-sphere-ground
v cylinder-ground-sphere-ground
vi sphere-cylinder-ground

vii ground-sphere-cylinder
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Figure 5.2: Image theory geometry for construction of the cylinder-ground-sphere in-
teraction.

viii sphere-ground-cylinder
ix ground-sphere-ground-cylinder

x ground-sphere-cylinder-ground

It should be noted that there are two terms which do not appear in the list and
which one might reasonably expect to be present. The ground-cylinder-ground-sphere
and sphere-ground-cylinder-ground interaction terms are absent from the above list
because it is assumed that the cylinders are long and, therefore, the specular cone

scattering approximation is valid.
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In the discussion that follows, we shall obtain the scattering matrices for the
cylinder-ground-sphere and ground-sphere-ground-cylinder interactions. The expres-
sions for the remaining terms can be easily derived following the same approach and
will not be presented here. Figure 5.2 shows the image geometry for the cylinder-
ground-sphere interaction. In this case, the image cylinder is illuminated by the
image excitation, ’léf The scattered wave from the image cylinder then illuminates

the sphere as shown in the figure. The expression for the image excitation is given by

k{ = sin 0; cos ¢;T + sin 0; sin ¢,y — cos 6,2

The figure also indicates that, under the prevailing assumptions, such an interaction
will exist only if the sphere lies somewhere in the specular scattering cone of the
cylinder. It has been assumed that because the cylinders are quite long, most of
the energy is scattered into the conical region about the direction of incidence. The
mathematical statement of the condition for existence of the cylinder-ground-sphere

interaction is

—-L<z+ptan(r/2-06;)<0 (5.5)

For the image excitation, the expressions for the scattered field from the image cylin-

der are

E(k;,—7,) = [19,-Th
Ei(k,—7,) = -Tyh,~T . (5.6)
for vertically and horizontally polarized fields respectively. The polarization vectors,

9! and k!, are defined by
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oy A
~ o oxZ RN 2 A
R, = ¢ =—sin¢ZT+cosoy
sin 6;
o = 7. xhl=—cosbicosp T —cosb;singy—sinb; z
and
7, = —sinb;cosd T —sinb;sin¢ § + cosb; Z

Modifying the appropriate terms by their corresponding reflection coefficients, R,(f)
and R (0), we obtain

EZ(ks,—7,) = Ty R.(6:;) 5. —T Ru(6:) R,

Ei‘,"(Ef, —7) = —T3 Ru(6;) B. =T R,(6;) " (5.7)

which is the field scattered from the cylinder, reflected from the ground, and incident

on the sphere.

To obtain the proper far-zone scattering amplitudes for the sphere, the equations (5.3)
are modified to account for the image excitation. When these modifications are made,

the expression (5.2) becomes

59 (ki k,) = —e~tholcosbizethe ™) I (1 sin 6,5) -

S_.,( L) ac) Evc(k -r ) Ssv( k ) E (k

87 sC

) ) (5.8)
S-'h(—k”ﬁc)'ng(kf’_F:c) S-’h( k,, ac) Ehc(kc )
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Figure 5.3: Image theory geometry for construction of the ground-sphere-ground-
cylinder interaction.

The ground-sphere-ground-cylinder interaction geometry is shown in Figure 5.3.
In terms of the image theory approach, the image sphere is illuminated by the primary
plane-wave excitation after modification by the ground reflectivity. The secondary
scattered wave from the sphere then illuminates the cylinder after being modified by
the ground reflectivity a second time. The condition for existence of this second-order

term under the specular cone approximation will be

0<—[2+ptan(6, — 7/2)] < L (5.9)

If the image sphere and the cylinder were configured as shown in the figure and no
ground plane was present, the scattering matrix would have the same form as (5.2).

However, the presence of the ground plane alters the incident wave through multipli-
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cation by the surface reflection coeflicient corresponding to the transmit polarization
state for a particular scattering matrix element. The fraction of the modified incident
wave scattered by the sphere that is not depolarized is again modified by the ground
reflection coefficient for the incident wave polarization. This wave scatters from the
cylinder with the polarization specified by the receive state of the scattering matrix
element under consideration. The fraction of the modified incident wave depolarized
by the sphere is multiplied by the reflection coefficient having the opposite polariza-
tion state from that of the incident wave. This wave is reflected from the cylinder and
is either depolarized or not depending on the final polarization of the receive state.
The scattering matrix elements for the ground-sphere-ground-cylinder interaction are

then given by

Sgsgc(Ei’ Ea) — eiko(cos0az, H(()l) (ko sin gsﬁ) . (510)

[0S0 (kiy B) — Q2Shy (i, ) Ru(6:) [0S (Ki, k') — Q2.Shn(ki, B)) R (6:)
—[3Shy (i, ¥') + QaSyo(kiy K) R (8:)  —[Q3Shn(ki, &) + QaSun (i, k)] Ri(6:)

where
0 = Ty(-Fk,)R,(6,)
Q, = T(-k,)Ru(0,)
Qs = Ty(—k,) Ru(6,)

O = F(—Es)Rv(H.s)

and all other symbols are as previously defined.
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5.3 Validation of the Scattering Terms

In order to construct the Monte Carlo simulation of the two component medium
described previously, it is first necessary to validate the scattering model. In this
section it is demonstrated that all the fundamental pieces of the model are correct.
The Numerical Electromagnetics Code (NEC) [6], which is a software package based
on the method of moments (MoM), has been chosen for this purpose because of its
flexibility and accuracy. As discussed previously, the two component medium being
simulated consists of a mixture of vertical cylinders and perfectly conducting spheres
above a perfectly conducting ground plane. In this model it has been considered that
the spheres do not themselves interact electromagnetically,.however the interactions
between the cylinders and also between spheres and cylinders have been taken into
account. It has been attempted to validate each of these interactions using the MoM
code.

For this validation work a perfectly conducting sphere, with ka=1.7, has been em-
ployed as well as two different types of cylinder models. The sphere model was com-
posed of variably segmented, perfectly conducting rectangular patches as described
in [7]. One of the cylinders used was 18 cm in length, having a diameter of 0.1 cm
and a conductivity of 100 mhos/m. The other cylinder was also 18 cm in length but
had a diameter of 0.55 cm and was composed of perfectly conducting patches. At the
operational frequency of 9.25 GHz chosen for this study, the cylinders are between 5
and 6 wavelengths long which is sufficient length to provide a valid realization of the
specular cone approximation.

Thin cylinders were chosen so that the extended thin wire kernel and the finite
conductivity feature provided in NEC for wire models could be used. In this case

only 60 unknowns were necessary to achieve computational accuracies of 1 percent or
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better. The thin cylinders were chosen to be of finite conductivity for two reasons.
First, finite length perfectly conducting cylinders support strong axial travelling waves
that are not accounted for by our analytical model. These travelling waves have a
significant effect on the vv and vh-polarized scattering response of the cylinder. This
effect is much less pronounced for hh polarized scattering. Dielectric and finitely
conducting cylinders with lengths of greater than several wavelengths do not strongly
support axial travelling waves. Our two-component medium is supposed to simulate
effects that might be observed in vegetation canopies, and it is not anticipated that
travelling waves play a significant role in scattering from branches and stems. The
second reason for choosing finitely conducting cylinders is that the finite imaginary
part of their effective dielectric constants requires the use of the same complete set
of coefficients as is used in computing the scattering from dielectric cylinders, thus
allowing us to thoroughly test these routines. MoM data for this extended thin wire
model has an associated uncertainty of approximately £0.25 dB.

It was necessary to use the larger diameter cylinders to obtain useful results for hh-
polarized scattering. Larger diameter cylinders require the use of perfectly conducting
patches because the extended thin wire approximation used in NEC is not valid for
structures of this size, and the version of the code presently available only allows for
perfectly conducting patches. These cylinder models were constructed with in excess
of 800 patches and required a fairly large amount of computation time on an IBM
RS6000 workstation. The overall uncertainty in the MoM data for these cylinders is
about 0.5 dB or roughly twice that for the thin cylinders.

For the scattering patterns used in this validation, the angle of elevation and the
azimuthal angle is defined in Figure 5.4. The plane of incidence is the x-z plane and

the azimuthal incidence angle is 180 degrees. The cylinder is always located at the



108

AZ

Elevation
Angle

>

Figure 5.4: Scattering geometry and reference angles.

origin and the relative cylindrical coordinates of the sphere are presented. Figure 5.5
provides a comparison between the backscatter elevation patterns for the sphere single
scattering model used in the simulation and the numerical computation. It is seen
that the model is in agreement with the MoM computation to within better than +0.2
dB over the entire angular range considered. In this case, the sphere is located 9 cm
above the ground. It has been found that the sphere scattering model is good for such
spheres to within about 3d?/\ of the ground plane, where d is the diameter of the
sphere. This indicates that the single scattering model for the spheres should be good
for number densities providing average separations on this same order of magnitude.
These number densities are well within the bounds employed in the Monte Carlo

simulations.
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Figure 5.5: Backscatter pattern for a perfectly conducting sphere above a conducting
ground plane. The sphere has ka = 1.69, where a is the sphere radius,
and is located 9cm above the ground plane. The frequency is 9.25 GHz.
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Figure 5.6: Backscatter pattern for a pair of vertical cylinders on a conducting ground
plane. The cylinders are 18cm in length, 0.1cm in diameter and separated
by 2cm in the endfire configuration. The Conductivity of the cylinders is
100 S/m. vv-polarized return at 9.25 GHz.
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Figure 5.6 shows typical backscatter results for a pair of thin vertical cylinders
above a conducting ground plane. The cylinders are separated by 2 cm and are
positioned so as to lie along the direction of incidence (endfire configuration). A
complete experimental verification of the second-order cylinder-cylinder interaction
terms above a conducting ground may be found in [69].

Figures 5.7 through 5.12 illustrate that the agreement between the sphere-cylinder
interaction model described in the previous section and the MoM computation is
quite good. Elevation and azimuth scattering patterns have been provided for all
polarizations. The elevation patterns shown are for the backscatter direction except
in the case of the cross-polarized return for which the pattern was computed at a
bistatic azimuthal angle of 350 degrees to provide the best.comparison between the
first and second-order results. The co-polarized second-order results agree with the
MoM computation to within about £0.5 dB over most of the angular range, however,
the hh-polarized MoM results have a somewhat higher level of inaccuracy due to
the details of the larger diameter cylinder model. The cross-polarized second-order
results have an overall agreement with the numerical data to within 1 dB or so for

the elevation pattern and £0.5 dB for the azimuth pattern.

5.4 Heterogeneous Canopy Simulation

Having validated the scattering terms for the interaction of spheres and cylinders
above a ground-plane, we will now attempt to obtain the backscattering properties of
collections of such objects that comprise the heterogeneous two-component canopy.
For a given arrangement consisting of many cylinders and spheres, the solution of
the scattering problem can be obtained to second-order by computing the single

and pairwise interactions for every particle in the ensemble, except that in this case
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Figure 5.7: Backscatter pattern for a sphere-cylinder pair above a perfectly conduct-
ing ground plane with p=1.5cm, ¢ = 180° and Z=9cm. vv-polarized
return at 9.25GHz
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Figure 5.8: Bistatic scattering pattern for a sphere-cylinder pair above a perfectly
conducting ground plane with p=1.5cm, ¢ = 180° and Z=9cm. vv-
polarized return at 9.25GHz. The elevation angle is 37°.
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Figure 5.9: Bistatic scattering pattern for a sphere-cylinder pair above a perfectly
conducting ground plane with p=2.0cm, ¢ = 45° and 2=18cm. The
azimuthal scattering angle is 350°. vh-polarized return at 9.25 GHz.
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Figure 5.10: Bistatic scattering pattern for a sphere-cylinder pair above a perfectly
conducting ground plane with g=1.5cm, ¢ = 45° and 2=18cm. The
elevation angle is 52°. vh-polarized return at 9.25 GHz.
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Figure 5.11: Backscatter pattern for a sphere-cylinder pair above a perfectly con-
ducting ground plane with p=2.0cm, ¢ = 45° and 2=9cm. hh-polarized
return at 9.25 GHz.
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Figure 5.12: Bistatic scattering pattern for sphere-cylinder pair above a perfectly con-
ducting ground plane with §=2.0cm, ¢ = 45° and 2=9cm. The elevation
angle is 35°. hh-polarized return at 9.25 GHz.
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the sphere-sphere interactions have been excluded. The statistical properties of this
random medium are simulated by application of the Monte Carlo method.
The principle of the Monte Carlo simulation based on second-order interactions is

as follows:

1 An ensemble of randomly positioned cylinders and spheres is generated
using a random number generator. In this case the cylinder positions
are uniformly distributed within a circular area, and the sphere positions
are uniformly distributed within a cylindrical volume. The number of
cylinders and spheres used is dependent on the specified numbers per
unit area or volume and the dimensions of the cylindrical region that

constitutes the medium.

2 The scattering is computed for all cylinders and spheres and between all
pairs of particles within the ensemble up to second-order excluding the

interactions between spheres.

3 The ensemble is re-randomized and the scattering recomputed as discussed
above. The number of independent samples is chosen so as to make the
variance as small as possible within limits depending on the computing
time. For the cases analyzed in this article the sample number was chosen
to be two hundred except in the highest density case for which the sample

number was one hundred.

4 The values of the scattering coefficients (¢2,,07%,) are found from the en-
semble average. The same is true for the co-polarized phase difference ¢,

and the degree of co-polarized phase correlation a [66].

The simulations examined in this article utilized perfectly conducting spheres
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having diameters of 0.635 cm and characterized by number densities of 14,147 per
cubic meter. The spheres were generated inside a cylindrical volume 0.1 meter in
height and 0.6 meter in diameter. Identical cylinders 18 cm in height and 0.55 cm
in diameter with a dielectric constant ¢, of 35+i11 were uniformly distributed in the
same 0.6 meter diameter circle used to generate the cylindrical volume for the spheres,
but the cylinder bases were constrained to rest on the ground plane whereas the
sphere layer could begin at any height above the plane. Simulations were performed
for spheres alone, cylinders alone and combinations of cylinders and spheres together.
Two basic heterogeneous canopy configurations were examined. In one case the sphere
layer overlapped the upper 10 cm of the cylinder layer, while in the other case the
sphere layer was distinct and existed separately above the cylinder layer. These
configurations are shown in Figure 5.13. Figures 5.14 and 5.15 illustrate typical
convergence properties of the simulations for the scattering cross section, ¢°, and the
copolarized degree of correlation, a. In all cases tested, the simulations converged
to within about 0.5 dB for ¢° and 5% for « in one hundred samples or less. The
operational frequency is 9.25 GHz for all the examples considered in the following

discussion.

5.4.1 Comparison with Radiative Transfer

Electromagnetic modeling of heterogeneous tree canopies has traditionally been
accomplished using two-layer radiative transport (RT) theory. In this type of model
the trunk and crown layers are treated as being either separate [96] or, if it is desired
to have part of the crown layer in the same region as the trunk layer, a mixed two-layer
geometry is formulated [43]. The mixed layer formulation treats the lower portion of

the trunks as if they were a separate layer, while the crown layer of the canopy consists
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Figure 5.13: Configurations for the pure two-layer and mixed two-layer canopy mod-
els.

of the upper portion of the trunks and smaller scatterers such as leaves, branches and
needles. In this section, we simulate a heterogenous two-component canopy consisting
of cylinders and spheres and compare the results with those obtained from first-order
RT theory.

Figure 5.16 shows the vv-polarized backscattering coeflicient for a homogeneous
layer consisting of 14,147 spheres per cubic meter. In this case, the Monte Carlo
simulation and RT results are in fairly good agreement. It would normally be expected
that the RT results for a layer of first-order scatterers should be about 3dB below

the Monte Carlo simulation due to the fact that the RT formulation is based on the
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meter. The frequency is 9.25 GHz.
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Figure 5.16: Homogeneous layer of 14,147 conducting spheres per cubic meter distri-
buted in 10cm layer above conducting ground. Spheres have ka = 0.62.
vv-polarized backscatter cross section.

incoherent addition of power while the Monte Carlo simulation is based on coherent
addition of the fields. However, for a collection of small discrete scatterers whose
phase centers are distributed randomly within a volume above a smooth ground, the
net effect of cross coherence is not significant over most of the angular range. The
cross coherence terms do produce a minor but noticeable effect in certain sub-regions
of the angular backscatter spectrum as can be seen in the Figure.

Figures 5.17 and 5.18 show the typical response of a homogeneous layer of cylin-
ders above a perfectly conducting ground plane. The number density for this layer is
106.1 cylinders per square meter which is sufficient to produce a significant amount
of cylinder-cylinder coupling for vv polarization and somewhat less coupling for hh
polarization. The coupling between cylinders also produces a fair amount of crosspol
which is not provided by first-order RT in backscatter. At low angles of elevation

(near nadir) the RT result for 2, is about 4dB below those for the simulation. This
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Figure 5.17: Homogeneous layer of 106.1 vertical dielectric cylinders per square meter
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Figure 5.18: Homogeneous layer of 106.1 vertical dielectric cylinders per square meter

above conducting ground. Cylinders are 5.6 wavelengths long and 0.17

wavelengths in diameter. Relative dielectric €, = 35 + z11. hh-polarized
backscatter cross section.
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difference increases with elevation angle and becomes quite large at angles near 80°.
This effect is partly due to overestimation of the extinction matrix in the RT formula-
tion for large scatterers. The RT model computes extinction based on the dimensions
of a scatterer. In the case of a layer of cylindrical scatterers, the extinction is re-
lated to the length of the cylinders. However, as multiple scattering becomes more
significant at higher angles of incidence, the correlation length for the coherent field
in the medium decreases. Thus, the effective scattering length of cylinders in a dense
medium is actually shorter than the physical length of the cylinders, making the true
extinction less than what RT theory would predict. In the plot of o},, we observe
a 3dB difference to be present at low angles of incidence. This effect is due both to
the significant cross coherence present in the simulation ana also to the integration
of the source functions in RT theory which is not actually valid for layers of extended
scatterers. In the case of hh polarization, the extinction is much less than that for vv
polarization due to the relatively small diameter of the cylinders. In this regime, the
aforementioned anomalous behavior resulting from integration of the source functions
drives the RT angular response.

Figures 5.19 through 5.22 show the result of adding a volume consisting of 14,147
spheres per cubic meter to the canopy. The sphere layer begins at the top of the
cylinder layer and extends for 10cm above it. In Figure 5.19 the cylinder layer is
characterized by a number density of 35.4 cylinders per square meter. At this num-
ber density, neither the mutual coupling between cylinders nor the coupling between
cylinders and spheres produces much second-order interaction in the simulation re-
sults. The RT result is seen to have a fairly constant offset from the simulation since
extinction in both layers is minimal. Figure 5.20 is for the same canopy configura-

tion as in Figure 5.19 except the cylinders have a number density of 106.1 cylinders
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Figure 5.19: Heterogeneous canopy consisting of 35.4 cylinders per square meter in
lower layer and 14,147 spheres per cubic meter in an upper layer 10cm
thick. The cylinders are 18cm high and 0.55cm in diameter. The spheres
have ka = 0.62. vv-polarized backscatter coefficient at 9.25 GHz.

per square meter. Once again, at this cylinder density level, the coupling between
cylinders is not insignificant. It is evident from comparison with Figure 5.17 that
the addition of the sphere layer does not change the vv response of the Monte Carlo
simulation appreciably since the level of scattering from the sphere layer is approxi-
mately 10dB down from that of the cylinder layer. This can be seen more clearly in
Figure 5.21 which gives a direct comparison between the simulation results for the
106.1 cylinders per square meter canopy with and without the sphere layer present.
The small difference at angles of incidence closer to vertical is present because the
cylinder response is significantly lower in that region. Comparison of Figures 5.22
and 5.18 shows that the addition of the sphere layer produces the same effect at lower
angles of incidence for the hh-polarized response. At higher angles of incidence, ex-
tinction in the sphere layer reduces the hh backscattering response of the two layer

canopy over that of the cylinder canopy. The most notable difference between the
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Figure 5.20: Heterogeneous canopy consisting of 106.1 cylinders per square meter in
lower layer and 14,147 spheres per cubic meter in an upper layer 10cm
thick. The cylinders are 18cm high and 0.55cm in diameter. The spheres
have ka = 0.62. vv-polarized backscatter coefficient at 9.25 GHz.
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Figure 5.21: Comparison of Monte Carlo simulation of vv-polarized backscatter co-
efficient for a homogeneous canopy and a heterogeneous canopy. The
homogeneous canopy has 106.1 cylinders per square meter. The hetero-
geneous canopy has the same number density of cylinders but has 14,147
spheres per cubic meter in a 10cm layer on top.
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Figure 5.22: Heterogeneous canopy consisting of 106.1 cylinders per square meter in
lower layer and 14,147 spheres per cubic meter in an upper layer 10cm
thick. The cylinders are 18cm high and 0.55cm in diameter. The spheres
have ka = 0.62. hh-polarized backscatter coefficient at 9.25 GHz.

homogeneous and heterogeneous canopies can be seen in Figures 5.23 through 5.25.
Figure 5.23 illustrates the dramatic increase in depolarization that results solely from
coupling between the sphere and cylinder layers, and Figures 5.24 and 5.25 show that
addition of the sphere layer markedly changes the behavior of the co-polarized degree
of phase correlation, a. This is not surprising since this phase statistic is a sensitive
measure of the level of multiple scattering in the canopy. It should be noted that
both the first-order Monte Carlo simulation and first-order RT theory yield a result
for a of unity for a homogeneous layer of vertical cylinders.

Finally, Figures 5.26 and 5.27 show the effect of using a mixed two-layer canopy
model versus a pure two-layer canopy model as was illustrated in Figure 5.13. In
this example, the pure two-layer canopy has a 10cm layer of small conducting spheres
beginning at the top of the cylinder layer, while in the mixed canopy the sphere

layer begins at 8cm above the ground plane and extends to the top of the cylinder
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Figure 5.23: Comparison of Monte Carlo simulation of vh-polarized backscatter co-
efficient for a homogeneous canopy and a heterogeneous canopy. The
homogeneous canopy has 106.1 cylinders per square meter. The hetero-
geneous canopy has the same number density of cylinders but has 14,147
spheres per cubic meter in a 10cm layer on top.
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Figure 5.24: Homogeneous canopy consisting of 106.1 cylinders per square meter. The
degree of copolarized phase correlation at 9.25 GHz.
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Figure 5.25: Effect on the degree of copolarized phase correlation of adding a layer of
14,147 small conducting spheres per cubic meter in a layer 10cm thick
on top of the canopy of 106.1 cylinders per square meter.
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Figure 5.26: Comparison of pure and mixed layer R.T. models for a canopy consisting
of 106.1 cylinders per square meter and 14,147 spheres per cubic meter.
The crown layer is 10cm in height in both cases. vv-polarized return at
9.25 GHz. The pure and mixed copolarized Monte Carlo simulations are

almost identical.
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Figure 5.27: Comparison of pure and mixed layer Monte Carlo simulations for a
canopy consisting of 106.1 cylinders per square meter and 14,147 spheres
per cubic meter. The crown layer is 10cm in height in both cases. vh-
polarized return at 9.25 GHz.

layer. Figure 5.26 shows that using the mixed two-layer model actually lowers the
RT co-polarized backscatter response severely over that of the pure two-layer model.
This decrease occurs because the phase matrix of the cylinders is proportional to the
square of the cylinder length, and this length is divided into smaller subsections in the
mixed layer model. For example, division of the trunks into two equal portions would
reduce the phase matrix by a factor of 3dB. There is almost no difference between the
co-polarized backscatter response of the Monte Carlo simulations for the two different
canopy types. Figure 5.27 shows that the pure and mixed layer canopy simulations
do have significantly different crosspol responses. This is because the spheres are, on
the average, closer to the cylinders in the mixed layer model and this elevates the

degree of coupling present in the medium.
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5.5 Conclusions

In this chapter a Monte Carlo simulation has been constructed for a heteroge-
neous two-component medium consisting of large vertical cylinders and small spheres
above a ground plane. The second-order interactions between cylinders and between
spheres and cylinders have been included in the scattering model, and all scattering
terms have been validated using the method of moments. The results of the Monte
Carlo simulation have been compared with those of corresponding radiative transfer
models for similar media. It has been found that the radiative transfer mod-
els do not properly predict the scattering behavior of media which are
composed of scatterers having dimensions large compared to the dimen-
sions of the medium. This is a result of the fact that the extinction matrix for
the medium as computed by radiative transfer is overestimated for large particles in
any plane of polarization corresponding to a large dimension and produces excessive
attenuation of the scattered wave for that polarization especially at higher angles of
incidence. In addition, even though the extinction matrix is not incorrectly estimated
for polarizations that are not associated with large dimensions of the scatterer, the
source function for the medium will still be improperly estimated in that dimension
and will not reproduce the proper angular trend for the scattered wave. It has also
been determined that the mixed-layer radiative transfer model which attempts to
divide the canopy into an upper layer consisting of trunks and smaller scatterers and
a lower layer consisting of trunks alone can produce results that are seriously in er-
ror. Another conclusion is that while second-order interactions between the cylinders
can yield significant changes in the level of backscattered copolarized radiation, the
predominant effect of the interaction of the cylinders with the smaller spheres is to

produce a change in the angular trend of the cross polarized response. The second-
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order interactions between spheres and cylinders have also been shown to produce a

distinct change in the copolarized phase statistics of the backscattered wave.



CHAPTER VI

A HYBRID MODEL FOR
ELECTROMAGNETIC SCATTERING FROM
FOREST CANOPIES

6.1 Introduction

In previous chapters Monte Carlo simulations have been developed and validated
for vegetation-like random media consisting of long vertical cylinders above a dielec-
tric half-space representing tree trunks or plant stalks and including distributions of
smaller spherical particles representing leaves, branches and other components such
as may be found in the crown layer of a forest canopy [62]. The interactions between
the cylinders and between spheres and cylinders up to second order were included in
the simulation algorithm for the purpose of determining the effect of multiple scatter-
ing in the canopy. The motivation for developing the Monte Carlo canopy simulations
was to provide a benchmark with which to evaluate the performance of the RT model
in reproducing the electromagnetic scattering behavior of tree canopies.

It has been found that the RT model does not accurately reproduce the scattering
behavior of layers of electrically long vertical cylinders above a dielectric half-space.
Figure 6.1 shows the discrepancy between the vv-polarized backscatter response of the

RT model and the Monte Carlo simulation for a layer consisting of 106 cylinders per

129
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Figure 6.1: The vv-polarized backscattering coefficient of 106.1 vertical dielectric
cylinders per square meter above a conducting ground plane at 9.25 GHz.
The cylinders are 18cm long and 0.55cm in diameter and have a dielectric
constant ¢, = 35 + 211.

square meter above a perfectly conducting ground. The cylinders are 5.5 wavelengths
long and 0.17 wavelength in diameter and have a dielectric constant, ¢, = 35+:¢11. The
figure illustrates the typical overestimation of the extinction behavior of the canopy
trunk layer that is obtained using the RT approach. In addition, there is an offset
between the RT results and those of the simulation due to the improper treatment of
coherent volume scattering found in RT theory and resulting from integration of the
source functions and the inability of RT to account for cross coherence effects.

The extinction problem occurs because RT uses the scattering matrix of the long
cylinder to compute the extinction matrix of the trunk medium. Figure 6.2 shows the
vv-polarized backscatter response of a layer of cylinders identical in all respects to
those of the previous figure except that the layer has a number density of 35 cylinders

per square meter. In this case, the medium is fairly sparse with all cylinders being
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Figure 6.2: The vv-polarized backscattering coefficient of 35.4 vertical dielectric cylin-
ders per square meter above a conducting ground plane at 9.25 GHz. The
cylinders are 18cm long and 0.55c¢m in diameter and have a dielectric con-
stant €, = 35 + :11.

uniformly illuminated, and the RT extinction approximation is valid. However, when
the population of cylinders becomes larger, interactions between the scatterers cause
decorrelation of the coherent field as it passes through the medium. This decorrelation
produces non-uniform illumination of the cylinders and makes them scatter as if they
were shorter than their actual physical length. The end result is to cause the RT
model to overestimate both the extinction matrix and the phase matrix for the layer.

In contrast to their distinct behaviors for a layer of vertical trunks, the RT model
and Monte Carlo simulation agree well for a medium consisting of small scatterers
distributed throughout a volume above a dielectric half-space. Figure 6.3 shows the
comparison between the vv-polarized backscatter response of the RT model and the
Monte Carlo simulation for a layer of small spheres 10 cm deep above a perfectly

conducting ground. The spheres have a diameter of about 0.2 wavelength and are



10.0 T T T T T

Radiative Transfer

[ o] Monte Carlo Simulation
00 - m

o’ (dB)

-10.0

-20.0 . 1 s | N 1 . 1 N | N
20.0 30.0 40.0 50.0 60.0 70.0 80.0

Elevation Angle (deg)

Figure 6.3: The vv-polarized backscattering coefficient of 14,147 metal spheres per
cubic meter in a layer 10cm high above a conducting ground plane at
9.25 GHz. The spheres have a diameter of 0.6350cm.

perfectly conducting. The density is 14,147 spheres per cubic meter. In this case there
is no offset between the methods because the cross coherence terms are small over
most of the angular range, becoming slightly larger at elevation angles approaching
horizontal. The extinction is properly estimated by RT since all the particles are small
and uniformly illuminated by the incident plane-wave and, since the eigenvalues of
the extinction matrix are small in this case, integration of the source functions does
not produce serious errors.

The detailed second-order Monte Carlo simulation is quite computationally inten-
sive and requires a fairly large amount of CPU time as compared with the RT model.
However, such second-order Monte Carlo simulations have been shown to give ac-
curate estimates of scattering cross-section and phase statistics for layers of vertical
scatterers [69]. First order simulations give excellent estimates of the co-polarized

scattering cross-section for cylinder layers while at the same time being computation-
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Figure 6.4: Geometry of the cylinder layer for transmission matrix derivation.

ally efficient. For the crown layer, the RT model is accurate, efficient and easy to
formulate, thus providing a useful tool for sensor inversions. In this chapter a hybrid
mode] has been developed that uses radiative transfer to compute the scattering from
the canopy crown while employing a first-order Monte Carlo simulation to obtain
the scattering behavior of the trunk layer. In section 2 of this chapter an analytical
expression for the transmission matrix of the trunk layer is derived which may then
be used to provide the proper extinction behavior for the RT crown model. Section 2
also introduces the concept of the effective scattering matrix of an average scatterer
in the medium. Section 3 describes the development of the hybrid scattering model
algorithm. Section 4 presents evidence to support the conceptual foundations of the
hybrid model and gives some numerical results and examples of its application in

comparison with RT theory and pure Monte Carlo simulations.
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6.2 The Transmission Matrix for the Trunk Layer

Consider an infinite layer of finite length vertical cylinders whose phase centers
are randomly distributed in the xy-plane as shown in Figure 6.4. Suppose that a
plane-wave whose direction of propagation is denoted by k; is incident on the layer
and is given by:

E' = & etkokiT.
where €; is the polarization vector of the incident field.
The expression for the scattered electric field from the n** cylinder is:

B (r) = efbobiop, En Pl o p 1 6.1
n(r)=ce an—P| n(Bn, ki) (6.1)

where

Prn = mni”'yn:ﬁ

r = 22

~ r—

R, = 1°Pn
lr_pnl

and 75; = cos ¢; sin 6; + sin ¢; sin 6;§ — cos §;z is the unit propagation vector for the
incident wave.

In the expressions given above, g, is the location of the phase center of the nth
cylinder, 7 is the location of the observation point which, in this case, lies along the
negative z-axis and R, is the unit vector specifying the direction between the location
of the n** cylinder and the observation point.

In equation (6.1), S,(Rn, k;) is the far-field scattering amplitude of the n** cylinder

and is given by:
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+[Sho( By i) € + Shn( R, k) €h] ho( Rn) (6.2)

where
e:, = g,' 17,
6;1 = E,"Tl,
and
h o= RixZ
|k,‘ X El
~ 72,')(”:?,'
V; = —=x
lh,‘Xk;I
~ = R, x2
hs Rn = ~
(Fn) |R, % Z|
5y(Ry) = alfln) X B
[fo(Ra) X Rl

Spq in equation (6.2) is the effective pq scattering matrix element of the n** cylinder,
where p and ¢ may be either v or k.

At this point it should be noted that the effective scattering matrix of a particular
cylinder is not necessarily the same as the scattering matrix of an isolated cylinder
with the same dimensions and electrical properties. If the medium is not sparse,
then each cylinder will experience a different local field depending on its location
in the ensemble. If the level of multiple scattering in the medium is significant,
then any particular cylinder may, in general, be subject to an excitation that is
non-uniform in amplitude, polarization and phase due to its interaction with other

cylinders. Thus, each cylinder is represented by its effective scattering matrix which
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reflects the unique current distribution that exists on that cylinder as a result of its
individual electromagnetic environment.

Therefore, the total scattered field at the observation point is obtained by summing
the effect due to all cylinders in the layer and is expressed as

o0 A ikolr—p“] ~ ~
=3 ekl l T 5 (R, k) (6.3)
= |I‘ - pnl

Writing (6.3) explicitly in terms of the cylindrical coordinates yields

o0 . . eiko - ~
E'(r)= Y effornsinficos(én=d)______ S (R,, k) (6.4)
ngl /p2 + 22

In (6.4), ¢, is the cylindrical angular coordinate of the n'* scatterer, f; is the elevation
angle of the incident wave as measured from the positive z-axis and ¢; is the azimuthal
angle of the incident wave in the usual sense.

If the observation point is located very far away from the cylinder layer, the sub-
tended angle between cylinders in the layer as seen by the observer is quite small, and
it is possible to pass from the sum of equation (6.4) to an area extensive integration

over the xy-plane. The expression for the scattered field becomes

2 p?+22 A
E'(r)~ M / / gikopsins cosg—4) € 7 S(R.k) pdpds (6.5)

in which M is the number of cylinders per unit area and R = is the unit vector

I=p
Ir-p|
from the observation point to the integration point. Changing variables to p’ = p/|z|

we have

27 poo elkOIZI{p sin 3; cos(¢—¢i)++/p2+1
E'(r) ~ M / / v

T S(R, k) |zl p'dp'dp  (6.6)

Since ko|z| > 1 the integral can be evaluated analytically using the stationary phase

approximation. The stationary function is given by

f(p',8) = p'sinfBicos (¢ — ¢:) +/p? + 1 (6.7)
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Taking the first partial derivatives with respect to p’ and ¢ we have

o1 = sinficos (¢ — ;) + 4

ap' VT +1
g-j; — —p'sinfisin (6 — ¢0) (6.8)

Setting the partial derivatives equal to zero provides the stationary phase point at
¢ = ¢; + 7 and p’ = tan B; which corresponds to the forward direction of propagation
through the layer of cylinders. Using these values in the stationary phase integration
formula along with the second partial derivatives, the expression for the scattered
mean field becomes

2miM
ko cos B;

(E°(r)) =~ (S(k;, k;))etkokiT (6.9)

for which we have taken the mean value of the scattered field and the ensemble average
of the far-zone effective scattering amplitude of the cylinder layer after completing the
integration of (6.6). Taking the ensemble average of the effective scattering matrix
over all cylinders in the medium results in the average effective cylinder scattering
matrix for the medium. This might be thought of as the scattering matrix of a typical
cylinder in the electromagnetic environment representative of the average medium.
Using this average effective scattering matrix in equation (6.9) gives the expression
for the mean scattered field from the cylinder layer.

To obtain the total coherent field at the observation point, the incident field is added
to the expression in (6.9) which yields

(E'(r)) =~ E'(r)+(E*(r))

&4 2meM
' ko cos B

(S(k;, %)) | eromT (6.10)
The transmission matrix 7 for the coherent field is defined by

(E'(r)) = TE' (6.11)
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The transmission matrix elements are found by first setting the incident field polar-
ization to €; = v and taking the dot product with v and h successively. The same

procedure is repeated with €; = h and we find

2miM

Tuu = +m(suu(knki))
2miM ~ =~
Ty = kocosﬂi(Suh(kiaki))
2miM ~ -~
= v Fiy R§ 12
Thy kocosﬂ,-<5" (ki k:)) (6.12)
2miM ~ -
Tap = 14— (Shn(ki, ks))

ko cos f3;

where (Spq(%;,ﬁi)) is the ensemble average effective cylinder pq scattering matrix
element for the forward scattering direction. (p and ¢ may be either v or h)

For the purpose of use in combination with radiative transfer theory we will need

to develop an expression for the intensity transmission matrix for the coherent field.

Let us define the coherent intensity transmission matrix Y as follows
I'=7T (6.13)

where I' and I' are the modified Stokes vectors for the incident and transmitted

intensities respectively. They are defined by

|E,|?

|ELI”

I' = (6.14)

S | e

2Re(E:E}r)

2Sm(EE})

N .

and

(IE:1%)
(EI*)
9Re(E! EL)

It

S | -

(6.15)

i 28m(EL Ef*) ]
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where 7 is the intrinsic impedance of free space. From equation (6.11) we find
(EL) = TwE} + TunEy, (6.16)
and from which we may derive
(|ELP) = ITwl*|EyJ® + 2Re[(TT00) EL B + | Tk | B, (6.17)
Equation (6.13) can be also expressed as
(|EL?) = TulEL? + Y| Ej P 4 2T 1sRe(ELE}) + 2T1.Sm(ELE))  (6.18)

where T;; is the 7j** matrix element of Y. Equating the two expressions we find

Tu = [T/’
T = |Twl
Tiz = Re(ToTy)
Ty = —-Sm(T.T3)

The rest of the matrix elements are found in a similar manner, and the expression for

the intensity transmission matrix is found to be

Y =

- -

| T |2 | Ton |2 Re(To Ty, —Sm(TwT,)
| Tho|? | T |? Re(ThoTry) ~Sm(ThoTyy,)
2Re(T,,Ty,) 2Re(TunTy,) Re(TouTin + TurnTy,) —Sm(TowTh — TunTy,)

| 29m(TTy,) 29m(TuT) Sm(TwTi, + TunTr)  Re(ToTin — TnT3,)

(6.19)
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Figure 6.5: Tree canopy layout for the hybrid model showing intensity designations.

where g4 = cos@ and k. is the extinction matrix of the crown layer. The explicit
expression for k. can be found in [84] and will not be replicated here. The source
functions F{ and F; account for the scattering of energy that is incident on an
elemental volume of the crown medium from all directions into the directions (1, @)

and (—p, @) respectively and are given by
1 27 1
+ _ = Lol INTH L ! '
Fi(n,2) = Z[[ [0 Plwisl )4, 2) a0
2 / AN Gl / / /
[T Pelwti—u' ) (-4, 8, 2) a]
o Jo
(6.22)
Fo(-mb2) = [ [ Plom i, $NE(, ¢, 2) Y
c l’l, b - u o o c /‘L’ 7”, C #, ’z
[T Pl s =i VI (=4t 8, 2) Y]
) ) c ﬂ’ ’ /“ b C u ) b
where df) = du'd¢’ and P.(u, ¢; ', ¢') is the phase matrix of the crown layer which

relates the intensity of radiation incident on an elemental volume of the crown from
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the direction (u',¢’) to the intensity of radiation scattered by the elemental crown
volume into the direction (i, #). Once again, the definition of the phase matrix can
be found in [84] and is not reproduced here. The phase matrix of the crown is the sum
of the phase matrices of the individual components of which the crown is composed

and may be written

Pc(ﬂaa¢s;ﬂi, ¢I) = Z 'Pk(,us» ¢s;/l'i, ¢z)

k
where Py is the phase matrix of particle species k in the crown.

The formal solutions to the radiative transfer equations (6.21) are expressed by

I (u,¢,2) = e Reltbqt(y ¢,—d)+ / TR N E (1, 8, 2") d2’
-d

0 !
L(~p,6,2) = R Iz(—p,9,0)+ [ K- MF(=p,6,2)d  (6.23)

for the upward-going and downward-going intensities inside the crown. If we consider
the boundary condition at the diffuse boundary interface between the crown and

trunk layers we have

(g, ¢,—d) = T{ (4, 4, —d) - (6.24)

where If is the upward-going vector specific intensity in the trunk medium. The hy-
brid Monte Carlo-radiative transfer formulation presented here obtains the scattering
behavior of the trunk layer by simulation. In this case, the scattered field from a
particular layer of cylindrical trunks is given by

eikor

E/(r) =

w & * -~ ~

3 etholki=ko)-Pu g (E,, k) (6.25)
r n=1
where k; and k, are the unit propagation vectors for the incident and scattered waves

respectively and p, is the position vector in the xy-plane of the n** cylinder. S, is

the effective far-zone scattering amplitude for the n** cylinder, as discussed in the
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previous section, and represents the current distribution on the cylinder as a result
of its coupling to all the other cylinders in the medium. Then the specific intensity
incident on the trunk layer may be related to the specific intensity scattered from the

trunk layer through the relation

L(0,,6,) = -5 Lu00r 64:0:, 6) L0, 6) (6.26)

in which I and I} are the modified Stokes vectors for the waves incident on, and

scattered from the trunk layer. L, is the Stokes matrix for the trunk layer and is

defined by

Lt =
(1Swl?) (ISunl?) Re(SwwSon) —Sm(SuwS3h)
(ISho!?) (IShnl?) Re(ShoSin) —Sm(ShvSin)

2Re(S,uS)  2Re(SunSt)  Re(SuwSiy + SonS)  —Sm(SuwSih — SunSi,)

| 29m(SuuS5,) 23m(SukSt) Sm(SwSih + SunSh)  Re(SuSin — SunSi)
(6.27)

where Sy, is the pq scattering matrix element of a particular distribution of cylinders in
the trunk medium and < > represents the process of ensemble averaging accomplished
by the Monte Carlo simulation.

Then the upward-going intensity at the boundary between the trunk and crown layers
is considered here to consist of two parts. The first part is the coherent intensity that
has been reflected from the specular bottom surface and is subsequently attenuated
by the trunk medium. The second part is the component that has been attenuated by
the crown medium and is then scattered by the trunk layer. Therefore, the upward-

going vector specific intensity at the bottom of the crown layer may be expressed in
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the following form
L (g, ¢y —d) = T(p) T (1, 8, —d') + Lo(pt, 85 o, $o) €™ Fete 1, (6.28)

where If (y, ¢, —d') is the upward-going vector specific intensity at the ground sur-
face, p, = cosf;, I, is the incident vector specific intensity and Y is the intensity
transmission matrix for the coherent wave in the trunk layer as defined in (6.19).

The boundary condition at the canopy floor is

L (p ¢, —d) = R(p) L (—p, ¢, —d') (6.29)

where I is the downward-going vector specific intensity in the trunk medium and R is
the specular reflectivity matrix for the ground as given in [84]. Again, It (—pu, ¢, —d')
is considered to consist of two components. The first component is the coherent
wave which is first attenuated in the crown medium and then attenuates further as it
travels through the trunk medium to the canopy floor. The second component is the
incoherent wave that is generated by scattering in the crown medium and attenuates

in traversing the trunk medium. These terms can be written formally as

It_(—'ﬂ’ ¢, —d’) = T(_ﬂ) e-RCd/#O Io 6(,“ - l‘o) 6(¢ - ¢o)

0 ’
Y (—p) [ e RAHDE (—p6,2) ' (6.30)

Substituting this expression into (6.29) and substituting (6.28) into the first of equa-

tions (6.23), we obtain

L(p,¢,2) = e RelHdhRi(yye=Redlio T §(1 — p,)6(d — o)
0
el RI(y) / ; e Rl (—p, ¢, 2" d2' (6.31)

B

+e—nc(z+d)/u £t(#, é: Lo, ¢o) e—K.cd/po I
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where R'(4) = ¥ () R(1) Y (ko)-

To obtain the zeroth-order approximations for the source functions F{ and F7
the expressions for the upward and downward travelling coherent waves in the crown
medium,

L3 (1, ¢,2) = e IR () e Fetbo L, 6(p — po)6(4 — go)

ICO-(—”1 ®, z) = eﬂcz/u L 6(/‘ - /‘0)5(‘15 - ¢0) (632)

are used in equations (6.22). The resulting expressions for the source functions are

Fi(u ¢,2) = %m(u, B lo, Bo) e~ ezt Do R (Y ) e=Fcdlbo
+ Py 6 —tho $0) €571 T,
(6.33)
Fo(-p ¢,2) = %[’PC(—,l, & o, B,) e~ e+ Do R1( ) g~ Fcdlo
+ P~y b3 — o, $o) €' 1,

Using these source functions in equations (6.23), the scattered intensity above the

crown layer for the hybrid model is found to be to be

L(p ¢) = e MR () e ML, 6( — 110)8(¢ — ¢0)
+%‘-e_n°d/“ ’R'l(:u){/Od[e-ndzq—d)/ppc(_”’ ¢; Ko, ¢o) e_RC(ZI+d)/“°'R"(”O) e—ncd/uo
+ e~ ReCHIP (s, ¢ —po, §) €7 o] d'} 1, (6.34)

1, 0 , )
+;{/ d[encz /”'Pc(p, ®; Hos ¢o) e~ Helz +d)/”°'R'(p,o) e~ Kcdluo
+ eﬁ':cz'/#rpc(”, : ~ fho, ¢o) encz'/ﬂo] dzl} I,

+ e el L, s o, bo) € ebo 1,

The integrals in expression (6.34) above can be easily integrated. The results of the

integrations are found in [96] and will not be duplicated here.
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6.4 Results and Discussion

In order to evaluate the actual behavior of our expressions (6.12) for the field
transmission matrix of the cylinder layer and the related quantity (6.19), the intensity
transmission matrix, it is first necessary to sharpen our definition of the effective
scattering matrix (S). It will now be defined exactly what is meant by the effective
scattering matrix of an average cylinder in a random medium consisting of vertical
cylinders. Then the typical behavior for (S) will be shown as the number density of
scatterers in the medium increases.

The scattered field from a typical cylinder in the medium may be expressed as
E* = —k? {f x t x I1.} (6.35)

where IT, is the electric Hertz vector given by

. tkor O
1. = lZo € 2/36(1‘1) e—tkor cos§ ds’ (636)

*" 4xk, r

In the expression above, J. is the electric surface current density, Z, is the intrinsic
impedance of free-space and £ is the angle between the vector to the source point and
the vector to the field-point. The integration is over the cylinder surface.

If we have a z2-directed current density that is a function of 2’ alone on the surface
of a thin vertical cylinder located at the origin, the above expression for the Hertz

vector becomes

iZya e'kor

2k, r

h .y
II, = 5 / J,(2') e=kos' costs 1 (6.37)
0

where J, is the z-directed surface current density, 0, is the elevation angle for the
scattered wave, a is the cylinder radius and & is the cylinder height. If this integral

is approximated by a sum over n equal segments of the cylinder length, making sure
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that n is sufficiently large to properly sample the current, we obtain for the scattered

field

ik,Z,a6 etkor

E’~-— 5

{t x t x 2} ZJ (2,) €™ komn cosbs (6.38)

in which § is the sample segment length, J,, is the z-directed current density sampled
at the center of the n** segment and z, is the coordinate of the n'* segment. After
taking the dot product of the scattered field with the polarization vector of an inci-
dent vertically polarized field we can then extract the vv-polarized scattering matrix
element for a particular cylinder. Taking an ensemble average of the current density
over all cylinders in the medium, the effective vv-polarized scattering matrix element

is obtained for an average cylinder,

sza6

(Sww) = sin 0, Z ¢~ tkozn cosls (6.39)

The scattering matrix element (6.39) is, ideally speaking, what would be used in
the first of equations (6.12) to compute the vv-polarized field transmission matrix of
the cylinder medium. It is clear from the form of (6.12) that if the field transmission
matrix is to remain finite as the number density of scatterers in the medium becomes
large, the effective scattering matrix must decrease in amplitude as the effect of
multiple scattering increases. In addition, as the elevation angle of the incident wave
approaches 90°, the cosine in the denominator of equations (6.12) approaches zero.
This means that at angles of incidence approaching 90°, the effect of coupling between
cylinders becomes quite large and the result should be to reduce the amplitude of (S)
to preserve the finite amplitude of (6.12).

This hypothesis was tested using the standard NEC method of moments code [6].
Thin, finitely conducting vertical cylinders were distributed within a circular area

using a random number generator, and a test cylinder was placed with its base at the
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Figure 6.6: The effective vv-polarized scattering matrix of a distribution of cylinders
as a function of number density. The cylinders are 18cm long and 0.1cm
in diameter and have a conductivity of 100 mhos per meter. The angle of
incidence is 80° from normal and the frequency is 9.25 GHz.

origin of the coordinate system. The number of cylinders to be placed within the area
was determined by the desired number density. The cylinders were 5.5 wavelengths
long and 0.03 wavelengths in diameter and had a conductivity of 100 mhos per meter.
Weakly scattering finite conductivity cylinders were used to eliminate interference
caused by the travelling waves that are supported by perfectly conducting cylinders.
After a specified distribution was set up by the random number generator, the method
of moments was used to determine the current on each segment of the test cylinder.
This process was repeated a large number of times to obtain an ensemble average
value for the current density on the test cylinder. Equation (6.39) was then used
to obtain the effective scattering matrix for this test cylinder. Figure 6.6 shows the
result of this procedure for number densities in the range from 0 to 500 cylinders per

square meter at an incidence angle of 80° from the normal. At this angle of incidence
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Figure 6.7: The effective vv-polarized scattering matrix of a distribution of cylinders
as a function of number density. The cylinders are 18cm long and 0.1cm
in diameter and have a conductivity of 100 mhos per meter. The angle of
incidence is 20° from normal and the frequency is 9.25 GHz.

the relatively high level of multiple scattering produces a notable decrease in both the
real and imaginary parts of (S) with increasing number density. Figure 6.7 is for the
same distribution but at an angle of incidence of 20°. At the 20° angle of incidence,
the small degree of mutual coupling in the distribution produces little change in the
effective scattering matrix with an increase in the number density of scatterers. It
should also be noted that the 20° angle of incidence data has a much lower overall
magnitude which is consistent with the lower level of interaction. It is expected that
stronger scatterers would show a steeper decrease in (S) with packing density and
would eventually produce some kind of limiting behavior in equation (6.12), but it is
not possible to check this using the NEC code.

It is interesting to note that multiple scattering within the cylinder medium pro-

duces a decorrelation of the local fields in the medium and this is the field that
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actually excites the individual cylinders. This field decorrelation property is illus-
trated in Figure 6.8 which shows the magnitude of the field correlation function for
the z-component of the electric field as a function of vertical distance into the medium
from the top of the cylinder layer. The field correlation function was generated by
creating a random distribution thin conducting cylinders on top of a metallic ground
plane. The method of moments code was used to sample the near electric field as a
function of vertical distance into the medium at many separate locations. The result
was then ensemble averaged and the correlation function determined. It should be
realized that the finite correlation length for the electric field in the medium will affect
both the scattering and extinction behavior of the medium. It is not actually correct
to describe scattering by the individual particles in the medium in terms of their single
scattering properties when the medium becomes dense enough to produce significant
multiple scattering. In this case the length of the scatterer, as far as the excitation is
concerned, is controlled by the coherence length of the fields in the medium.

Clearly, for the purpose of simulation of the transmission matrix, it is not possible
to obtain all orders of scattering in the medium since an analytical approximation
is used to compute the coupling between cylinders. The simulation utilized in this
chapter contains the interaction terms for scattering between cylinders up to second-
order. It has been found in previous work [69] that the second-order approximation
is valid up to fairly high densities, even for strongly scattering media. In most cases
of interest for vegetation, the first-order approximation should provide a reasonable
estimate of the co-polarized backscattering coefficients. However, to obtain the proper
cross-polarized backscattering coefficients and phase statistics [66], it is necessary to
take the second-order terms into account.

Figures 6.9 and 6.10 show the vv-polarized forward scattering coefficient for two
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Figure 6.8: The magnitude of the correlation function for the z-component of the near
electric field within a medium consisting of 177 thin conducting cylinders
per square meter as computed by the method of moments. The cylinders
are 5.5 wavelengths long and 0.03 wavelength in diameter at 9.25 GHz.
The excitation is vertically polarized and incident at 30° from the vertical
axis.

different densities of thin finitely conducting cylinders. The cylinders have been
positioned with a random number generator. In the lower density case of Figure 6.9
it can be seen that the single scattering approximation yields a satisfactory estimate
of the coeflicient while at the higher density level shown in Figure 6.10 the second-
order terms are required to obtain accurate results. The level at which orders of
scattering greater than one become necessary is determined by the dielectric constant
of the cylindrical scatterers, their heights and the density of packing of the medium.
It is a rule of thumb for cylinders with dielectric constants in the region found in
tree trunks and vegetation stalks, that when the cone of half-angle equal to the angle
of incidence and height equal to the cylinder height encompasses more than about

twenty other cylinders it will be necessary to include second-order effects to obtain
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Figure 6.9: The vv-polarized forward scattering coefficient of a layer of 177 thin cylin-
ders per square meter. The cylinders are 5.5 wavelengths long, 0.03 wave-
length in diameter and have a conductivity of 100 mhos per meter at 9.25
GHz. The cylinders were positioned with a random number generator.
The single scattering approximation provides a good estimate at this fairly
high density of scatterers.

satisfactory estimates of the co-polarized scattering coefficients. Any satisfactory
estimate of phase statistics or cross polarized scattering coefficients will require the
use of higher order couplings for all but the most sparse canopies.

Figures 6.11 and 6.12 show the vv-polarized intensity transmissivity as a function
of layer height for a layer of dielectric cylinders at two different number densities.
The cylinders are 0.17 wavelengths in diameter and have a dielectric constant, ¢,
= 35+ill. The frequency of operation is 9.25 GHz and the angle of elevation for
the incident wave is 60° from vertical. In Figure 6.11 the number density is 30
cylinders per square meter which is within the single scattering regime. It is seen
that the first-order transmissivity computed using equation (6.19) and a first-order

Monte Carlo simulation agrees quite well with the transmissivity computed using
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Figure 6.10: The vv-polarized forward scattering coefficient of a layer of 264 thin
cylinders per square meter. The cylinders are 5.5 wavelengths long, 0.03
wavelength in diameter and have a conductivity of 100 mhos per meter
at 9.25 GHz. The cylinders were positioned with a random number
generator. The second-order scattering approximation is needed here to
provide an acceptable estimate of the scattering coeflicient.

the exponential extinction model of radiative transfer. In Figure 6.12 the second-
order transmissivity computed using equation (6.19) and a second-order Monte Carlo
simulation diverges significantly from the result obtained with the radiative transfer
extinction model. It is significant that the two models diverge only at relatively high
number densities of scatterers. In the first-order scattering regime which one might
reasonably expect to exist in most tree canopies, the result of using equation (6.19)
and the radiative transfer extinction model should be practically indistinguishable.
In dense, stalk dominated, vegetation such as agricultural canopies, one would expect
to find that the exponential extinction model overestimates the attenuation of the
vertically polarized wave, especially at angles of incidence that are far away from the

vertical direction.
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Figure 6.11: The vv-polarized intensity transmission matrix element as a function of
cylinder height for a layer consisting of 30 cylinders per square meter.
The cylinders are 0.17 wavelengths in diameter and have relative dielec-
tric constants €, = 35+i11 at 9.25 GHz. The angle of elevation is 60°
from vertical for the incident wave.

Figure 6.13 shows the hh-polarized transmissivity for the 90 cylinders per square
meter case. At all number densities examined in this study, the hh-polarized trans-
missivities computed by the method of equation (6.19) and the exponential radiative
transfer model are in exact agreement. This is because the approximations used in
formulating the extinction matrix of radiative transfer theory are valid for the weak
scattering regime presented by thin vertical cylinders to a horizontally polarized wave.
Finally, Figure 6.14 shows the general trend of the vv-polarized transmissivity com-
puted using a first-order simulation, for cylinders that are 5.5 wavelengths long. The
extinction is seen to increase with increasing number density and the slope becomes
steeper with increasing angle of incidence. Both trends are as would be expected from
equations (6.12).

The most dramatic difference between the Monte Carlo simulation and radiative
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Figure 6.12: The vv-polarized intensity transmission matrix element as a function of
cylinder height for a layer consisting of 90 cylinders per square meter.
The cylinders are 0.17 wavelengths in diameter and have relative dielec-
tric constants €, = 35+il11 at 9.25 GHz. The angle of elevation is 60°
from vertical for the incident wave.

transfer results for layers of cylinders is to be found in the treatment of the phase
matrix. In radiative transfer theory, the source functions are integrated with respect
to the cylindrical axis coordinate to account for volume scattering within the medium.
This integration procedure is illustrated in [96]. In Chapters 3 and 5, it was demon-
strated that radiative transfer theory produces results that are in sharp disagreement
with measured data for layers of vertical cylinders. On the other hand, Monte Carlo
simulations have been used to reproduce the scattering behavior of such layers with
a fairly high degree of fidelity. To a certain degree, this difference is due to cross co-
herence between scattering mechanisms such as ground-cylinder and cylinder-ground,
and this would account for a baseline offset of about 3 dB if everything else were the
same. This is a result of the incoherent nature of radiative transfer theory which

does not take into account constructive interference from the various multiple bounce
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Figure 6.13: The hh-polarized intensity transmission matrix element as a function of
cylinder height for a layer consisting of 90 cylinders per square meter.
The cylinders are 0.17 wavelengths in diameter and have relative dielec-
tric constants €, = 35+il1 at 9.25 GHz. The angle of elevation is 60°
from vertical for the incident wave.

paths and which will result in the radiative transfer results being 3 dB below coherent
models. However, the error produced by integration of the source functions for layers
of extended scatterers are even more serious.

Figures 6.15 and 6.16 illustrate the difference between Monte Carlo simulation
results and radiative transfer results for the backscattering coefficient of layers of
vertical dielectric cylinders. In Figure 6.15 the dielectric constant is pure real and
varies between 3 and 100. The data presented is for an angle of incidence of 20°
from the vertical. At this angle extinction plays a negligible role in the scattering
behavior of the layer. The tremendous variability of the difference spectrum is due
to the integration of the source functions that occurs in the radiative transfer model.
Figure 6.16 shows the results for the same cylinder layer but, in this case, the real

part of the relative dielectric constant is fixed at 20 while the imaginary part varies
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Figure 6.14: The vv-polarized intensity transmission matrix for a layer of cylinders 5.5
wavelengths in height and 0.17 wavelengths in diameter. The cylinders
have a relative dielectric constant of ¢, = 35+i11 at 9.25 GHz and the
transmissivity of the layer has been computed using a first-order Monte
Carlo simulation.

between 0 and 20. Figure 6.17 shows the difference between the simulated result and
radiative transfer theory for a layer of cylinders with dielectric constants ¢, = 35+i11
as a function of cylinder height.

Convergence is always an issue with Monte Carlo simulations. In Chapter 5 it was
shown that for simulations of scattering from cylinder layers such as are discussed
here, 200 samples is more than sufficient to achieve convergence to within several
percent. However, the issue of area convergence has not been discussed up to this
point. That is, how big an area is required to achieve convergence of the second-order
simulation terms for typical distributions of cylinders investigated in this study? If
the area distribution of cylinders is not large enough in extent, the test cylinder used
in determining the effective scattering matrix for an average cylinder in the layer will

not be truely representative of the ensemble. In other words, the test cylinder will
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Figure 6.15: The difference between Monte Carlo simulation results and radiative
transfer results for the backscattering coefficient of a layer of cylinders
above a conducting ground plane as a function of the real part of the
relative dielectric constant of the cylinders. The imaginary part of the
dielectric constant is zero in this case. The cylinders are 5.5 wavelengths
long and 0.17 wavelengths in diameter.

not be representative of a typical cylinder in a medium of infinite transverse extent.
Figure 6.18 shows the result of typical tests for area convergence of the vv-polarized
transmissivity. The method of moments has been used to compute the convergence
data using equation (6.12) as a basis. The cylinder density is 130 cylinders per
square meter, and the relative dielectric coﬂstant is €, = 14i1943. This combination
provides a level of multiple scattering that is within the second-order regime for angles
of incidence below about 70°. At angles of incidence below 75° or so, the convergence
is to within about a percent for distribution radii below 20cm. However, at 80°, the
level of multiple scattering is so high that convergence cannot be achieved to better
than 5 percent for distribution radii below 35cm.

Figures 6.19 and 6.20 show the comparison between the Monte Carlo simulation,
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Figure 6.16: The difference between Monte Carlo simulation results and radiative
transfer results for the backscattering coefficient of a layer of cylinders
above a conducting ground plane as a function of the imaginary part
of the relative dielectric constant of the cylinders. The real part of the
dielectric constant is 20 in this case. The cylinders are 5.5 wavelengths
long and 0.17 wavelengths in diameter.

radiative transfer and the hybrid model for a layer of perfectly conducting spheres
above a perfectly conducting ground at the moderately low density of 3540 spheres
per cubic meter. The spheres have a diameter of 0.2 wavelength and are distributed in
a layer 3.1 wavelengths thick at 9.25 GHz. The agreement between all three methods
is excellent at this level of number density. Figures 6.21 and 6.22 show the same com-
parison for a sphere density of 14,147 spheres per cubic meter. Again, the agreement
between methods is quite good even at this relatively high distribution density. It is
expected that the agreement between radiative transfer and the simulation will break
down for extremely high sphere densities due to amplification of the coherence ef-
fects. It should also be realized that at high number densities of scatterers, the single

scattering representation used here for the sphere layer will no longer be valid. For
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Figure 6.17: The difference between Monte Carlo simulation results and radiative
transfer results for the backscattering coefficient of a layer of cylinders
above a conducting ground plane as a function of the layer height. The
relative dielectric constant of the cylinders is €, = 35+i11 in this case
and the cylinder diameter is 0.17 wavelengths.

most types of vegetation canopies that have crown layers consisting of small weakly
scattering particles in moderate densities, radiative transfer should work quite well
for modeling the co-polarized backscattering coefficients.

Figures 6.23 and 6.24 show the comparison between methods for a layer of di-
electric cylinders on a conducting ground plane. The cylinder number density is 35
cylinders per square meter and is within the single scattering regime of the mod-
els. The cylinders are 5.5 wavelengths long and 0.17 wavelengths in diameter and
have relative dielectric constants of €, = 35+i11. The hybrid model gives exactly the
same result as the simulation but the radiative transfer model differs significantly. At
this density level the hybrid model will reproduce the correct scattering and extinc-

tion behavior of the canopy with a first-order simulation alone. This is a very fast
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Figure 6.18: Area convergence behavior of the vv-polarized transmissivity for a layer
of 130 thin cylinders per square meter. The cylinders are 5.5 wavelengths

long, 0.03 wavelengths in diameter and have a relative dielectric constant
€. = 1411943 at 9.25 GHz. The distribution is circular.

computation and actually requires less time than the radiative transfer model.
Figures 6.25 and 6.26 show a comparison of the models for a low density of cylin-
ders and moderately high density of spheres, while Figures 6.27 and 6.28 give the
comparison when the density of cylinders has been increased to a level that is within
the second-order scattering regime. In these and subsequent figures, the cylinders
and spheres used as canopy components are the same as in Figures 6.19 through 6.24
above. The hybrid model presented in these figures is based on a first-order simula-
tion since it is desirable to keep the computation time down. Because no second-order
effects are included in the model, no crosspol information is obtainable. Figure 6.29
is for the same canopy configuration as Figure 6.27 but, in this case, all the second-
order interactions are included in the simulation. The hybrid model contains all

the second-order interactions between cylinders but excludes the interaction between
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Figure 6.19: Comparison of models for the vv-polarized backscattering coeflicient of
a 3.1 wavelength thick layer of small metal spheres above a perfectly
conducting ground plane. The spheres have a diameter of 0.2 wavelength
and the number density is 3540 spheres per cubic meter.

cylinders and spheres that have been included in the pure simulation. There is not
much difference between the hybrid model and the simulation even for fairly high
number densities of strongly scattering particles in the crown layer which suggests
that coupling between the crown and trunk layers is not an important factor for the
co-polarized backscattering coefficient. It therefore seems justifiable to neglect this
coupling in the hybrid model. Comparison of Figure 6.29 and Figure 6.27 also reveals
that the first-order hybrid scattering model should give a reasonable estimate of the
co-polarized backscattering coefficient even when the cylinder densities are within the
second-order scattering regime. This is especially true for angles of incidence below
around 60° from the vertical.

Finally, Figure 6.30 presents a comparison between between the fully second-order

simulation and the second-order hybrid model for the cross-polarized backscatter co-
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Figure 6.20: Comparison of models for the hh-polarized backscattering coefficient of
a 3.1 wavelength thick layer of small metal spheres above a perfectly
conducting ground plane. The spheres have a diameter of 0.2 wavelength
and the number density is 3540 spheres per cubic meter.
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Figure 6.21: Comparison of models for the vv-polarized backscattering coefficient of
a 3.1 wavelength thick layer of small metal spheres above a perfectly
conducting ground plane. The spheres have a diameter of 0.2 wavelength
and the number density is 14,147 spheres per cubic meter.
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Figure 6.22: Comparison of models for the hh-polarized backscattering coefficient of
a 3.1 wavelength thick layer of small metal spheres above a perfectly
conducting ground plane. The spheres have a diameter of 0.2 wavelength
and the number density is 14,147 spheres per cubic meter.
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Figure 6.23: Comparison of models for the vv-polarized backscattering coefficient of
a layer of vertical cylinders 5.5 wavelengths high above a conducting
ground plane. The cylinders are 0.17 wavelengths in diameter and have

relative dielectric constants €, = 35+il11 at 9.25 GHz.

density is 35 cylinders per square meter.

The number
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Figure 6.24: Comparison of models for the hh-polarized backscattering coefficient of
a layer of vertical cylinders 5.5 wavelengths high above a conducting
ground plane. The cylinders are 0.17 wavelengths in diameter and have
relative dielectric constants ¢, = 35+ill1 at 9.25 GHz. The number
density is 35 cylinders per square meter.

efficient. The effect of coupling between the crown and trunk layers is seen to be
significant as far as depolarization is concerned, but the second-order hybrid model
still provides a rough estimate of the cross-polarized backscatter coefficient while the
radiative transfer model provides no depolarization information at all. It is to be ex-
pected that the second-order hybrid model will improve relative to the simulation as
far as depolarization is concerned as the number densities and single scattering albe-
dos of particles in the crown layer decrease. In any event, it is not very advantageous
to employ a second-order hybrid model because the CPU time it requires tends to be
rather large. It takes about 12 hours of run time on an IBM RS6000 workstation to
compute the second-order hybrid model of Figures 6.29 and 6.30. If crosspol informa-

tion is not essential, the first-order hybrid model will provide fairly good accuracy for
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Figure 6.25: Comparison of models for the vv-polarized backscattering coefficient of a
two-layer canopy consisting of vertical cylinders on a conducting ground
plane and a crown layer composed of small metal spheres. The density
of the lower layer is 35 cylinders per square meter and the density of the
upper layer is 14,147 spheres per cubic meter.

most conditions found in typical vegetation canopies and the computation time will

be of the same order of magnitude as that required for the radiative transfer model.

6.5 Conclusions

This chapter has presented a hybrid model for the computation of scattering
from layered vegetation media consisting of vertical trunks above a dielectric ground
plane and a crown layer consisting of small weakly scattering particles. The crown
layer has been modeled using radiative transfer theory and the trunk layer has been
simulated with a Monte Carlo simulation. The derivation of the transmissivity matrix
for the trunk layer has been presented and some of its important features investigated.
The concept of the effective scattering matrix for an average cylinder in the trunk

medium has been developed and evidence has been presented that it assumes limiting
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Figure 6.26: Comparison of models for the hh-polarized backscattering coefficient of a
two-layer canopy consisting of vertical cylinders on a conducting ground
plane and a crown layer composed of small metal spheres. The density
of the lower layer is 35 cylinders per square meter and the density of the
upper layer is 14,147 spheres per cubic meter.
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Figure 6.27: Comparison of models for the vv-polarized backscattering coefficient of a
two-layer canopy consisting of vertical cylinders on a conducting ground
plane and a crown layer composed of small metal spheres. The density
of the lower layer is 106 cylinders per square meter and the density of
the upper layer is 14,147 spheres per cubic meter.
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Figure 6.28: Comparison of models for the hh-polarized backscattering coefficient of a
two-layer canopy consisting of vertical cylinders on a conducting ground
plane and a crown layer composed of small metal spheres. The density
of the lower layer is 106 cylinders per square meter and the density of
the upper layer is 14,147 spheres per cubic meter.
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Figure 6.29: Comparison of models for the vv-polarized backscattering coefficient of a
two-layer canopy consisting of vertical cylinders on a conducting ground
plane and a crown layer composed of small metal spheres. All the second-
order interactions between spheres and cylinders and between cylinders
alone have been included in the simulation while the hybrid model in-
cludes only the second-order coupling between cylinders.
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Figure 6.30: Comparison of the hybrid model and a Monte Carlo simulation for the
vh-polarized backscattering coefficient of a two-layer canopy consisting
of vertical cylinders on a conducting ground plane and a crown layer com-
posed of small metal spheres. All the second-order interactions between
spheres and cylinders and between cylinders alone have been included
in the simulation while the hybrid model includes only the second-order
coupling between cylinders.

behavior as the effect of multiple scattering in the medium becomes more important.
Evidence has also been presented to confirm that the exponential extinction model
used in radiative transfer theory works fairly well for sparse distributions of particles
and even for sparse distributions of extended scatterers such as cylinders, however
the radiative transfer extinction model breaks down for high densities of strongly
scattering particles that are large compared with the wavelength of the excitation.
In addition, it has been demonstrated that the source function integration used in
radiative transfer theory to account for volume scattering in random media leads to
results that are severely in error for layers of long cylinders, and it may be inferred

that this is also true for other types of large scatterers. Finally, several varieties
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of test canopies consisting of dielectric cylinders and small metallic spheres over a
conducting ground plane have been investigated. It has been shown that the hybrid
model developed in this chapter can be an effective way to compute scattering from

vegetation media with this general structure.



CHAPTER VII

AN ITERATIVE INVERSION ALGORITHM
WITH APPLICATION TO THE RADAR
RESPONSE OF VEGETATION CANOPIES

7.1 Introduction

In recent years a great deal of emphasis has been placed on the retrieval of in-
formation from synthetic aperture radars and radar polarimeters [93, 94, 101]. Some
of the applications have been in remote sensing of soil moisture for bare soil [57, 75]
and vegetation-covered soil [102, 28]. Other applications include the determination of
vegetation canopy parameters [53, 48, 10, 35], sea surface characteristics [34, 11], and
snow parameters [51, 99]. Within the general problem of classification of remotely
sensed data, there exists the sub-problem of inversion of radar data to obtain parame-
ters of interest for the scene under observation. The vast majority of the literature in
this area has been concerned with two major approaches to the problem of inversion
of radar data.

The first approach involves the construction of an empirical scattering model spe-
cific to the type of problem being studied [57, 1, 76]. In this technique the scattering
characteristics of a particular type of terrain or vegetation canopy are determined ex-

perimentally, usually at several frequencies using a polarimetric radar scatterometer.
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The results are then fit to a fairly simple equation or a set of equations that describe
the scattering behavior as a function of polarization and frequency over a specified
range of parameters (region of validity) for the type of terrain or canopy being char-
acterized. The empirical model obtained in this way is designed to be invertible over
its region of validity. This type of technique can give accurate results for the case it
has been designed to treat but is completely specific to that case and provides little
physical insight.

The second approach, which has received a large amount of attention lately, is
based on the use of artificial neural networks [59, 14, 65, 52]. The transfer function
of the network is determined by using training sequences of known input and output
data. In the present case this would consist of polarimetric radar data as inputs and
scene parameters as outputs. The network characteristics relating the radar data to
the scene parameters are determined using a back propagation algorithm to succes-
sively refine the transfer function based on the set of training sequences. After the
network has been trained it can be used to estimate unknown scene parameters given
an input set of radar data. The neural network has great flexibility and, depending
on the set of training data, the results may be excellent [59, 33]. However, the neural
network is, in most cases, used essentially as a black box. There is no way currently
known of discerning the underlying physical processes that give rise to the network
behavior, which means that there is no systematic way of selecting the optimum set of
data channels for use in a neural network-based inversion given the network response
alone. To do this, one must ultimately rely on information provided by theoretical
models and/or measured data. There is also no way of determining if the decision
path taken by the neural network in arriving at its result is a reasonable one.

In this chapter an iterative algorithm for the inversion of polarimetric radar data
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is presented. The algorithm is completely general and may be applied, in principle,
to any type of radar scattering problem for which a model exists. The behavior of
this algorithm is derived entirely from the physical scattering mechanisms existing
within the system being studied and represents the summation of knowledge gained
in applying the scattering model across a representative range of states of the system.
The amount of computation time required in applying the algorithm to any given
case is small since all the information necessary for inversion of a set of input data
has been precomputed. It is also possible to monitor the decision path taken by
the algorithm in arriving at a result and therefore some measure of control over the
reliability of such results is achievable.

The second and third sections of this chapter present the theoretical development
of the iterative inversion algorithm and some important considerations involved in
its implementation. Sections 4 and 5 discuss the application of the algorithm to the
particular case of retrieval of vegetation canopy parameters from radar data and give
the results of an application based on inversion of the radiative transfer model for
a simplified representative canopy. The final section presents the results of an error
analysis for the algorithm in terms of both systematic and measured quantities and
discusses how sensor configuration, algorithm implementation and data uncertainty

influence the inversion accuracy.

7.2 Iterative Algorithm

Let us assume that backscatter data is provided for a particular target at a given
frequency and for a range of incidence angles 6 € [a, b]. This data may be represented
in terms of a Fourier series in the restricted angular range. The Fourier coeflicients

obtained in this way provide an equivalent representation of the system response for
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this type of target. The behavior of the Fourier coefficients as a function of the target
parameters provides a convenient measure of the system response that is independent
of incidence angle. If a subset of the Fourier coefficients can be found that represents
the angular response of the system to sufficient accuracy and their behavior is known
for all values of the target parameters, then in effect we have an empirical model
that describes the target behavior in detail. In addition, if the functional forms of
these Fourier coefficients with respect to the target parameters are known, it should
be possible to construct subsets of the parameter space over which piecewise linear
representations of the coefficients are obtainable. The resulting sets of linear equations
should be directly invertible and, by means of an iterative process that successively
converges on smaller domains, a solution set is found.

Because it is impossible to determine experimentally the behavior of a complicated
physical system under all conditions, a model that represents its behavior as a function
of all its important parameters is used in the construction of the empirical Fourier
representation. This leaves the determination of the optimum sensor configuration
to the discretion of the system designer. Let us consider then a model M that
operates on parameters [aj, ..., ;] and the angle 6 to produce an estimate of o°

for a particular scene:
(a1, ey Omy 0) = M(eay ey 0, 6) (7.1)

The range of validity of the model is now restricted to a subset of the range [0,%].
In other words let 6 € [a,b] such that 0 <a <0 < b< Z. A linear transformation

L exists that maps the subrange into the full range:
0clab L 8cl, g] (7.2)

with 6’ = (6 — a) such that ¢/ = 0 when @ = a and ¢ = Z when 6 = b.

(SIE]
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Thus, we find that g8 = m

g(0") = 6°(a + 0'/B). Since the domain of g is [0,%], we can expand g as a Fourier

and 0 = a + 0'/3. We now construct the function

cosine series in '

g(0') = %Co + nj::l C, cos(2n0') (7.3)
where
Co=2 / ? 0 (0) cos(2nd') d (7.4)
We can then write:
5°(0) = %co + ﬁ:fl C. cos[2nf(0 — a)] (7.5)
with
C, = % / * 52(0) cos[2nB(0  a)] dO (7.6)

These are the coefficients for the restricted range Fourier series description of 6°(9).
We describe the general polarimetric model response as a function of angle in the
angular range [a,b] by its restricted range Fourier series:

N
oo (a1, .y am; f,0) = %ng + )" CFcos[2npB(0 — a)] (7.7)

n=1

with
Czq = Czq(ala cery Qpy f)

where a,,...,a,, are the model parameters, f is the frequency and p,q is each either
v or h for vertical or horizontal polarization. The series has been truncated at the
(N +1)* term which is assumed to give a satisfactory approximation to the system

response. This representation generally consists of six or seven terms in the case of
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vegetation since the angular behavior of the radar cross section of such canopies away
from normal incidence is a gentle function of 8. Thus, the unique set of Fourier coef-
ficients has been determined for the model response as a function of angle within the
restricted angular range for any given set of input parameters. By way of an exam-
ple, the behavior of the first four Fourier coefficients as a function of the volumetric
soil moisture beneath a vegetation canopy simulated using vector radiative transfer
theory at 1.5 GHz for vv and vh polarizations is shown in Figures 7.1 and 7.2. It is
seen that the functional behavior of the Fourier coefficients is fairly linear over the
entire operational range of volumetric soil moisture and that the convergence of the
Fourier series is rapid. This has been found to be true in most vegetation canopy ap-
plications. Figures 7.3 and 7.4 show the magnitude angular response of the radiative
transfer model as compared with a Fourier series representation utilizing many terms
and synthetic data created by using the four coefficient series of Figures 7.1 and 7.2.
In this case the four term approximation agrees with the model to better than 0.25
dB over the entire angular range. The behavior of the CP(ay, ..., am; f)'s is now
approximated as linear functions of the a)s over the initial range of these parame-
ters. That is, it is known initially, from experience, that each a; falls into a range
aP'™ < q < af**; which is not unreasonable in, for example, typical vegetation
canopies of this kind at this time within the growing season. Then we say that each
initial range has a centroid or central value of that parameter range. The centroid

for that parameter range is denoted by ¢ and is defined by:
ag = (af** + af'™) /2 (7.8)

To the first-order of approximation, the Taylor series expansion of the Fourier
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Figure 7.1: The first four vv-polarized Fourier coefficients of a simulated vegetation
canopy as a function of volumetric soil moisture at 1.5 GHz.
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Figure 7.2: The first four vh-polarized Fourier coefficients of a simulated vegetation
canopy as a function of volumetric soil moisture at 1.5 GHz.
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coefficients about the range centroids is given by:

=, [0CFe
cpe =(em.+ 3 (5] - (79
k=1 aak a=a°
where a = (a1, ...,an), a® = (al,...,a2) and (C?), = CP(a®).

The coefficients, (%%Ei)‘,,:ao are determined by varying each a; over its range
while holding all other a’s fixed at their centroid values. At each value of o} in
its range, the model is evaluated as a function of 6 and the Fourier coefficients are
extracted. In this way all the partial derivatives may be computed from a linear
least-squares fit of the coefficients for each parameter to be estimated.

From this discussion it is seen that &7, has, in effect, been linearized as a function
of the model parameters for any arbitrary value of incidence angle in the range [a, b].

Thus we write:

m

650(0) = (6,,(0)) + kz_:(h’iq(ﬂ))(ak - aj) (7.10)
where
1 N
(63,0) = 5(C2). + 3 (2o cosfoni(0 — a) (1.11)
and

(66‘3"’> N i (%ﬁ")mo cos[2nB(60 — a)] (7.12)

a=a° n=1

It is possible to divide all the initial parameter ranges ax € [of*'", af***] into two
equal subranges for each parameter. These subranges are denoted by {ax(1,1)} =
[aP™,a2] and {ak(1,2)} = [@g,af*®]. Each of these new subranges has associ-

ated with it a centroid. These centroids are denoted by aﬁl)(l) and oV (2), re-

spectively. It is now possible to construct 2™ new centroid vectors consisting of
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Figure 7.5: 2-D parameter space discretization showing subrange centroids as solid
marks.

m-tuples of centroids of the parameter subranges. According to the procedure de-
scribed previously, the Fourier coefficients and gradients about the 2™ new cen-
troid vectors are now computed. This may be repeated successively to obtain any
desired degree of discretization of the parameter space. The p* order set of sub-
ranges is denoted by {ax(p,1)},..., {ak(p,2p)} and their respective subrange cen-
troids are afcp )(1),.. (p)(2p) The resulting (2p)™ centroid vectors may be num-
bered consecutively starting with a?(1) = (agp)(l),...,as,’l’)(l)) and ending with
a((2p)™) = (« ) (2p), .. ., a{?)(2p)). The approach is illustrated in Figure 7.5 for
a two parameter space. Now, let us assume we have m measurements of 0°; o¢ =
O (01, f1), s = 09 (Om, fm). Then the vector o° = (0%,...,02) can be

formed. A system of linear equations is obtained from (7.10) and may be represented



181

0°=(6))+(R) (& —a°) (7.13)
where

(62) = ((07), - (om))” (7.14)

from (7.11), and (R);; is the value of (r}"*¥(8;, f;)) in the matrix of Fourier expan-
sions of the coefficient slopes as in (7.12). & = (&1, ..., &m) is the estimate vector for
the parameter set and «a° is the centroid vector for the set of parameter ranges.

Then the zeroth-order estimate for the parameter set may be found from:

&(0) = (R);! (a0 — (62),) + a®(0) (7.15)

s

where a°(0) is the centroid vector for the initial set of parameter ranges, (d7), is
the vector (7.14) for these initial ranges, and (r), is the matrix whose elements are
the original values of (7.12) formed as described above.

This estimate will have errors due to the fact that the Fourier coeflicients com-
puted using the initial parameter ranges are not actually linear functions of the pa-
rameters. However, it may be expected that for parameter ranges sufficiently small
this first-order Taylor expansion approximation will become increasingly accurate.
This forms the basis for an iterative algorithm. The parameter space is discretized
to produce successively higher-order centroid vectors about subrange spaces of suc-
cessively smaller volume as described previously. Within these successively smaller
parameter subspaces, the first-order Taylor representation of the Fourier coefficients
becomes an increasingly better approximation. Then let us suppose that we have a
performance measure P(|a — a’|) that decreases monotonically with argument and

that satsfies P(0) = Ppin. The first-order estimate of the parameter set is then



computed as follows:

&(1) = (R)7" (07 — (63)1) + af(opt) (7.16)

S

where af(opt) is a first-order centroid vector that satisfies:
P(|&(0) = af(i)]) = P(|&(0) — af(opt)]) = Prin, Vi€ {l,..,2"}  (7.17)

and the other quantities with subscript “1” are the same type as in (7.15) with values
computed at a(opt).

This process may be repeated as many times as desired up to the highest order
of discretization of the model parameter space, or until the rms difference between

successive solution vectors stabilizes to within some arbitrary percentage.

7.3 Implementation of the Algorithm

In practice, it may not be necessary to compute the Fourier representation of the
model behavior. In many cases, one is constrained to the use of a particular sensor
configuration. In such cases there is a limited set of channels available to users of the
data. For example, given a polarimetric SAR with one look angle and two frequencies
of operation, and ruling out the use of phase information, there would be a maximum
of six channels (four copolarized and two cross polarized amplitudes) available for
use in inversion. If there are more data channels available than there are parameters
of interest for the system under observation, then it would be useful to perform a
sensitivity analysis on the model to determine which of the available channels will
provide an optimum set. In any event, if the set of data channels available for use is
pre-determined then the piecewise linear representation of the model must be based on

information provided by those channels and equation (7.13) may be inverted directly.
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This reduces the number of values that need to be pre-computed by a factor equal to
the number of coefficients required in the Fourier representation.

Whether the Fourier representation is used or not, the matrix of slopes and vec-
tor of intercepts as indicated in (7.13) must be generated from the pre-computed
model outputs for each centroid subrange in the parameter space, the number of such
subranges being determined by the maximum level of discretization of the space.
The intercept vector for a particular centroid is a fixed quantity which depends on
the set of model outputs obtained for the inputs determined by the position of that
centroid in parameter space. The slope matrix on the other hand is dependent on
the set of data points used in sampling the parameter subranges connected with a
particular centroid. The functional behavior of the model within a subrange of one
of the parameters is considered to be linear, and the partial derivative with respect
to that parameter is determined by a weighted linear least squares fit of the model
outputs holding all other parameters fixed at the centroid value and varying the pa-
rameter in question over its subrange. The point that represents the centroid value is
strongly weighted relative to the other points because that is the point about which
the derivative must be computed.

There are then at least two basic types of optimization that may be utilized in
implementing the iterative inversion scheme. The first type will be referred to as
intra-centroid optimization. In intra-centroid optimization the data points used in
computing the linear fit (derivatives) about a particular centroid are initially equally
weighted except that the centroid itself is strongly weighted. In succesive iterations,
points that are found to be most distant from the refined estimate are assigned in-
creasingly lower weights until the estimated value of the parameter vector no longer

changes by more than a specified amount. The second type of optimization, referred
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to here as inter-centroid optimization, is utilized after applying the intra-centroid
scheme. If the refined estimate obtained using intra-centroid optimization represents
a state of the system closer in parameter space to another centroid on either the same
or a different level as was shown in Figure 7.5 the algorithm uses this new centroid
as the basis for further refinement. It is evident that the algorithm may “wander”
from centroid to centroid until it finds a point of local stability on which to converge.
The convergence behavior of the algorithm using these optimization schemes will be
discussed in a later section.

Convergence of the algorithm itself is fairly rapid since most of the CPU inten-
sive computations are pre-evaluated using the scattering model for the system under
investigation and are stored on disk as data arrays to be loaded into memory at run-
time. In this way systems of functions that are fairly non-linear may be inverted in a
direct way, although the more the model behavior deviates from linearity in a given

parameter, the less likely it will be to obtain a unique solution for that parameter.

7.4 Application to a Vegetation Canopy

Modeling of vegetation canopies using the radiative transfer approach has become
increasingly popular in recent years [39, 96, 53, 54, 40]. The vector radiative transfer
equations take into account the individual scattering properties of the vegetation
canopy components through a phase matrix which relates the incident to scattered
intensities as a function of the wave directions, scatterer geometries, and the material
composition of the scatterers. This formulation has the advantage of being general,
mathematically tractable, and computationally fairly non-intensive which makes it
convenient from the standpoint of inversion.

In this section the iterative algorithm developed above is used to invert the radia-
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Figure 7.6: Layered structure of the radiative transfer model for a vegetation canopy.

tive transfer model of a simplified vegetation canopy. The canopy consists of leaves
and vertical trunks above a rough ground layer. The layered structure of the canopy
model is illustrated in Figure 7.6. The leaves are considered to be uniformly distri-
buted in orientation and are modeled as thin dielectric sheets using physical optics
to generate the scattering matrix [74, 71]. The scattered field from the rough ground
surface is generated using the Kirchoff and scalar approximations [92]. Trunks are
treated as finite length circular dielectric cylinders for which it has been shown that
an approximate solution for the scattered field can be obtained based on the solution
for the infinite length case provided the diameters of the cylinders are much smaller
than their lengths [100, 64, 41]. The dielectric function of all canopy components is
calculated using the dual-dispersion model of El-Rayes and Ulaby [91, 29]. In this

simplified vegetation canopy, five parameters are considered as variables: volumetric
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Variable Parameter Parameter Range

Volumetric Soil Moisture 0.05 - 0.33
Canopy Density: Trunks | 0.05 - 0.25 trunks/m?
Trunk Height 2.10 - 3.68 m
Trunk Diameter 11.0- 11.2 em

Canopy Density: Teaves | 100 - 300 leaves/m?

Table 7.1: Variable parameter set for the vegetation canopy used to test the inversion
algorithm.

soil moisture, trunk canopy density, trunk height, trunk diameter and leaf canopy
density. Actually, there are only four independent variables since the trunk height
is usually related to the trunk diameter through a function. The ranges of these
variable parameters and the values of the parameters considered to be fixed are listed
in Tables 7.1 and 7.2. While the ranges of some of these parameters may not be
exceptionally representative of all typical real canopies, they do model the impor-
tant general features of electromagnetic scattering from vegetation layers and serve
to demonstrate the invertibility of the radiative transfer equations using the iterative
technique developed in this chapter. The range of volumetric soil moistures given is
representative of the entire wetness scale for typical soils, from that just following a
rain storm to drought conditions [2]. The trunk canopy density range is for condi-
tions from fairly dense woods to sparsely wooded areas [12]. The number density of
leaves in the canopy, considered together with the size of the leaves and the height of
the crown layer combine to give a range of leaf area index (LAI) from 2.0-5.9 which

covers almost the entire range of this parameter [106]. The trunk height and diam-
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Fixed Parameter Parameter Value
Trunk Gravimetric Moisture 0.7
Leaf Gravimetric Moisture 0.7
Dry Density of Plant Materials 0.33 gm/cc
Leaf Diameter 10.0 em
Teaf Thickness 0.025 cm
Crown Height 2.5 m
Surface RMS Roughness 14 em
Surface Correlation Tength 20.0 cm
Soil Composition sand: 23.6 %
clay: 33.7 %

Table 7.2: Fixed parameter set for the vegetation canopy used to test the inversion
algorithm.

eter ranges are not extremely representative of an average forest canopy but would
be more in accord with what one would expect to find in an orchard or grove [53].
Values of 0.7 for the gravimetric moisture of leaves and trunks would give an L-band
dielectric constant of about 28-j9 and a C-band dielectric constant of around 25-j9 for
both canopy constituents using the model of El-Rayes and Ulaby. This is consistent
with typical measured data for trees [53]. Soil surface characteristics are within the
validity region for the physical optics model [92].

To test the inversion algorithm it was first necessary to select four radar channels as
data sources to be used as model outputs and inversion algorithm inputs. These four
channels provide the correct number of equations to invert the linear system (7.13) for

the four variable model parameters. The assumption was made that a pre-determined
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system configuration consisting of an L-band radar operating at 1.5 GHz, and a C-
band radar operating at 5.0 GHz were available for use. Further, an analysis taking
into account the overall backscatter signal levels and sensitivity to variation of the
inversion parameters indicated that an incidence angle of 45 degrees would be useful
in this application. It was decided to use data from the co-polarized channels because
they produce the highest signal levels and they can, in practice, be calibrated with
the greatest accuracy.

The four-parameter space was discretized up to the second level producing six-
teen secondary range centroids. The number of centroids at each level is given by
n = 2m0-1) where m is the number of parameters and ! is the level of discretiza-
tion. The model was then run in the forward direction five times within each full
parameter range for the primary centroid and three times within each subrange for
every secondary centroid to provide the pre-computed data used in determining the
slope matrices and intercept vectors. After the necessary information was produced
to provide a mapping between the parameter space and the model output space, the

model was then used as a data simulator for use in testing the inversion.

7.5 Inversion Results

The region in parameter space for which the least inversion accuracy is to be
expected is the region near the primary range centroid. In this region the estimate of
the parameter vector is based on only a single level of refinement and intra-centroid
optimization. Because the primary centroid is the nearest centroid to the estimated
parameter vector in this case, the algorithm does not take advantage of the higher
degree of discretization available on the second level, and inter-centroid optimization

is not used. When the estimated parameter vector is closer in parameter space to
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any higher level centroid the inter-centroid optimization may then be used to obtain
further refinement of the estimate.

Typical results for inversions obtained near the primary range centroid are shown
in Figures 7.7 through 7.10. It is seen that primary level optimization alone provides
excellent inversion accuracy for most of the parameters over almost the entire param-
eter range. However, there is a significant degree of instability in the trunk height
determination for the region below about 2.7 meters (Figure 7.10). This is due to the
small range of heights considered in this study and the fact that the radar response is
not a sensitive function of either trunk height or diameter within the selected ranges
of these two parameters for the data channels used in the inversion. This problem
could be remedied by using a finer division of the parameter space on the second level
so as to provide a convenient secondary range centroid corresponding to the position
of the primary range centroid but with a restricted parameter sub-range. A larger
range of trunk heights and diameters such as one might find in an actual forest, or
a set of data channels more sensitive to these parameters,